R. F. Baker, K. A. Leach, and D. M. Braun, SWEET as sugar: new sucrose effluxers in plants, Molecular plant, vol.5, pp.766-768, 2012.

H. V. Bergmeyer and E. Bernt, Methods of enzymatic analysis, pp.1176-1179, 1974.

A. M. Boudet, S. Kajita, J. Grima-pettenati, and D. Goffner, Lignins and lignocellulosics: a better control of synthesis for new and improved uses, Trends in Plant Science, vol.8, pp.576-581, 2003.

F. Chardon, M. Bedu, F. Calenge, P. A. Klemens, L. Spinner et al., Leaf Fructose Content Is Controlled by the Vacuolar Transporter SWEET17 in Arabidopsis, Current Biology, vol.23, pp.697-702, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00860481

L. Chen, L. S. Cheung, L. Feng, W. Tanner, and W. B. Frommer, Transport of sugars, Annual Review of Biochemistry, vol.84, pp.865-894, 2015.

L. Q. Chen, B. H. Hou, S. Lalonde, H. Takanaga, M. L. Hartung et al., Sugar transporters for intercellular exchange and nutrition of pathogens, Nature, vol.468, pp.527-532, 2010.

L. Q. Chen, X. Q. Qu, B. H. Hou, D. Sosso, S. Osorio et al., Sucrose efflux mediated by SWEET proteins as a key step for phloem transport, Science, vol.335, pp.207-211, 2012.

J. Cronshaw, Sieve element cell walls, Phloem transport, pp.129-152, 1975.

S. Dinant, Phloem, transport between organs and long-distance signalling, Comptes Rendus Biologies, vol.331, pp.334-346, 2008.

A. Endler and S. Persson, Cellulose synthases and synthesis in Arabidopsis, Molecular plant, vol.4, pp.199-211, 2011.

J. Eom, L. Chen, D. Sosso, B. T. Julius, I. Lin et al., SWEETs, transporters for intracellular and intercellular sugar translocation, Current Opinion in Plant Biology, vol.25, pp.53-62, 2015.

O. Faix, Classification of lignins from different botanical origins by FT-IR spectroscopy, 1991.

, Holzforschung-International Journal of the Biology, vol.45, pp.21-28

Y. Gibon, P. Et, R. Sulpice, J. E. Lunn, M. Hoehne et al., Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods, Plant, Cell & Environment, vol.32, pp.859-874, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02663846

W. Guo, R. Nagy, H. Chen, S. Pfrunder, Y. Yu et al., , 2014.

, SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves, Plant Physiology, vol.164, pp.777-789

Y. Hirakawa, Y. Kondo, and H. Fukuda, TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis, The Plant Cell, vol.22, pp.2618-2629, 2010.

Z. Hossain, B. Mcgarvey, L. Amyot, M. Gruber, J. Jung et al., DIMINUTO 1 affects the lignin profile and secondary cell wall formation in Arabidopsis, Planta, vol.235, pp.485-498, 2012.

M. Ka?uráková, A. C. Smith, M. J. Gidley, and R. H. Wilson, Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy, Carbohydrate Research, vol.337, pp.1145-1153, 2002.

P. A. Klemens, K. Patzke, J. Deitmer, L. Spinner, L. Hir et al., Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis, Plant Physiology, vol.163, pp.1338-1352, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01203998

S. Lalonde, D. Wipf, and W. B. Frommer, Transport mechanisms for organic forms of carbon and nitrogen between source and sink, Annu Rev Plant Biol, vol.55, pp.341-372, 2004.

L. Hir, R. Spinner, L. Klemens, P. Chakraborti, D. Vilaine et al., Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis, Molecular Plant, vol.8, pp.1687-1690, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01378977

F. Ludewig and U. Flügge, Role of metabolite transporters in source-sink carbon allocation, Frontiers in plant science, vol.4, p.231, 2013.

A. Mahboubi, C. Ratke, A. Gorzsas, M. Kumar, E. Mellerowicz et al., Aspen SUCROSE TRANSPORTER3 allocates carbon into wood fibers, Plant Physiology, vol.163, pp.1729-1740, 2013.

H. E. Mcfarlane, A. Döring, and S. Persson, The cell biology of cellulose synthesis, Annual Review of Plant Biology, vol.65, pp.69-94, 2014.

P. Minchin and G. Mcnaughton, Xylem transport of recently fixed carbon within lupin, Australian Journal of Plant Physiology, vol.14, 1987.

P. Minchin and M. Thorpe, Measurement of unloading and reloading of photo-assimilate within the stem of bean, Journal of Experimental Botany, vol.38, pp.211-220, 1987.

B. Mohebby, Application of ATR infrared spectroscopy in wood acetylation, Journal of Agricultural Science and Technology, vol.10, pp.253-259, 2010.

