breedR: statistical methods for forest genetic resources analysis
Facundo Munoz, Leopoldo Sanchez Rodriguez

To cite this version:
Facundo Munoz, Leopoldo Sanchez Rodriguez. breedR: statistical methods for forest genetic resources analysis. Trees for the future: plant material in a changing climate, Nov 2014, Tulln, Austria. 13 p. hal-02801127

HAL Id: hal-02801127
https://hal.inrae.fr/hal-02801127
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Facundo Muñoz & Leopoldo Sanchez

breedR: statistical methods for forest genetic resources analysis

3rd Annual Meeting T4F Tulln - Austria 17-21 November 2014
Where to get BreedR?

- BreedR general web page: http://famuvie.github.io/breedR/
- BreedR Forge: https://github.com/famuvie/breedR
R-package implementing **statistical models** specifically suited for forest genetic resources evaluation.

Ultimately Mixed Models, flexible, easy to implement and use

BreedR acts as an **interface** which provides the means to:

1. **Combine** any number of explanatory factors into these models
2. Compute automatically **incidence** and **covariance matrices** (from explanations to data) from a few input parameters
3. **Fit** the model
4. Plot data and results, and perform **model diagnostics**
BreedR demo

• Mixed model:

 \[y = \mu + \beta x + Zu + \varepsilon \]

• Progeny testing:

 ✓ estimation of variance components
 ✓ prediction of breeding values

essential toolkit

- Spatial statistics
- G\times E analysis
- Mixed-model framework
- Pedigree-free evaluation
- Competition evaluation
BreedR demo

output example with globulus data set
BreedR demo

- **Spatial models**
- trials often occupy heterogeneous environments, partially accounted for by devising a priori block designs
- alternatives (BreedR) propose accounting for heterogeneity a posteriori together with the fitting of the evaluation model
- gain in flexibility whenever there is faulty design either by conception or by ageing of trial
- take the form of individual-tree mixed models
BreedR demo

without spatial adjustments

with spatial adjustments

Variograms: diagnosis of spatially distributed patterns of residual variation
B-Splines model
• A continuous and smooth spatial surface built from a linear combination of basis functions, whose coefficients are modelled as a random effects

Autoregressive model
• A separable kronecker product of First order Autoregressive processes on the rows and the columns

and old good Blocks models!
BreedR demo

output example with *globulus* data set and spatial models
BreedR demo

Douglas-fir data, INRA

Splines

ARxAR

blocks

Designing Trees for the Future
• Competition models

• Competition reflects the impairing interplay of closely growing trees, often when local resources are limiting

• Competition: an antagonism between direct and associative effects, that results ultimately into impaired phenotypes
BreedR demo

- Competition models

essential toolkit

Spatial statistics

G×E analysis

Mixed-model framework

Pedigree-free evaluation

Competition evaluation
BreedR demo

- Other models developments to come in 2015
- multiple traits, multiple sites
- G by E
- longitudinal data
- Selection tools (index selection)
- Bayesian inference