Matrix impact on the bioaccessibility of plant polyphenols in the gastric tract
Michele Loonis, Mylène Gobert, Veronique Sante-Lhoutellier, Didier Remond, Claire Dufour

To cite this version:
Michele Loonis, Mylène Gobert, Veronique Sante-Lhoutellier, Didier Remond, Claire Dufour. Matrix impact on the bioaccessibility of plant polyphenols in the gastric tract. 7. International Conference on Polyphenols and Health, Oct 2015, Tours, France. hal-02799208

HAL Id: hal-02799208
https://hal.inrae.fr/hal-02799208
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Matrix impact on the bioaccessibility of plant polyphenols in the gastric tract

M. Loonis1,2, M. Gober2, C. Buffière1, V. Saint-Lhuillier1, D. Rémond4 and C. Dufour2,5

1INRA, UMR408 Safety and Quality of Plant Products, F-84914 Avignon, France. Claire.dufour@avignon.inra.fr
2University of Avignon, UMR408 Safety and Quality of Plant Products, F-84000 Avignon, France.
3INRA, UR370 Quality of Animal Products F-63122 StGenes Champanelle, France.
4INRA, UMR1019 Human Nutrition, F-63122 StGenes Champanelle, France.

Introduction

The consumption of fruit and vegetables (F&V) is inversely associated to the development of cardiovascular diseases, several kinds of cancers and other chronic diseases [1,2]. Moreover, the cardiovascular protection could be ascribed to flavonoids, a class of polyphenols largely distributed in F&V [3]. Polyphenols are poorly absorbed from the gastrointestinal tract (GIT) and undergo extensive metabolism by colon microbiota before reaching plasma. Thus, before their absorption, polyphenols could exert a health benefit directly in the GIT. As a matter of fact, they were shown to protect polyunsaturated fats from oxidation during gastric digestion [4]. The bioaccessibility of polyphenols, defined as their release from the food matrix and solubilization into the bolus, is a prerequisite step [5].

Objectives: This study aims at assessing the bioaccessibility of polyphenols in the gastric tract after the ingestion of either F&V or the corresponding polyphenol extract.

Materials & Methods

Animals and Test meals

Six female Göttineng mini pigs (20-25 kg) were surgically fitted with a cannula on the greater curvature of the stomach. The fasted mini pigs were fed two different meals containing principally sunflower oil, cooked ground beef meat and egg phospholipids (= Beef meal).

Test meals

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>PP extract</th>
<th>PP in aqueous phase</th>
<th>Bioaccessible PP in whole digesta</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F&V</td>
<td>F&V</td>
<td>F&V</td>
</tr>
<tr>
<td>15</td>
<td>PP meal</td>
<td>PP meal + PP extract</td>
<td>PP meal + PP extract</td>
</tr>
</tbody>
</table>

Results & Discussion

Polypheol bioaccessibility

A matrix effect on polyphenol bioaccessibility is outlined:
- Apple phenolics appear more bioaccessible after the F&V consumption (40-100% of the bioaccessibilities after extract ingestion) compared to artichoke and plum phenolics.
- Artichoke and plum matrices limit polyphenol diffusion from plant tissues into the gastric media. Physical and chemical processes are not efficient enough to produce a total degradation of cell walls and organizes.

Recovery of bioaccessible polyphenols

The recovery of bioaccessible polyphenols is evaluated at T15 min with the assumption of no dilution by the gastric juice. The recovery level may thus be underestimated.

- Less than 10% of the hydroxycinnamic acids and dihydrochalcones are recovered after either F&V or PP extract consumptions while flavanols monomers and dimers were not recovered.
- Most polyphenols interact with proteins and fibers and are lost upon centrifugation of the gastric digesta.

Analyses

✓ Polyphenols in F&V, the corresponding polyphenol extract (PP extract) and in the aqueous phase of the gastric digesta: An additional aceton precipitation / centrifugation step was conducted to evaluate bioaccessible PP in the aqueous phase. Based on known amounts of aqueous phase and precipitate, bioaccessible PP in the whole digesta could be calculated. UPLC/MSD (negative ES): standards were 3,5-dicaffeoylquinic acid, 3-, 4-, 5-caffeoylquinic acids, phlorizin-2'-Glc, catechin, and rutin.

✓ Statistics: Data are means ± EC.

Conclusions

- The recovery of bioaccessible polyphenols is evaluated at T15 min with the assumption of no dilution by the gastric juice. The recovery level may thus be underestimated.
- Les than 10% of the hydroxycinnamic acids and dihydrochalcones are recovered after either F&V or PP extract consumptions while flavanols monomers and dimers were not recovered.
- Most polyphenols interact with proteins and fibers and are lost upon centrifugation of the gastric digesta.

References