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Introduction

Here, we are studying the biogas yield of a batch-type microbiological culture: We put together a given quantity of substrate and a given quantity of bacteria (representing the total biomass) and we let them react. The system is closed, which means that there will be no input or output of substrate and biomass whatsoever. Note that in our model, all quantities are measured in term of concentrations. At a given period t, the bacteria will consume an amount of substrate depending on the current concentration of the bacteria, and a function µ of the current concentration of substrate. Then, they produce an amount of biogas depending on the current concentration of the bacteria. The Substrate consumption function, the Biogas yield, the Biomass yield (ie. how much substrate is needed to create a new individual) are factors that depends of the species. Later on, we will add in our model a mortality factor that will also depend of the species.

There are three critical values in our model: Substrate concentration, Biomass concentration and Biogas concentration. The main goal of this internship is studying the existence of overyielding for the biogas production. Overyielding is when a combination of several species have a higher biogas yield than the most productive species, for a given total biomass. Overyielding can also be defined in a more formal way: let n P N the number of species, X P r0, 1s n a vector of proportions such that

n ÿ i"1 X i " 1, λ P R n
`the vector of marginal biogas production of the n species and Λ : λ P R `Þ Ñ R the asymptotic biogas production function. Then, a definition for overyielding would be: there exist a set Ω ‰ H such that Ω : tX, Λpλ 1 Xq ą max i tΛpλ i qu.

Four different models will be presented in this report: the model with single species and no mortality, the model with n species and no mortality, the model with single species and mortality and finally, the model with n species and mortality. Each of the four models will be presented following the same pattern. First, we define the model. Then we look for some basic properties for this model (uniqueness of the solution, the interval of the maximal solution. . .), after this we study the asymptotic behaviour of substrate, biomass and biogas and then, we compute the asymptotic biogas production (excepted in the last model where I didn't had enough time to find the solution. I put the simulations I made instead). Note that for some models, it was needed to reformulate the equations (with a change of variables) to find the asymptotic behaviour of the variables.

The model with single species

In order to study the existence of overyielding, for a given biomass and substrate quantity at time 0, we need to compare the biogas production of n species with the production of the most efficient species. In order to do that, the first step is to compute an expression for the total gas production in the model with only one species.

Here, we consider the relation between the concentration of substrate S and the concentration of the only bacterium species B, and the production of biogas G. We model this with a two dimension dynamic system. For any t ě 0 :

pCP 1q $ & % 9 Sptq " ´µpSqBptq Y 9 Bptq " µpSqBptq Sp0q " S 0 ą 0 Bp0q " B 0 ą 0 and 9 Gptq " rµpSqBptq Gp0q " 0 where • t is time.
• Y is the biomass yield factor of the bacterium .

• r is the biogas yield multiplier of the bacterium (ie. how much biogas is produced during a bacterium's lifespan).

• G(t) is the quantity of biogas produced since t=0.

• B(t) is the concentration of biomass at period t.

• S(t) is the concentration of substrate at period t.

• µ is the substrate consumption speed of bacterium function, depending on S. It is strictly increasing, locally k-lipschitzian, C 2 and µ(0)=0.

• 9 Sptq, 9 Bptq and 9 Gptq represent respectively the consumption of substrate and the production of biomass and biogas at period t.

Note 7.1. Since the equation of G has no influence on the other two equations, we choose to not include it in our system. The asymptotic production of biogas will be considered after having studied the behaviour of the system.

Physical meaning of the equations

Substrate 9

Sptq " ´µpSqBptq Y Since we model batch-like bioprocesses, there is no input of substrate. So, S is decreasing at a rate proportional to the consumption of substrate of the bacteria.

Biomass 9

Bptq " µpSqBptq There is no mortality in this simplified model. So the growth rate of biomass is positive, and increases at a rate proportional to µpSq.

Gas 9

Gptq " rµpSqBptq Each unit of biomass created at a period t releases r units of biogas during its lifespan ( 9 Gptq " r 9 Bptq). We assume G 0 " 0.

