Drivers of changes in Mediterranean extensive livestock systems: a micro-econometric analysis of a Corsican area

Jean Christophe Paoli

To cite this version:
Jean Christophe Paoli. Drivers of changes in Mediterranean extensive livestock systems: a micro-econometric analysis of a Corsican area. 3. AIEAA Conference “Feeding the Planet and Greening Agriculture: Challenges and opportunities for the bio-economy”, Jun 2014, alghero, Italy. hal-02798368

HAL Id: hal-02798368
https://hal.inrae.fr/hal-02798368
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Drivers of changes in Mediterranean extensive livestock systems: a micro-econometric analysis of a Corsican area.
Does the CAP favors forest fires in Mediterranean mountain?

• Relationships between the farming systems favored by the CAP subsidies and the evolution of natural pastures?
Material and methods

CAP subsidies

Agricultural holdings and farming systems: field survey, current and former holdings

Land use: remote sensing on SPOT satellite images of 1994 and 2012 with 20m resolution

Other drivers of farmers’ decisions

Other characteristics (municipal level)

Impact on landscape
Use of remote sensing to evaluate the vegetation changes

- Necessity to get an accurate vegetation cover
- Available data not accurate (IGN Forest DB, Corin Land Cover).
- Use of remote sensing from SPOT satellite images of 1994 and 2012 with 20m resolution.
Vegetation analysis: method

• Check the reference points on field with a GPS
• The reference points are added in the remote sensing software Multispec
• Execution of a supervised classification using Minimum Euclidian Distance method for the 2 images (1994 et 2012)

Extraction of 7 classes of vegetation:

- Bare soil / built
- Grass
- Cistus
- Heather
- Forest (beech, holm)
- Chestnut trees
- Pines

Supervised classification

Vegetation analysis: results

- The 2 SPOT images are combined with the statistical software R to study the changes of 3 vegetation subclasses:
 - Bare soil / built
 - Low vegetation
 - Forest

Matrix of transition:
- No change
- Low vegetation to bare soil
- Low vegetation to forest
- Bare soil to low vegetation
- Bare soil to forest
- Forest to low vegetation
- Forest to bare soil
Use of field survey to assess the Farming location

Figure 4 Farming production sites and their surrounding buffer zones (2012)
Evolution of vegetation growth by farm type
Link between CAP and farming systems?

Original approach: extensification vs intensification vs abandonment.

We estimate a multinomial dependent variable (Ranch) describing the production types of each holding with respect to beef cattle production.
Estimation results

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Intercept</th>
<th>varDexp</th>
<th>vardpop</th>
<th>past1994</th>
<th>Olds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef among other productions</td>
<td>-1.276</td>
<td>-0.549</td>
<td>0.200</td>
<td>-0.016</td>
<td>0.547</td>
</tr>
<tr>
<td>Beef only</td>
<td>-1.655</td>
<td>-0.967</td>
<td>1.326</td>
<td>0.406</td>
<td>0.734</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Std, Errors</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef among other productions</td>
<td>0.218</td>
<td>0.276789</td>
<td>0.3767932</td>
<td>0.221</td>
<td>0.397</td>
</tr>
<tr>
<td>Beef only</td>
<td>0.284</td>
<td>0.3117535</td>
<td>0.4384853</td>
<td>0.230</td>
<td>0.435</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>> p</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef among other productions</td>
<td>5.496 e-09</td>
<td>0.047</td>
<td>0.595</td>
<td>0.940</td>
<td>0.169</td>
</tr>
<tr>
<td>Beef only</td>
<td>5.626 e-09</td>
<td>0.001</td>
<td>0.002</td>
<td>0.077</td>
<td>0.091</td>
</tr>
</tbody>
</table>

| Residual Deviance | 274.881 |
| AIC | 294.881 |
conclusions

The results of the remote sensing data analysis show a rapid process of vegetation growth, from pastures (generally rangelands) to scrublands and scrublands to forest in the Castagniccia region over the last 20 years.
Conclusions 2

results show the Mediterranean ranching systems to be opportunistic, using agricultural land abandonment to maximize personal income together with CAP premiums (despite low agricultural profit).
Conclusions 3

in these Mediterranean areas with low farm density, livestock pressure is too low to control biomass growth. Our results indicate that the current way of distributing premiums without conditions on biomass growth control is questionable.
suggestions

*CAP applications designed in a way as to maintain small systems and make them more attractive for young farmers.

*Encouraging the techniques and skills required to maintain and exploit this kind of landscape (generally non-mechanized), instead of merely granting subsidies.
Thank you for your attention
CSA 3 – Castagniccia, France

Lead: INRA LRDE Corte

Name: Pastoral and mountain agriculture
Extent: 45016 Hectare
Location: from 300 to 2700 m uls, steep slopes, shales
Population: 7050

Climate: Mediterranean
Figure 9: agricultural profit vs personal income per worker