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1 Introduction



What is breedR

R-package implementing statistical models specifically
tailored to the analysis of forest genetic resources
A inference tool for Linear Mixed Models, with facilities for
typical needs
breedR acts as an interface providing the means to:

1 Combine any number of prefabricated model components
into a larger model

2 Compute automatically incidence and covariance matrices
from a few input parameters

3 Fit the model
4 Plot data and results, and perform model diagnostics

https://en.wikipedia.org/wiki/Mixed_model


Installation

2 alternatives:

Project web page http://famuvie.github.io/breedR/
Set up this URL as a package repository in .Rprofile
(detailed instructions on the web)
install.packages('breedR')
Not possible to use CRAN (or yes?) due to closed-source
BLUPF90 programs
Stable version, with automatic updates

GitHub dev-site https://github.com/famuvie/breedR
if( !require(devtools) )
install.packages('devtools')
devtools::install_github('famuvie/breedR')
Development version, latest features, more inestable, manual
updates

http://famuvie.github.io/breedR/
http://nce.ads.uga.edu/wiki/doku.php
https://github.com/famuvie/breedR


Getting started

These slides show WHAT can be done with breedR
For HOW to perform these analyses, refer to the website:

http://famuvie.github.io/breedR/

http://famuvie.github.io/breedR/


Where to find help

Package’s help: help(package = breedR)
Help pages ?remlf90
Code demos demo(topic, package = 'breedR') (omit
topic for a list)
Vignettes vignette(package = 'breedR') (pkg and wiki)

Wiki pages
Guides, tutorials, FAQ

Mailing list http://groups.google.com/group/breedr
Questions and debates about usage and interface

Issues page
Bug reports
Feature requests

https://github.com/famuvie/breedR/wiki
http://groups.google.com/group/breedr
https://github.com/famuvie/breedR/issues


License

Figure 1: GPL-3

breedR is FOSS. Licensed GPL-3
RShowDoc('LICENSE', package = 'breedR')

You can use and distribute breedR for any purpose
You can modify it to suit your needs

we encourage to!
please consider contributing your improvements
you can distribute your modified version under the GPL

However, breedR makes (intensive) use of the BLUPF90 suite
of Fortran programs, which are for free but not free (remember
CRAN?)

http://www.gnu.org/licenses/gpl-3.0.html
http://nce.ads.uga.edu/wiki/doku.php


Fitting Linear Mixed Models

y =Xβ + Zu+ ε

u ∼N (0,G)
ε ∼N (0,R)

A quantitative variable y is modelled as a linear function of
fixed effects β and random effects u, with unaccounted
residuals ε
The function remlf90() yields a REML fit of a model to a
dataset
Additional functions (e.g. summary(), fixef(), ranef(),
plot(), etc.) extract and present specific results



I/O example

ped <- globulus[,1:3]

res <- remlf90(
fixed = phe_X ~ gg,
genetic = list(

model = 'add_animal',
pedig = ped,
id = 'self'),

data = globulus)

summary(res)

## Linear Mixed Model with pedigree and spatial
## effects fit by AI-REMLF90 ver. 1.122
## Data: globulus
## AIC BIC logLik
## 5799 5809 -2898
##
## Variance components:
## Estimated variances S.E.
## genetic 3.397 1.595
## Residual 14.453 1.529
##
## Estimate S.E.
## Heritability 0.1887 0.08705
##
## Fixed effects:
## value s.e.
## gg.1 13.591 0.5014
## gg.2 14.085 0.7984
## ...



2 Additive-genetic effects



What is an additive genetic effect

Random effect at individual level
Based on a pedigree (determining the relationship matrix A)

Zu, u ∼ N (0, σ2
aA)

BLUP of Breeding Values from own and relatives’ phenotypes
Represents the additive component of the genetic value
More general:

family effect is a particular case
accounts for more than one generation
mixed relationships

More flexible: allows to select individuals within families
More accurate: direct inference over the additive-genetic
variance of the base population