Note 7.2. @t ě 0, let Sptq " Bptq " 0 and let t 0 ą 0: then @t, 9 Sptq " ´µpSqBptq Y " µpSqBptq " 9 Bptq " 0 and Spt 0 q " Bpt 0 q " 0. So Sptq " Bptq " 0 is a solution for the Cauchy problem with the Spt 0 q " 0 or Bpt 0 q " 0 initial conditions for all t 0 ě 0.

Basic propositions

Note 7.3. Since µpSq is locally lipschitzian and Y ‰ 0, we can apply Cauchy-Lipschitz theorem (also known as Picard-Lindelöf theorem) so the maximal solution is unique, and every solution is unique on a given interval.

Proposition 7.1. @t ě 0, S(t), B(t) and G(t) are strictly positive.

Proof. Substrate Consider (CP1):

Let t α S Ps0; `8r be such that Spt α S q ă 0.S is continuous. µ is locally lipschitzian, so there exist a t 0 S such that Spt 0 S q " 0. It means that (t, S(t), B(t)) is a solution for the Cauchy problem associated with the Spt 0 S q " 0 initial condition (for t ě 0). And we saw in Note 2.2 that Bptq " Sptq " 0 is a solution for this problem. But Cauchy-Lipschitz also tells us that the solution is unique, so Bptq " Sptq " 0 for all t, and since Spt α S q ă 0, we have a contradiction: @t ě 0, Sptq ě 0.

Biomass Consider (CP1): Let t α B Ps0; `8r be such that Bpt α B q ă 0.B is continuous. µ is locally lipschitzian, so there exist a t 0 B such that Spt 0 S q " 0 or Bpt 0 B q " 0. It means that (t, S(t), B(t)) is a solution for the Cauchy problem associated with the Bpt 0 B q " 0 initial condition (for t ě 0). And we saw in Note 2.2 that Bptq " Sptq " 0 is a solution for this problem. But Cauchy-Lipschitz also tells us that the solution is unique, so Bptq " Sptq " 0 for all t, and since Bpt α B q ă 0, we have a contradiction: @t ě 0, Bptq ě 0.

Biogas We know 9

Gptq " rµpSqBptq, G 0 " 0, @t Ps0; `8r Sptq ą 0 and Bptq ą 0.Since µ is strictly increasing, µp0q " 0, S and B always strictly positive, @t Ps0; `8r µpSq ą 0 ñ 9 G " rµpSqBptq ą 0 ñ Gptq ą 0 Since we don't want S, B or G to be the null function, @t ě 0, S, B and G are strictly positive.

Corollary 7.1. S is strictly decreasing, and B and G are strictly increasing. Proposition 7.2. @t ě 0, the interval of t for the maximal solution of a given Cauchy problem is r0; `8r.

Proof. Let t α ă `8 such that the interval of the maximal solution would be r0; t α r. It means at least one of these three quantities S(t), B(t) or G(t) blows-up in finite time. We will show that this is possible for neither of them:

• For S: S is positive and strictly decreasing, so S is bounded (ie. @t P r0, `8r, Sptq P r0; S 0 sq so S cannot blow-up in finite time.

• For B: let t α ě 0 such that lim tÑtα Bptq " `8. Then, lim tÑtα 9

Sptq " `8 which is in contradiction with the fact that S is C 1 . So B can not blow-up in finite time.

• For G: let T Ps0; `8r. Using the integral formulation of G, we get:

GpT q " Gp0q `T ż 0 9 Gptqdt " T ż 0 rµpSqBptqdt " r T ż 0 9 
Bptqdt " rpBpT q ´B0 q And since B does not blow-up in finite time, this quantity is finite for any T. So G does not blow-up in finite time either.

Proposition 7.3. The asymptotic value of S in `8 is 0.

Proof. Since substrate is strictly decreasing but positive, S admits a limit in `8 we will call l S P r0; `8r. Let l S ą 0. Then, there is a majorant for 9 S, called δ such that δ ą 0:

9 Sptq " ´µpSqBptq Y ď ´µpl S qB 0 Y " ´δ let T ă t.
Using the Mean value inequality, we get:

pSptq ´SpT qq ď ´δpt ´T q Sptq ď SpT q ´δpt ´T q but lim tÑ`8

SpT q `δpt ´T q " ´8,so we get lim tÑ`8

Sptq ď ´8,which is which is in contradiction with the assumption that l S is strictly positive. So l S " 0.