G. Mouille, S. Robin, M. Lecomte, S. Pagant, and H. Hofte, Classification and identification of Arabidopsis cell wall mutants using Fourier-Transform InfraRed (FT-IR) microspectroscopy, Plant Journal, vol.35, pp.393-404, 2003.

Y. Nakano, M. Yamaguchi, H. Endo, N. A. Rejab, and M. Ohtani, NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants, Frontiers in plant science, vol.6, p.288, 2015.

S. Pfautsch, J. Renard, M. G. Tjoelker, and A. Salih, Phloem as capacitor: radial transfer of water into xylem of tree stems occurs via symplastic transport in ray parenchyma, Plant Physiology, vol.167, pp.963-971, 2015.

N. Sauer, Molecular physiology of higher plant sucrose transporters, FEBS Lett, vol.581, pp.2309-2317, 2007.

B. Schmitt, R. Stadler, and N. Sauer, Immunolocalization of solanaceous SUT1 proteins in companion cells and xylem parenchyma: new perspectives for phloem loading and transport, Plant Physiology, vol.148, pp.187-199, 2008.

M. Schuetz, R. Smith, B. Ellis, M. Schuetz, M. Roach et al., Neighboring parenchyma cells contribute to Arabidopsis xylem lignification, while lignification of interfascicular fibers is cell autonomous, Journal of Experimental Botany Smith RA, vol.25, pp.3988-3999, 2012.

K. Soko?owska and B. Zagórska-marek, Symplasmic, long-distance transport in xylem and cambial regions in branches of Acer pseudoplatanus (Aceraceae) and Populus tremula× P. tremuloides (Salicaceae), American Journal of Botany, vol.99, pp.1745-1755, 2012.

R. Sulpice, Z. Nikoloski, H. Tschoep, C. Antonio, S. Kleessen et al., Impact of the carbon and nitrogen supply on relationships and connectivity between metabolism and biomass in a broad panel of Arabidopsis accessions, Plant Physiology, vol.162, pp.347-363, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01066953

K. L. Tomlinson, S. Mchugh, H. Labbe, J. L. Grainger, L. E. James et al., Evidence that the hexose-to-sucrose ratio does not control the switch to storage product accumulation in oilseeds: analysis of tobacco seed development and effects of overexpressing apoplastic invertase, Journal of Experimental Botany, vol.55, pp.2291-2303, 2004.

R. Turgeon, The sink-source transition in leaves, Annu. Rev. Plant Mol. Biol, vol.40, pp.119-138, 1989.

A. Van-bel, Xylem-phloem exchange via the rays: the undervalued route of transport, Journal of Experimental Botany, vol.41, pp.631-644, 1990.

L. E. Williams, R. Lemoine, and N. Sauer, Sugar transporters in higher plants -A diversity of roles and complex regulation, Trends Plant Sci, vol.5, pp.283-290, 2000.

A. Wormit, O. Trentmann, I. Feifer, C. Lohr, J. Tjaden et al., Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport, The Plant Cell, vol.18, pp.3476-3490, 2006.

Y. H. Xuan, Y. B. Hu, L. Chen, D. Sosso, D. C. Ducat et al., Functional role of oligomerization for bacterial and plant SWEET sugar transporter family, Proceedings of the National Academy of Sciences, vol.110, pp.3685-3694, 2013.

L. Zhang, Q. Tan, R. Lee, A. Trethewy, Y. H. Lee et al., Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis, The Plant Cell Online, vol.22, pp.3603-3620, 2010.

, De plus, un rôle des protéines SWEET11 et SWEET12 dans le développement du système vasculaire de la hampe florale a été suggéré. L'objectif de ce stage est donc d'approfondir les rôles des transporteurs SWEET16 et SWEET17 dans le développement du système vasculaire et dans la formation de la paroi secondaire des plantes. Ainsi, des lignées d'Arabidopsis thaliana doublement mutées sweet16sweet17 et triplement mutées sweet11sweet12sweet16 ont été analysées à différentes échelles (ex : morphologie et anatomie de la hampe florale, composition de la paroi secondaire par spectroscopie infrarouge, et/ou mesures des contenus en sucres).Les résultats obtenus suggèrent quele fructose exporté par SWEET17 participe directement ou indirectement à la synthèse de la paroi secondaire des vaisseaux, Résumé Chez les végétaux, la famille des transporteurs de type SWEET (Sugars Will Eventually be Exported Transporters) est impliquée dans le transport intercellulaire et intracellulaire des sucres. Il a notamment été montré que les promoteurs des gènes SWEET11, SWEET12, SWEET16 et SWEET17 s'expriment dans les cellules xylémiennes

, Mots Clés : SWEET, transport, allocation des sucres, développement, système vasculaire, phloème, xylème, cambium, paroi secondaire