Pedigrees

A 3-column data.frame or
matrix with the codes for each
individual and its parents
A family effect is easily translated
into a pedigree:

use the family code as the
identification of a fictitious
mother
use 0 or NA as codes for the
unknown fathers

self dad mum

69 0 64
70 0 41
71 0 56
72 0 55
73 0 22
74 0 50



Predicted Breeding Values
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Predicted Breeding Values by Family
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3 Environmental effects



What is spatial autocorrelation

The residuals of any LMM must be noise
However, most times there are environmental factors that
affect the response
This causes that observations that are close to each other tend
to be more similar that observations that are far away
This is called spatial autocorrelation
It may affect both the estimations and their accuracy
This is why experiments are randomized into spatial blocks



Diagnosing spatial autocorrelation
residuals spatial plot

You can plot() the spatial
arrangement of various
model components
(e.g. residuals)
Look like independent
gaussian observations
(i.e. noise)?
Do you see any signal in the
background?
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Diagnosing spatial autocorrelation
variograms of residuals

Plot the variogram of residuals with variogram()
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Interpreting the variograms
Isotropic variogram

γ(h) = 1
2V [Z(u)− Z(v)], dist(u,v) = h

The empirical isotropic variogram is built by aggregating all the
pairs of points separated by h, no matter the direction.
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Interpreting the variograms
Row/Column variogram

γ(x, y) = 1
2V [Z(u)− Z(v)], dist(u,v) = (x, y)

The empirical row/col variogram is built by aggregating all the
pairs of points separated by exactly x rows and y columns.
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Interpreting the variograms
Anisotropic variogram

γ(x) = 1
2V [Z(u)− Z(v)], u = v± x

The empirical anisotropic variogram is built by aggregating all the
pairs of points in the same direction separated by |x|.
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Accounting for spatial autocorrelation

Include an explicit spatial effect in the model
I.e., a random effect with a specific covariance structure that
reflects the spatial relationship between individuals



Spatial modelling
Blocks

Zu, u ∼ N (0, σ2
sI)

u is the vector of random effects for the blocks
Z is an indicator matrix such that Z[i, j] = 1 if the observation
i belongs to block j
σ2
s is the spatial variance parameter

The block effect, is a very particular case of spatial effect:
It is designed from the begining, possibly using prior knowledge
Can account for non-spatial effects (e.g. operator)
Introduces independent effects between blocks
Most neighbours are within the same block (i.e. share the same
effect)



Spatial modelling
Bidimensional Splines

A cubic B-spline B(x):

Piecewise curve defined in the intervals determined by 5 knots
Each piece is a polynomial of 3rd degree



Spatial modelling
Bidimensional Splines

A cubic B-spline B(x) with regularly spaced knots:

The curve is constrained for C2 continuity at each knot
Only 1 degree of freedom controls the scale



Spatial modelling
Bidimensional Splines

A number of overlapping curves form a base of B-splines {Bj(x)}

Figure 10



Spatial modelling
Bidimensional Splines

Each, can be scaled using a coefficient {ujBj(x)}

Figure 11



Spatial modelling
Bidimensional Splines

And summed to a linear combination f(x) =
∑
j ujBj(x)

Figure 12



Spatial modelling
Bidimensional Splines in a Mixed Model

f(x) =
∑
j ujBj(x) provides a spline representation of a

wide family of curves, in terms of a vector of coefficients u
For any set of points x = {xi}, the vector of values f(xi) can
be written as a matrix operation f =

[
Bj(xi)

]
u

breedR extends this to two dimensions and defines a random
effect

Bu, u ∼ N (0, σ2
sRs)

u is the vector of spline effects
B is the matrix of spline bases evaluated at the observations
σ2

s is the spatial variance parameter
Rs imposes a fixed positive correlation between coefficients of
neighbouring spline bases



Spatial modelling
Number of knots of a splines model

The smoothness of the spatial surface can be controlled
modifying the number of base functions
This is directly determined by the number of knots (nok) in
each dimension
If not explicitly set, it is determined heuristically by breedR as a
function of the number of observations
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Spatial modelling
Bidimensional First-Order Autoregressive Process

An AR1(ρ) on the line is a collection of random variables {xi}
where

xt = ρxt−1 + εt, εt ∼ N (0, 1), |ρ| < 1
A few random simulations with ρ = 0.5:

Figure 14



Spatial modelling
Bidimensional First-Order Autoregressive Process

breedR extends this model to the plane using and defines a
component

Zu, u ∼ N (0, σ2
sRAR)

u is the vector of random effects for each individual location
on a regular grid
Z is an indicator matrix such that Z[i, j] = 1 if the
observation i is at site j
σ2
s is the spatial variance parameter
RAR defines a separable correlation structure based on the
kronecker product of two AR1 processes



Spatial modelling
Autoregressive parameters of a AR model

The smoothness of the AR effects can be controlled by the
autoregressive parameters (ρx, ρy) in each dimension
They can be given explicitly
Otherwise, breedR fits a model for each combination of
parameters in a default grid and returns the most likely
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Predicted spatial effects
by spatial model

Figure 16: spatial-effects

All capture a similar underlying environmental pattern
with somewhat increasing ranges of variability



Model residuals
by spatial model

Figure 17: change residuals

The spatial variability is taken mostly from the model residuals
which increasingly look like pure noise



4 Competition effects



Competition model assumptions

Figure 18: Competition model

Each individual have two
(unknown) Breeding Values
(BV):

direct BV affects its
own phenotype,
competition BV affects
its neghbours’

The total effect of the
neighbouring competition
BVs is given by their
distance-weighted sum



Weighted neighbour competition effect

i k
dk

Figure 19: distance-plot

Let ∂i be the set of neighbouring
locations of tree i, and
uc = (uc,k)′ the vector of
competition BVs

ωi(α) =
∑
k∈∂i

zik(α)uc,k

where zik(α) ∝ 1/dαik, such that∑
k∈∂i

zik(α)2 = 1.

This condition is variance-estabilizer ensuring ∀i:

Var(ωi) = Var(uc) = σ2
c



The decay parameter

The decay parameter α controls the relative intensity of
competition of the neighbours
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Figure 20

The weights zik are
scale-invariant
e.g. a tree twice as far is
weighted 1/2α as much
higher values of α
concentrate the weights on
the closest trees



Random-effect representation

Zdud + Zc(α)uc,
(
ud
uc

)
∼ N

(
0,Σa ⊗A

)
, Σa =

(
σ2
d σdc

σdc σ2
c

)

Each set of BVs is modelled as a zero-mean random effect
with structure matrix given by the pedigree and independent
variances σ2

d and σ2
c

Both random effects are modelled jointly with covariance σdc
Zd is an indicator matrix linking observations and individuals
Zc(α) weights the competition effect of the neighbours with
(fixed) decay parameter α



Permanent Environmental Competition Effect

Zpup, Zp = Zc, u ∼ N (0, σ2
pI)

Optional companion effect with environmental (rather than
genetic) basis
Modelled as an individual independent random effect that
affects neighbouring trees in the same (weighted) way



Diagnosis of competition

additive−genetic only competition
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Competition is often observable in the first lag of the
variogram of residuals

increased antagonism between neighbouring phenotypes
correlation between neighbours pulled towards neg. values

In addition, use model comparison criteria (AIC, BIC, loglik)



Breeding for growth and collaboration
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direct and competition
BV are usually negatively
correlated
selection based only on
direct genetic merit tends to
favour competitive
individuals, hampering the
global performance
the competition model allows
for selection based on a joint
assessment



5 Longitudinal data



What is longitudinal data

Measurements repeated in time or along some climatic or
geographical variable (e.g. temperature, precipitation,
latitude, altitude, . . . )
All model parameters (e.g. variances, random effects) can be
functions of the longitudinal variable
Increased complexity: from estimating numerical values
(dimension 0) to estimating (infinte-dimensional) functions
(with finite data)
Strategies:

assume parametric shape (e.g. linear regression)
nonparametric components (e.g. splines, Legendre polynomials)



Repeated measurements in time
Mean response evolution by replicate - Larix dataset
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There is a strong temporal trend that needs to be accounted
for



Climatic gradient
Mean ring-length by Mean Annual Precipitation
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Legendre Polynomials

Family of orthogonal polynomials dense in L2
Any regular curve can be approximated as much as needed by
taking a linear combination of polynomials up to a sufficiently
high order
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Random-Regression model