Proposition 7.4. The subset of R `, I :" tt P R `|Y Sptq `Bptq " Y S 0 `B0 u is an invariant set for (CP1).

Proof. Since Y 9 Sptq `9 Bptq " ´µpSqBptq `µpSqBptq " 0 and Y Sp0q `Bp0q " Y S 0 `B0 , B(t) and S(t) are in I for all t in R `.

Computing the asymptotic biogas concentration:

We have now all the elements needed to compute the asymptotic biogas concentration (ie. lim tÑ8 Gptq). Let T ą 0. Using the integral formulation of G, we get:

GpT q " Gp0q `ż T 0 rµpSptqqBptqdt GpT q " r ż T 0 µpSptqqBptqdt GpT q " r ż T 0 9 Bptqdt GpT q " rpBpT q ´B0 q (1)
And the invariant set gives us the following equality for all t P R `:

Y Sptq `Bptq " Y S 0 `B0 Bptq " Y pS 0 ´Sptqq `B0 (2) 
So, combining (1) and (2) we get:

GpT q " rY pS 0 ´SpT qq and using proposition 2.3 we have: lim

T Ñ8
GpT q " rY S 0

8 The model with n species

We will now introduce n species in our model instead of just one. Each species has its own biomass and biogas yield multiplier Y i and r i , its own substrate consumption function µ i . The concentration of each species will be noted as X i while the total biomass will be noted B, as in the previous model. The new Cauchy problem is, for any t ě 0:

pCP 2q $ ' & ' % 9 Sptq " n ÿ i"1 ´µi pSqX i ptq Y i @i, 9 X i ptq " µ i pSqX i ptq Sp0q " S 0 ą 0 @i, X i p0q " X 0 ą 0 @t ě 0, n ÿ i"1 X i ptq " Bptq and 9 
Gptq "

n ÿ i"1 r i µ i pSqX i ptq Gp0q " 0 Note 8.1. If Di such that X i p0q " Bp0q, then (CP2) is equivalent to (CP1).
Note 8.2. @t ě 0, i " 1, 2 . . . n, let Sptq " X i ptq " 0 and t 0 ą 0. Then:

9 Sptq " n ÿ i"1 ´µi pSqX i ptq Y i " n ÿ i"1 µ i pSqX i ptq " 9
Bptq " 0 and Spt 0 q " X i pt 0 q " 0. So Sptq " X i ptq " 0 is a solution for the Cauchy problem associated with the Spt 0 q " 0 or X i pt 0 q " 0 initial conditions for all t 0 ě 0, i " 1, 2 . . . n.

Generalisation of the properties from the previous model

Proposition 8.1. @t ě 0, i " 1, 2 . . . n, S(t), B(t) and X i ptq are strictly positive.

Proof. Substrate Consider (CP2): @t ě 0, i P v1, nw, let t α S Ps0; `8r such that Spt α S q ă 0.S is continuous. µ i is locally lipschitzian, so there exist a t 0 S such that Spt 0 S q " 0. It means that pt, Sptq, X 1 ptq, X 2 ptq . . . X n ptqq is a solution for the Cauchy problem associated with the Spt 0 S q " 0 initial condition (for t ě 0). And we saw in Note 3.2 that X 1 ptq " X 2 ptq " . . . X n ptq " Sptq " 0 is a solution for this problem. But Cauchy-Lipschitz also tells us that the solution for this problem is unique, so X i ptq " Sptq " 0 for all i and for all t. But since Spt α S q ă 0, we have a contradiction: @t ě 0, Sptq ą 0.

