How local plant community and landscape context affect the morphological space of wild bee communities in grasslands?

Gaëtane Le Provost, Cyrille Violle, Isabelle Badenhausser, Marie d’Ottavio, Nicolas Gross

To cite this version:

Gaëtane Le Provost, Cyrille Violle, Isabelle Badenhausser, Marie d’Ottavio, Nicolas Gross. How local plant community and landscape context affect the morphological space of wild bee communities in grasslands?. Les prairies et l’agroécologie, Nov 2015, Vandoeuvre-les-Nancy, France. 2015. hal-02799448

HAL Id: hal-02799448
https://hal.inrae.fr/hal-02799448
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
General context

Growing concern about wild pollinator loss and the consequences for polination service in intensive agricultural landscapes (e.g. Biesmeijer et al. 2006, Deguiseux et al. 2014, Potts et al. 2010).

Land-use intensification affects wild bee communities through habitat loss and fragmentation at the landscape scale (Bammarco et al. 2010, Kennedy et al. 2013); and less diverse plant communities at the local scale (De Palma et al. 2015, Rader et al. 2014).

Such disturbances are not expected to affect all bee species identically, rather they are likely to be mediated by the species’ traits (De Palma et al. 2015, Koussev 2002, Murray, Kathmann & Potts 2008).

Which traits may be involved in the response of wild bee communities to land-use intensification?

- Body size and dispersal traits (Gochenau et al. 2007)
 1. Body length
 2. Wing length
 3. Distance between wing bases (Inter-Tegular Distance)

- Resource acquisition traits (Vandeleur et al. 2013, 2015)
 4. Tongue length
 5. Prementum length

- Traits covariate along three axes:
 - Axis 1: Body size and dispersal traits
 - Axis 2: Tongue length and resource acquisition traits
 - Axis 3: Prementum length and body shape traits

In the subsequent analysis, we considered three independent traits:

1. Inter-Tegular distance (ITD), related to dispersal abilities
2. Symmetric ratio between tongue length and body size
3. Symmetric ratio between prementum length and body size

Material & methods

Study area
- 450 km²
- Intensive agro-ecosystem
- Conventional landscapes
- Sown and permanent grasslands

In August 2014, 40 grasslands sampled
- Plant survey (specific composition, percent cover species)
- Bee survey (trapped with colored pan-traps)
- Landscape metrics in 100m buffers (% grassland, % annual crop, % wood)

Measures of bee traits
- 30 individuals selected randomly within each grassland, when it was possible
- In total, 1050 individuals measured

Flower traits extracted from Bioflor
- Phenological traits (flowering begin, flowering end)
- Bee dependence traits (computed according to Clough et al. 2014)
- Flower colour

Characterization of bee and plant communities
- Community Weighted Mean trait (CWM) (Neff & Scott 2016)
- Community Weighted Variance (CVW)
- Multi-trait functional diversity (FDs) (Laffont & Legendre 2010)

Statistical analyses
- Morphological space, occupied by all individuals belonging to a grassland, was estimated by using the R hypervolume package (B得分er et al. 2014)
- Linear models included:
 - Landscape matrix below (Flower FVs, CWM Flowering begin, CWM Flowering end, CWM bee dependence).
 - Landscape factors (% crop, % grassland, % wood).
 - Local factors (Age of the grassland).
 - Covariates (Age Environmental niche metric, number of flowering, time-emerged size last flowering event).
- Best model selected with the Maximum Likelihood test and Akaike information criterion.
- Null model approach for examining the possible reduction of trait ranges in grasslands. We used the fit cov package (Teuber & Scott 2016) and the community-wise variance relative to the local variance of the regional pool (CWMs, Scott et al. 2012).

Results and discussion

1. Trait by trait (CWM and CWV)

- The diversity of traits related to dispersal abilities is lower in landscapes mostly composed of crop. In disturbed landscapes, individuals with low dispersal abilities may not reach the grasslands (Biesmeijer et al. 2005, Wright, Roberts & Collin 2013) and diversity of dispersal traits will be lower in the focal grassland.
- No significant affect on the CWM.

2. Morphological space (hypervolume)

- In grasslands with high flower diversity, wild bees tended to have smaller prementum. Species with small prementum may be dependant of flower with high nectar accessibility. Thus, high resource diversity may allow individuals with small prementum to found their resource in the grassland.
- The diversity of this traits related to resource acquisition is also higher in landscapes with high proportion of grassland.

Conclusion

- Importance of considering multiple scales and multiple interacting traits to understand the composition of local communities and their responses to land use intensification.
- Landscape factors particularly affect the diversity of bee traits. Especially, grasslands provide a pollinator of individuals with diverse resource acquisition traits through a mass-effect (Schmida & Ellen 1984).
- External environmental filtering is detected when considering the morphological space instead of considering each trait separately. This suggests that the environment filters wild bees according to different trait combination and strategies.