For each observation of an individual i at j

yij =Xiβ + Σord
k=0aikLk(j) + εij

(a′0, . . . , a′ord)′ ∼N (0,Σ⊗A)
ε ∼N (0, σ2

e)

The Breeding Value of an individual is a function of an
environmental variable
This function is parameterised as a linear combination of
Legendre orthogonal polynomials of order up to a fixed ord
Each individual is described by ord + 1 correlated coefficients



Example of results

Functional Breeding Values for each individual

Figure 26: random-regression



6 Genomic data



Using genomic markers

breedR allows random effects with an arbitrary covariance
structure (generic)
This can be used to leverage genomic information (GBLUP)



The Generic model

This additional component allows to introduce a random effect ψ
with arbitrary incidence and covariance matrices Z and Σ:

Zψ, ψ ∼ N
(
0, σ2

ψΣψ

)
Applications:

include additional not-predefined components e.g. Dominance,
Hybrid populations, Genomic evaluation, etc.



GBLUP

Zu, u ∼ N
(
0, σ2

GG
)

Use markers to compute a relationship matrix G for
individuals

Several methods available
e.g. VanRaden et al. 2009

G = XX ′/
∑

2p(1− p)

Replace the additive-genetic model, which uses the
pedigree-based relationship matrix A with a generic model
with a genomic relationship matrix G
Z is an indicator matrix linking observations with individuals
Predicts genetic value of individuals, not markers
Improved accuracy wrt pedigree-pased evaluation



Relationship matrices
pedigree-based vs. genomic

Figure 27: relationship-matrices

Note the increased level of detail in the relationship structuure



7 Multi-environment trials



Douglas dataset

s1 s2 s3

Figure 28

Environments may refer to sites, but also to years or climates



Particularities

Fixed effects

some can be transversal accross environments
e.g. origin, provenance

other take different values at each environment
e.g. the intercept, replicate
modelled as a fixed interaction

Random effects

some can be transversal accross environments
e.g. main effect of the genotype

other can be environment-specific
e.g. blocks, GxE, residuals
modelled as a group of (correlated or not) random effects



Statistical model

y =X0β0 + Z0u0 + X
∑
e

1{e}βe + Z
∑
e

1{e}ue + ε

u0 ∼N (0,G0)
(u1, . . .)′ ∼N (0,ΣG ⊗G)

ε ∼N (0,DR ⊗ I)

Particular case of the general LMM
For each environment e, there is a group of random effects
ue, each with covariance structure G, possibly cross-correlated
through ΣG
Independent site-specific residual variances



Practical case 1
GxE study

C13 =orig + site + fam +
3∑
e=1

fe1e + ε

fam ∼N
(
0, σ2

f I
)

(f1, f2, f3)′ ∼N
(
0,ΣG×E ⊗ I

)
ε ∼N

(
0, D3 ⊗ I

)
One global family effect (fam)
One group of three site-specific family effects (fi, i = 1, 2, 3)
Jointly, they represent the G× E interaction with genetic
cross-covariation ΣG×E



Predicted genetic effects
by family

Figure 29: GxE-interaction

Sum of main and interaction effects
Note:

different variances per site
high genetic correlation
some families are more interactive



Genetic correlations

Figure 30: genetic-correlations



Ecovalence
Measure of interactivity of families

For each family x

ϕ(x) ∝
∑
i∈x

∑
e

f2
e

Figure 31: ecovalence



Practical case 2
Site-specific spatial effects

Figure 32: spatialxE



8 Multi-trait models



Multivariate Linear Mixed Models
2-trait case

Y1 = Xβ1 + Zu1 + ε1

Y2 = Xβ2 + Zu2 + ε2,

(u1, u2)′ ∼ N(0,Σu ⊗G)
(ε1, ε2)′ ∼ N(0,Σ⊗ In).