Biomass Consider (CP2): @t ě 0, i P v1, nw, let t α X i Ps0; `8r such that X i pt α X i q ă 0. X i is continuous for all i. µ i is locally lipschitzian, so there exist a t 0 X i such that Spt 0 S q " 0 and X i pt 0 X i q " 0. It means that pt, Sptq, X 1 ptq, X 2 ptq . . . X n ptqq is a solution for the Cauchy problem associated with the X i pt 0 X i q " 0 @i P v1, nw, Spt 0 S q " 0 initial condition (for t ě 0). And we saw in Note 3.2 that X 1 ptq " X 2 ptq " . . . X n ptq " Sptq " 0 is a solution for this problem. But Cauchy-Lipschitz also tells us that the solution for this problem is unique, so X i ptq " Sptq " 0 for all i and for all t. But since X i pt α X i q ă 0, we have a contradiction: @t ě 0, Bptq ą 0.

Biogas @t Ps0; `8r, i " 1, 2 . . . n, We know 9 Gptq " n ÿ i"1 r i µ i pSqX i ptq, G 0 " 0, Sptq ą 0 and Bptq ą 0. Since µ is strictly increasing, µp0q " 0, S and B always strictly positive, @t Ps0; `8r, i " 1, 2 . . . n: µpSq, X i ptq ą 0 ñ 9 G "

n ÿ i"1 r i µ i pSqX i ptq ą 0 ñ Gptq ą 0.
Since we don't want S, G or X i to be the null function, @t ě 0, i " 1, 2 . . . n, S, G and X i are strictly positive.

Corollary 8.1. S is strictly decreasing, and @i " 1, 2 . . . n, X i and G are strictly increasing.

Proposition 8.2. The interval of t for the maximal solution of a given Cauchy problem is r0; `8r.

Proof. Let t α ă `8 such that the interval of the maximal solution would be r0; t α r. It means at least one of these three quantities S(t), B(t) or G(t) blows-up in finite time. We will show that this is possible for neither of them:

• For S: S is positive and strictly decreasing,so S is bounded (ie. @t P r0, `8r, Sptq P r0; S 0 sq so S cannot blow-up in finite time.

• For B: let t α ě 0 such that lim tÑtα Bptq " `8. Then, lim tÑtα 9

Sptq " `8 which is in contradiction with the fact that S is C 1 . So B can not blow-up in finite time.

• For G: let T Ps0; `8r. Using the integral formulation of G, we get:

GpT q " Gp0q `T ż 0 9 Gptqdt " T ż 0 n ÿ i"1 r i µ i pSqX i ptqdt ď max i tr i u T ż 0 n ÿ i"1 µ i pSqX i ptqdt " max i tr i u T ż 0 9 Bptqdt " max i tr i upBpT q ´B0 q
And since B does not blow-up in finite time, this quantity is finite for any T. So G can not blow-up in finite time either.

Proposition 8.3. The asymptotic value of S in `8 is 0.

Proof. Since substrate is strictly decreasing but positive, S admits a limit in `8 we will call l S P r0; `8r.

Let l S ą 0. Then, there is a majorant for 9 S we will call δ such that δ ă 0:

9 Sptq " n ÿ i"1 ´µi pSqX i ptq Y i ď ´n min i tµ i pl S qu min i tX i p0qu max i tY u " δ let T ă t.
Using the Mean value inequality, we get:

|Sptq ´SpT q| ď δ|t ´T | SpT q ď Sptq `δpt ´T q but lim tÑ`8
Sptq `δpt ´T q " ´8,so we get SpT q ď ´8,which is impossible. So l S " 0.

Proposition 8.4. The subset of R `, I :

" tt P R `|Sptq`n ÿ i"1 X i ptq Y i " S 0 `n ÿ i"1 X i p0q Y i u is an invariant set for (CP2). Proof. Since 9 Sptq `n ÿ i"1 9 X i ptq Y i " ´n ÿ i"1 ´µi pSqX i ptq Y i `n ÿ i"1 µ i pSqX i ptq Y i " 0
So @i P v1, nw, X i ptq and S(t) are in I for all t in R `.

Looking for a possibility of overyielding

In this section, we will prove that any combination of species cannot beat the production of the "best" species. This result can be obtain by straight on computation, but we will also show another proof, where we use the invariant set.

Proposition 8.5. For all S 0 , , X i p0q, Bp0q, there cannot have overyielding for (CP2).

Note 8.3. There is at least one "best" species i O whose biogas production is higher than all the other species and its asymptotic biogas production is: lim

T Ñ8 G i 0 pT q " max i tr i Y i uS 0 ě r i Y i S 0 " lim T Ñ8
G i pT q, @i P v1, nw.

