Stability and safety of wastes-based packaging materials
(EcoBioCAP-WP 4)
Helene Angellier-Coussy

To cite this version:
Helene Angellier-Coussy. Stability and safety of wastes-based packaging materials (EcoBioCAP-WP 4). EcobioCap Final Meeting, Feb 2015, Montpellier, France. hal-02798806

HAL Id: hal-02798806
https://hal.inrae.fr/hal-02798806
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Stability and safety of wastes-based packaging materials (EcoBioCAP - WP 4)

Hélène Angellier-Coussy
UM2/INRA, France
Objective

To investigate the suitability of packaging materials developed in EcoBioCap as food contact materials (INRA, FRAUNHOFER, CSIC, UNIROMA)

MATERIAL STABILITY
Structural, physico-chemical & microbiological

FOOD SAFETY
Related to raw materials and final packagings

Under food contact conditions
Study case: PHBV / Wheat straw fibres biocomposites

MATRIX = PHBV

FILLER = Wheat straw fibres

100 microns
Overall migration in Liquid Food simulants

PHBV (Tianan)

Liquid Food Simulants*

Overall migration (mg/dm²)

<table>
<thead>
<tr>
<th>Liquid Food Simulants</th>
<th>Overall Migration (mg/dm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>-0.28</td>
</tr>
<tr>
<td>Acetic acid 3% (w/v)</td>
<td>0.77</td>
</tr>
<tr>
<td>Ethanol 20% (v/v)</td>
<td>3.50</td>
</tr>
<tr>
<td>Ethanol 95% (v/v)</td>
<td>9.20</td>
</tr>
<tr>
<td>Isooctane</td>
<td>0.80</td>
</tr>
<tr>
<td>Olive oil</td>
<td>-1.07</td>
</tr>
</tbody>
</table>

10 days, 40°C
Overall migration in Liquid Food simulants
PHBV (Tianan) + 20 wt% wheat straw fibers (d$_{50}$ = 150 μm)

10 days, 40°C
Challenge tests & specific migration using surrogates

Surrogates = molecules representative of migratable substances

Step 1: Enriching with surrogates

Step 2: Extraction of surrogates (at each step of the process in the case of challenge tests)

Step 3: Analysis
Toxicological risks of wheat straw fibres?

• Epoxiconazole: the most used fungicide
 o Acceptable Daily Intake (ADI) = 0.008 mg/kg body weight and per day, i.e. 0.56 mg/day for a human of 70 kg
 o Median residue in wheat straw: 2.71 mg/kg of wheat straw (EFSA, 2008)

• Worse case of migration for PHBV/wheat straw fibres trays
 o Trays (30g, 140x130x35 mm³, i.e. 3.7 dm²) in full contact with food
 o 20 wt% of wheat straw fibres
 → Maximal quantity of migratable epoxiconazole = 0.026 mg/kg of food
 → This would mean that a daily ingestion of more than 21 kg of food in contact with this kind of packaging... to reach the value of 0.56 mg/day

• Taking into account the decontamination efficiency (≈80%)
 → This would mean that a daily ingestion of more than 88 kg of food in contact with this kind of packaging... to reach the value of 0.56 mg/day
Conclusions

- **Wheat straw fibres = no safety concern**: Up to 80% of decontamination of surrogates + if the remaining quantity migrated integrally from the packaging towards the food, it did not represent any danger for human health (<ADI)

- **Inertness of PHBVs**: Can be used as food contact materials for all types of food.

- **Stability negatively affected by the addition of wheat straw fibres**: Can be used as food contact materials only for low or intermediate water activity products and/or fat products.
QUESTIONS ?