

Study of the carbonization and activation of different lignocellulosic

precursors for the elaboration of activated carbons with controlled porosity

Martin PAJOT^{1,2}, Benoît CAGNON¹, Stéphanie de PERSIS², Jean-Paul CHARPENTIER³, Marjorie ROULET¹, Alain PINEAU¹, Sylvie BONNAMY¹

Thermal decompositions by thermogravimetry (TGA-DTA)

G Rinsing/Filtering

6Drying

Cellulose fibers

Thermal behavior of Raw Material and lignocellulosic compounds

TGA-DTA carried out on all the lignocellulosic precursors and on the three compounds (H., C., L.) => estimation of their respective contribution in the final mass of the solid phase (chars and activated carbons)

Is it possible to produce activated carbons from tomato plants?

B Drying

Activated **Carbon**?

• Grinding

Raw material

Microporosity characterized by nitrogen adsorption at 77 K and comparison with a commercial AC

2 Blending

Sirst tests of AC elaboration: very good result (without optimization) with tomato plants: textural properties fitted for water treatment

 \Rightarrow activation optimization required to control porosity for a given application