Calculative proof

Proof. We want to show that the asymptotic value of G in 8 is less or equal than the production of the best species. Let T ą 0. Using the integral formulation of G, we get:

GpT q " Gp0q `T ż 0 9 Gptqdt " T ż 0 n ÿ i"1 r i µ i pSqX i ptqdt " n ÿ i"1 r i T ż 0 µ i pSqX i ptqdt " n ÿ i"1 r i Y i T ż 0 µ i pSqX i ptq Y i dt ď max i tr i Y i u T ż 0 n ÿ i"1 µ i pSqX i ptq Y i dt " max i tr i Y i u T ż 0 ´9 Sptqdt " max i tr i Y i upS 0 ´SpT qq

And since lim tÑ8

Sptq " 0: lim

T Ñ8 max i tr i Y i upS 0 ´SpT qq " m ax i tr i Y i uS 0 " lim T Ñ8 G i O pT q
We have lim

T Ñ8
GpT q ď lim T Ñ8

G i O pT q so there can not have overyielding in this model.

Invariant set proof

Proof. Looking at the invariant set I :"

! t P R `|Sptq `n ÿ i"1 X i ptq Y i " S 0 `n ÿ i"1 X i p0q Y i ) :
@T ě 0:

SpT q `n ÿ i"1 X i pT q Y i " S 0 `n ÿ i"1 X i p0q Y i n ÿ i"1 X i ptq ´Xi p0q Y i " S 0 ´SpT q n ÿ i"1 X i ptq ´Xi p0q Y i pS 0 ´SpT qq " 1 
Now, @T ą 0, we compute G(T):

GpT q " Gp0q `T ż 0 9 Gptqdt " T ż 0 n ÿ i"1 r i µ i pSqX i ptqdt " n ÿ i"1 r i T ż 0 µ i pSqX i ptqdt " n ÿ i"1 r i T ż 0 9 X i ptqdt " n ÿ i"1 r i pX i pT q ´Xi p0qq " n ÿ i"1 r i Y i pS 0 ´SpT qq X i pT q ´Xi p0q Y i pS 0 ´SpT qq ď max i tr i Y i upS 0 ´SpT qq n ÿ i"1 X i pT q ´Xi p0q Y i pS 0 ´SpT qq " max i tr i Y i upS 0 ´SpT qq

And since lim tÑ8

Sptq " 0: lim

T Ñ8 max i tr i Y i upS 0 ´SpT qq " max i tr i Y i uS 0 " lim T Ñ8 G i O pT q
We have lim

T Ñ8
GpT q ď lim T Ñ8 G i O pT q so there can not have overyielding in this model.

The model with single species model and mortality

We now introduce a mortality factor m for bacteria in our model. In order to study its impact on our results, we will start with the one species model. For any t ě 0 :

pCP 3q $ & % 9 Sptq " ´µpSqBptq Y 9
Bptq " pµpSq ´mqBptq Sp0q " S 0 ą 0 Bp0q " B 0 ą 0 and 9 Gptq " rµpSptqqBptq Gp0q " 0

As in (CP1), the quantity of biogas produced at a period t depends on the substrate concentration S and the biomass concentration B at this period. But this time, we subtract the concentration of dying biomass at period t. So unlike (CP1), the derivative of B may not be positive for all t. In particular, we will see what influence does this have over the limit of S.

Basic propositions

Proposition 9.1. @t ě 0, S(t), B(t) and G(t) are strictly positive.

Corollary 9.1. S is strictly decreasing and G is strictly increasing. Corollary 9.2. S has a limit in `8. Let l S be this limit. Proposition 9.2. @t ě 0, the interval of t for the maximal solution of a given Cauchy problem is r0; `8r.

The proof for Propositions 9.1 and 9.2 are similar to those for, respectively, Propositions 7.1 and 7.2 from section 7. Note 9.1. With the mortality term, 9

Bptq is no longer proportional to 9 Sptq, so there is no more invariant set.