Σu and Σ either diagonal or fully-parameterized 2× 2
matrices
Some of the fixed or random effects can affect only a subset
of the traits

e.g. fixed effect of operator



Limitation
of breedR’s implementation

All fixed and random effects are assumed to be trait-specific
transversal effects not directly supported (ultimately by
PROGSF90)

Simpler covariance structures not supported
e.g. independent effects with shared variance, exchangeable
structure

A workaround is to reshape the dataset to long-layout



Multi-trait with reshaping
wide to long-layout

Reshaping operation:
Stack traits into a single variable value
Additional variable trait
Duplicate individual information and other variables

Use single-trait models with MET syntax
trait instead of site

This overcomes the limitations breedR’s multi-trait
implementation

more complex models like multi-trait and multisite become
cumbersome



9 Simulation framework



breedR’s simulation function
Simulating data under competition

Simulate datasets of any size, from any most supported models
See ?simulation for details on the syntax

Source: local data frame [500 x 14]

self sire dam beta x y spatial BV1
(dbl) (dbl) (dbl) (dbl) (int) (int) (dbl) (dbl)

1 41 14 40 1 1 19 -1.0738194 -1.023654
2 42 18 33 1 18 22 1.6654315 2.477488
3 43 11 31 1 19 19 0.7047348 1.961305
4 44 5 38 1 1 23 0.4698724 1.207112
5 45 16 24 1 7 12 -0.7233131 -1.919742
6 46 9 38 1 3 5 -0.1197804 1.174054
.. ... ... ... ... ... ... ... ...
Variables not shown: BV2 (dbl), wnc (dbl), pec (dbl), wnp (dbl), resid

(dbl), phenotype (dbl)



Applications
a.k.a. what the heck I want a simulator for?

check models under ideal scenarios
Bootstrapping:

compute heritability (and it s.e.) for complex models
compute more accurate s.e. for fixed and random effects
inference on arbitrary hypotheses (involving any combination of
model parameters)



Heritability of complex models

e.g. competition or splines models fitted by EM-REML (rather than
AI)

Thus, heritability not available
Other methods (e.g. Delta) not feasible
Even when available, is approximate (relies on asymptotic
normality of parameters)



Example

1 Fit the model to your data
2 Write a function to simulate data from your fitted model

parameters
3 Write a function to fit a simulated dataset and return

realised heritability

Repeated calls to this
function yields the sampling
distribution of heritability
Compute SE and CI from
numerical summaries
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More accurate Standard Errors

SE in breedR’s output are approximate
Rely on asymptotic normality (same as heritability)
Same Bootstrapping procedure applies

bl fam Residual
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10 Remote computing



Remote computation

If you have access to a Linux server through SSH, you can perform
computations remotely

Take advantage of more memory or faster processors
Parallelize jobs
Free local resources while fitting models
See ?remote for details



Configuring a server

1 Windows users: install cygwin with ssh beforehand
(http://cygwin.org/)

2 configure the client and server machines so that passwordless
SSH authentication works

3 Set breedR options remote.host, remote.user,
remote.port and remote.bin (see ?breedR.setOption)

Optionally, set these options permanently in $HOME/.breedRrc

writeLines(
c("remote.host = '123.45.678.999'",

"remote.user = 'uname'",
"remote.bin = 'remote/path/to/breedR/bin/linux'"),

con = file.path(Sys.getenv('HOME'), '.breedRrc'))

http://cygwin.org/
http://www.thegeekstuff.com/2008/11/3-steps-to-perform-ssh-login-without-password-using-ssh-keygen-ssh-copy-id/


Fitting models remotely

res <- remlf90(..., breedR.bin = "remote")

Fit model remotely
R-console stays in stand-by until job is finished
When job finishes (provided that connection keeps alive),
results are automatically retrieved

Identical in use to local computing, but without the
processor/memory burden



Submitting jobs

res <- remlf90(..., breedR.bin = "submit")

Fit model remotely
Connection is closed in the meanwhile
R-console is active
Typing res queries the server for the job status
(Running/Finished/Aborted)



Parallel computing

After you submit a job, you are free to submit more (specially
with multiple-processor servers)
Query the status of all jobs with breedR.qstat()
Kill some job with breedR.qdel(res) or all jobs with
breedR.qnuke()



breedR
http://famuvie.github.io/breedR/

http://famuvie.github.io/breedR/
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