Lemma 9.1. Dt α ą 0 such that 9

Bpt α q ă 0 Proof. @t P r0; `8r: If we suppose the lemma above to be false, then, for all t, 9 B ě 0. We know from proposition 9.1 that µpSq is positive. And since µ is continuous and strictly increasing, µ is a bijective function so for all t, we can define its inverse function µ ´1 such that µ ´1pµpSqq " S.

Let S 1 and S 2 P rS l , S 0 s such that S 1 ą S 2 . Then, since µ is strictly increasing, µpS 1 q ą µpS 2 q. So S 1 ą S 2 ô µ ´1pµpS 1 q ą µ ´1pµpS 2 q. And since µpS 1 q ą µpS 2 q, µ ´1 is an increasing function. So 9 B ě 0 ñ µpSq ě m ñ S ě µ ´1pmq ě 0.

On the one hand, we know S is a monotonic C 1 function, with a finite limit, which implies that lim tÑ8 9 Sptq " 0.

But on the other hand, let lim tÑ8

Bptq " B l ď `8. We know B l ą 0 because B 0 ą 0 and we supposed 9 B ě 0. Then:

lim tÑ8 9 Sptq " lim tÑ8 ´µpSqBptq Y " ´µpl S qB l Y ă 0 
Which is not possible, so the lemma must be true.

Proof 

The asymptotic value of S

One's first guess would be that the limit of S is still 0, but the figure below seems to tell us the opposite. We will show in this section that this assumption is untrue.

Figure 1: concentration of Biomass in blue and Substrate in red in function of time Note 9.2. The Runge-Kutta method of order 2 has been used for all the simulations in this report.

Theorem 9.1. The limit of S cannot be 0 Proof. µ is k-lipschitz, which means that Dk P R such that @x, y P R `˚, |µpxq ´µpyq| ď k|x ´y| so: @S Ps0; S 0 s, |µpSq ´µp0q| ď k|S ´0| ô µpSq ď kS

Let's suppose l S " 0. Using the integral formulation of B(S), we get:

BpS 0 q " Bpl S q `ż S 0 l S dB dS pSqdS " ż S 0 0 Y p m µpSq ´1qdS " ż S 0 0 Y m µpSq dS ´Y S 0
And, according to (4), we have :

ż S 0 0 Y m µpSq dS ´Y S 0 ě ż S 0 0 Y m kS dS ô ż S 0 0 Y m µpSq dS ´Y S 0 ě Y m k ż S 0 0 1 S dS And Y m k ż S 0 0 1 S dS diverges 
in 0 so there is a contradiction: l S ‰ 0.

The asymptotic value of G

Proposition 9.5. The value of the biogas production for a given substrate concentration is: @S PsS l ; S 0 s, dG dS pSq " ´rY Proof. 9 Gptq " 9 GpΦ ´1pSqq " rΦ ´1pSqs 1 9 GpΦ ´1pSqq " ´Y rµpSqBpΦ ´1pSq µpSqBpΦ ´1pSqq " ´rY

We can now compute the asymptotic value of G, using the integral formulation of G(S): GpS 0 q " GpS l q `ż S 0 S l dG dS pSqdS ô GpS l q ´ż S 0 S l rY dS ô GpS l q " ż S 0 S l rY dS ô GpS l q " rY pS 0 ´Sl q

The asymptotic production of biogas is GpS l q " rY pS 0 ´Sl q and is decreasing with respect to S l .

10.4 About overyielding I wasn't able to mathematically prove the existence of overyielding in the last model. However, I did some simulations on scilab to show it existence, and give us clues to explain overyielding. We run a simulation on a two species model, where species one has a much higher mortality and biogas yield multiplier.

Figure 2: gas yield in function of the proportion of species 1 at t=0 in a two species model with mortality Since this is a two species model, we can deduce the proportion of species two from the proportion of species 1. And we can see on the graphic that the maximum of this function is not reached in 0 or 1. So there are some proportions for species 1 and 2 where there is overyielding. In fact, the optimal proportion seems to be a very high proportion of pecies one, but different from 0.

And then the case where p 1 p0q " 0: Species one has a greater density at the beginning, but it declines much more rapidly than species 2 because of the higher mortality rate. To have overyielding in this model, we put a high proportion of species one to have a good yield at the beginning, and since this species has a high mortality rate, it population will die quickly, leaving enough room for the population of species 2 to grow, which will allow us to maintain our yield later on and thus do better than the cases where there is only one species.

By using the properties of each species, in some cases, we can make a combination that would have the most optimal yield at any point of time. However, we can make the assumption that if a species had the highest biogas yield (ie. r i Y i ) and the lowest mortality rate, then no combination would beat that species.

Figure 4 :

 4 Figure 4: population of species 2 in function of time

  

  

  

  . We do a change of variable, by replacing t by Φ ´1pSq. It permits us to get rid of the S equation. Concerning B, using Corollary 9.5 we can say:

	9 Bptq " 9 BpΦ ´1pSqq
	" rΦ ´1s 1 pSq 9 BpΦ ´1pSqq
	"	´Y BpΦ ´1pSqqpµpSq ´mq µpSqBpΦ ´1pSqq
	" ´Y	`Y m µpSq
	" Y	ˆm µpSq	´1Ċ
	orollary 9.6. Using Proposition 9.3: Bpl S q " 0

Conclusion

We managed to show that, in a model without mortality, there cannot have overyielding. So, adding a mortality term is crucial since strong evidence suggest that overyielding would be possible in this scenario.

During this internship, I learned a lot on the approach for solving problems in applied mathematics: in particular, I discovered the crucial role of computer simulation which is a very useful support, allowing us to validate or invalidate our intuitions, or giving us a lead when we are stuck. I also familiarised myself with the world of research. For example, I learned a few things about the attribution of funds for PHD students, see what the daily life looks like. . . This internship was intellectually rewarding for me and also permitted me to refine my professional project.
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Bptq ă 0 (from proposition 9.1 and corollary 9.1).

Corollary 9.4. Let B l be the limit of B in `8: 0 ď B l ă `8.

Proposition 9.3. The value of B l is 0.

Proof. We assume B l ą 0. Let ´δ " Bpt α qpµpSpt α qq ´mq ă 0:

Using corollary 4.3 we have: @t ě t α ,

9

Bptq " BptqpµpSq ´mq ď ´δ

Let T ă t. Using the Mean value inequality, we get:

pBptq ´BpT qq ď ´δpt ´T q Bptq ď BpT q ´δpt ´T q but lim tÑ`8

Bptq´δpt´T q " ´8,so we get Bptq ď ´8,which is in contradiction with the assumption that B l ą 0. So B l " 0.

Reformulating the model

Since S is a monotonic and C 1 function on t P r0; `8r, there is a bijection between t and S(t) on this interval. Let Φptq such that: Φ : t P r0; `8rÞ Ñ Sptq " Φptq P rl S ; S 0 s Then we define Φ ´1pSq as: Φ ´1 : Sptq " Φptq P rl S ; S 0 s Þ Ñ t P r0; `8r Lemma 9.2. Let µ a monotonic C 1 application from U Ă R n to V Ă R and µ ´1 its inverse function. Let u P U and v P V such that µpuq " v . The derivative of µ ´1pvq is rµ ´1s 1 pvq " 1 µ 1 puq Proof. By definition: µ ´1pµpuqq " u ñ µ 1 puqrµ ´1s 1 pvq " 1 ô rµ ´1s 1 pvq " 1 µ 1 puq Corollary 9.5. The derivative of Φ ´1pSq is rΦ ´1s 1 pSq " ´Y µpSqBpΦ ´1pSqq , @t ě 0.

Proposition 9.4. An alternative formulation for (CP3) is:

10 The model with n species and mortality

In this model, every species has its own mortality term m i . We will first list the propositions from the previous model with single species and mortality that stay true. Then, using scilab simulations, we will explain how overyielding is indeed possible in a model with mortality.

Gptq "

10.1 Generalisation of the properties from the previous models Proposition 10.1. @t ě 0, i P v1, nw, S, G and X i are strictly positive.

Corollary 10.1. S is strictly decreasing and G is strictly increasing.

Corollary 10.2. Since S is strictly positive and strictly decreasing, S has a limit noted l S .

Proposition 10.2. @t ě 0, the interval of t for the maximal solution of a given Cauchy problem is r0; `8r.

The proof for Propositions 10.1 and 10.2 are similar to those for Propositions 8.1 and 8.2 from section 8. Note 10.1. Here again, 9

Bptq and 9 Sptq are not proportional, so there is no invariant set.

Lemma 10.1. Dt α ą 0 such that 9 Bpt α q ă 0 Proof. @t P r0; `8r: If we suppose the lemma above to be false, then, for all t positive, 9 Bptq ě 0. We know from proposition 10.1 that µpSq is positive. So 9

Bptq ě 0 ñ µpSq ě m. And since µ is continuous and strictly increasing, µ is a bijective function so for all t, we can define µ ´1pSq such that µpµ ´1pSqq " S and S ě µ ´1pmq ě 0 for all t ě 0.

On the one hand, we know S is a monotonous C 1 function, with a finite limit, which implies that lim tÑ8 9 Sptq " 0.

But on the other hand, let lim tÑ8

Bptq " B l ď `8. We know B l ě 0 because B 0 ą 0 and we supposed 9

Bptq ě 0. Then:

We have reached a contradiction, so the lemma is true.

Corollary 10.3. @t ě t α , 9 Bptq ă 0 (from proposition 10.1 and Corollary 10.1)

Proposition 10.3. The asymptotic value of B in `8 called B l is 0.

Proof. We assume B l ą 0. Let ´δ " B 0 pµpSpt α qq ´mq ă 0:

9 Bptq " BptqpµpSq ´mq ď ´δ

Let T ă t. Using the Mean value inequality, we get:

pBptq ´BpT qq ď ´δpt ´T q Bptq ď BpT q ´δpt ´T q but lim tÑ`8

BpT q `δpt ´T q " ´8,so we get B l ď ´8,which is in contradiction with the assumption we have made. So B l " 0.

Reformulating the model

Proposition 10.4. An alternative formulation for (CP4) is: @S P rl S , S 0 s, pCP 4q

Proof. We do a change of variable, by Φ ´1pSq. It permits us to get rid of the S equation. We use Corollary 4.5 to compute rΦ ´1pSqs 1 : 9 X i ptq " 9 X i pΦ ´1pSqq " rΦ ´1s 1 pSq 9 X i pΦ ´1pSqq " X i pΦ ´1pSqqpµ i pSq ´mi q ´řn j"1 X j pΦ ´1pSqqµ j pSq Y j

Corollary 10.4. 9 B can be also written as: @S P rl S ; S 0 s, dB dS pSq "

Corollary 10.5. Since the asymptotic value of B in `8 is 0 (cf. Proposition 10.3), @i P v1, nw X i pl S q " 0.

The asymptotic value of S

In this section, we are going to prove that as in the previous model, The asymptotic value of S cannot be 0.

Theorem 10.1. In (CP4), the limit of S cannot be 0.

Proof. @i P v1, nw, µ i is k i -lipschitz, which means that Dk i P R such that @x, y P R ˚, |µ i pxq ´µi pyq| ď k i |x ´y| for every i. So:

Let's suppose l S " 0. Using the integral formulation of B(S), we get:

And, according to (5), we have :

´Xi pΦ ´1pSqqµ i pSq ř n j"1 X j pΦ ´1pSqqµ j pSq dS `min

´Xi pΦ ´1pSqqµ i pSq ř n j"1 X j pΦ ´1pSqqµ j pSq dS `min i tm i u max j tk j u ż S 0 0 n ÿ i"1 X i pΦ ´1pSqq ř n j"1 X j pΦ ´1pSqqS ´Xi pΦ ´1pSqqµ i pSq ř n j"1 X j pΦ ´1pSqqµ j pSq dS `min i tm i u max j tk j u ż S 0 0 1

S dS

And min i tm i u max j tk j u ż S 0 0 1 S dS diverges in 0 so there is a contradiction: l S ‰ 0. Now let us compare the behaviour of the biomass population in the "extreme" cases (where the proportion of species 1 at period 0 p 1 p0q is equal to 0 or 1).

First, the case where p 1 p0q " 1: