

Prediction of the various beef quality traits

Jean-François J.-F. Hocquette, Raphaëlle Botreau, I. Legrand, R. J. Polkinghorne, David Pethick, Michel M. Lherm, Brigitte B. Picard, Michel M. Doreau, Pierre-Yves Le Bail, Claudia Terlouw

▶ To cite this version:

Jean-François J.-F. Hocquette, Raphaëlle Botreau, I. Legrand, R. J. Polkinghorne, David Pethick, et al.. Prediction of the various beef quality traits. International Conference summarizing the implementation of ProOptiBeef Project, May 2015, Varsovie, Poland. hal-02801516

HAL Id: hal-02801516 https://hal.inrae.fr/hal-02801516v1

Submitted on 5 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Prediction of the various beef quality traits

(adapted from Animal Production Science, 2014, 54, 1537– 1548, Joint ISNH / ISRP International Conference 2014)

<u>J-F. Hocquette</u>, R. Botreau, I. Legrand*, R. Polkinghorne***, D.W. Pethick***, M. Lherm, B. Picard, M. Doreau, PY Le Bail*, M.C. Terlouw

> INRA, Unité Mixte de Recherches sur les Herbivores, Theix, and *LPGP, Rennes, *Institut de l'Elevage, Service Qualité des Viandes, France,

> > ***Polkinghornes, ****Murdoch University, Australia

The definition of quality

Intrinsic quality refers to the characteristics of the product itself and includes sensory traits (e.g. tenderness, flavor, juiciness, overall liking), safety, healthiness, convenience, etc.

Extrinsic quality refers to traits which are associated with the product, namely (i) production system characteristics (from the animal to the processing stages including for example animal welfare and carbon footprint), and (ii) marketing variables (including price, brand name, distribution, origin, packaging, labelling, and traceability)

Reviewed by Luning, Marcelis & Jongen, 2002; Grunert, Bredahl, & Brunso, 2004.

Outline

1. Recent progress to predict beef quality

1.1. Grading systems

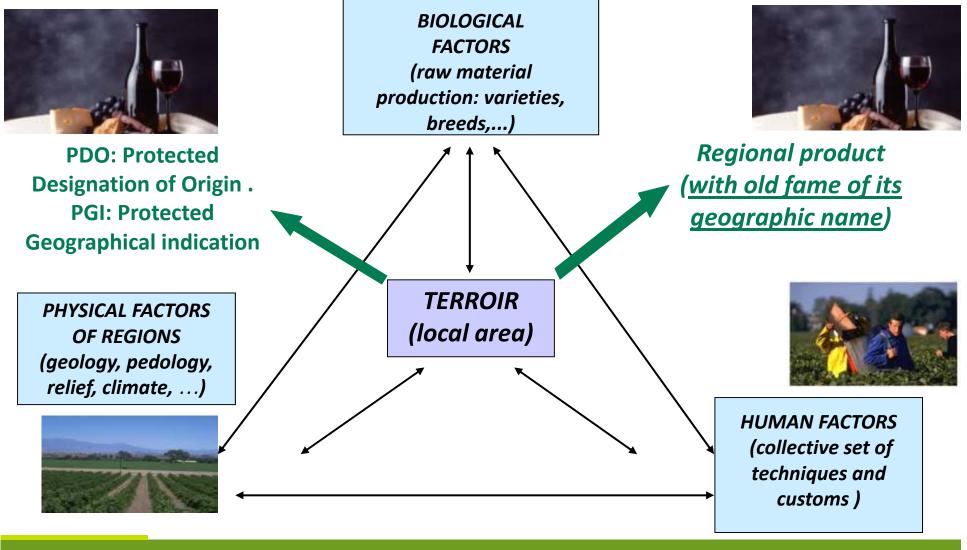
1.2. Recent progress in biochemistry and genomics

2. Win–win strategies or trade-offs for extrinsic and intrinsic quality traits of beef

2.1. Win-win strategies for sensory quality and welfare issues

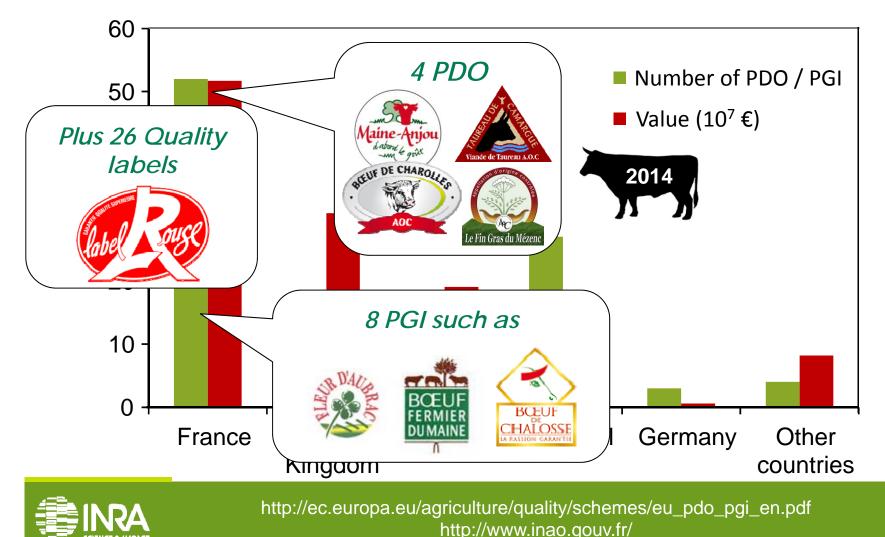
2.2. Win–win strategies and trade-offs between environmental value and other beef quality traits

3. Future research priorities


Different beef grading schemes

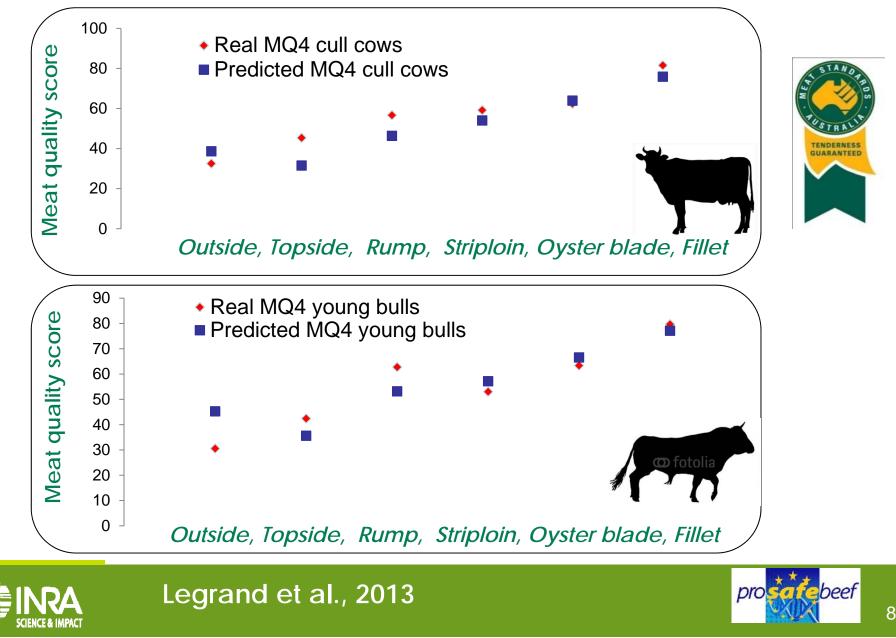
Country	Europe	S. Africa	Canada	Japan	S. Korea	USA	Australia 🞬			
Scheme	EUROP	S. Africa	Canada	JMGA	Korea	USDA	<u>MSA</u>			
Grading unit			Carcass							
Pre slaughter factors		HGP implants & Bos Indicus								
Slaughter-	Carcass weight and sex									
floor	Conformation Fat cover	Dentition Ribfat	Conformation				Electrical stimulation Hang			
		Marbling score								
Chiller			Meat Colour							
			Fat col	fication score						
				Fat thickness						
			Texture	Meat brightness	Texture	Meat texture	Hump height			
				Fat luster	Firmness	Ribfat	Ultimate pH			
				Fat texture	Lean maturity	Kidney fat				
				Fat firmness		Perirenal fat				
				Rib thickness						
							Ageing time			
Post chiller							Cooking method			

T STANDA


The concepts of designation of origin and geographical indication

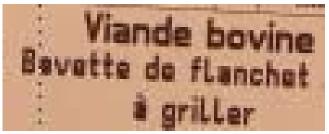
Numbers and values of PDO/PGI fresh meat products (all species) in European countries

In 2008, a total of 106 PDO and PGI in Europe for a value of 1 billion €



Prediction of beef quality using the MSA system

			í		a					
	10		Muscle	Days	Grilled	Roast	Stir	Thin	Cass-	Corne
MSA2000mod	Cut Description	Reference	Aged	Steak	Beef	Fry	Slice	erole	d Beef	
Hang (AT/TC/TS/TX)	AT	Tenderloin	TDR062		5	4	5			
Sex (M, F)	m	Cube Roll	CUB045		3	3	3	-		
Est.% Bos Indicus	0	Striploin	STR045		3	3	D	lat	hab	:/:+
Hump Height cms	0	Oyster Blade	OYS036		4	3		llai	aDI	<i>,</i>
Hot Std Carc Weight	250	Bolar Blade	BLD096		3	3		ar	rabi vade	2
USDA Ossification	140	Chuck Tender	CTR085			3	3	<i></i>		
Milk Fed Vealer Y/N	n	Rump	RMP131		3	3	3	3		
USDA Marbling	130	Point End Rump	RMP231		3	3	3	4		
Days Aged (min 5)	5	Knuckle	KNU099		x	3	3	3	3	
Quarter Point Ribfat	12	Outside Flat	OUT005			×	x	3	3	3
Ultimate pH	5.50	Eye Round	EYE075		×	3	3	3	3	x
		Topside	TOP073		×	×	×	3	3	
AUSMEAT Meat Col.	2	Chuck	CHK078			3	3	3	3	
Saleyard? (Y, N)	n	Thin Flank	TFL051				3		3	
		Rib Blade	RIB041				3			
Wght/App.Maturity	0.86	Brisket	BRI056				x	3	3	x
		Shin	FQshin						3	



Prediction of quality in France using the MSA system

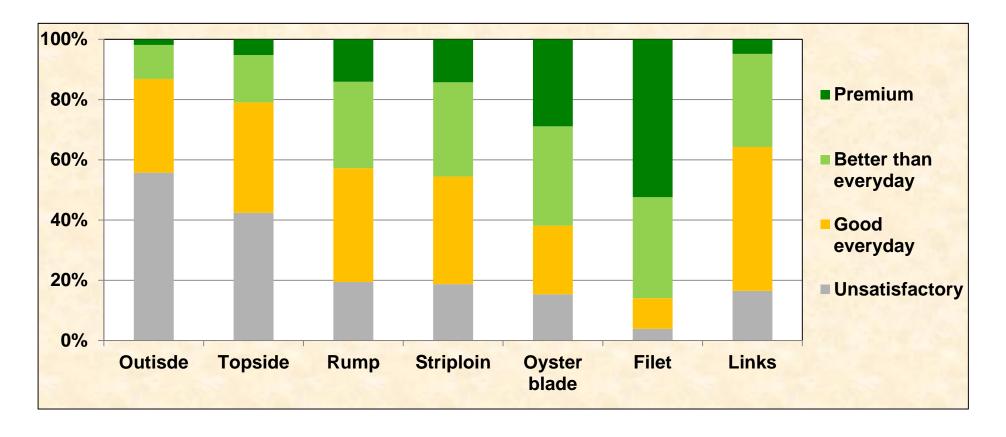
A new denomination of beef cuts in France

Before, on the label

Beef meat Name of the cut How to cook it

Last December

- Cut (if already known) or group of cuts (for cuts not well known)
- Quality level indicated by stars
- How to cook it


Instead of buying « poire » (a cut part of topside not very well known), the consumer will buy « steak *** to grill »

Source: Interbev

Prediction of quality in France using the MSA system

- Considerable variability for each muscle
- But visible muscle hierachy (Link = Stiploin & rump)

Legrand et al., 2013

Outline

1. Recent progress to predict beef quality

1.1. Grading systems

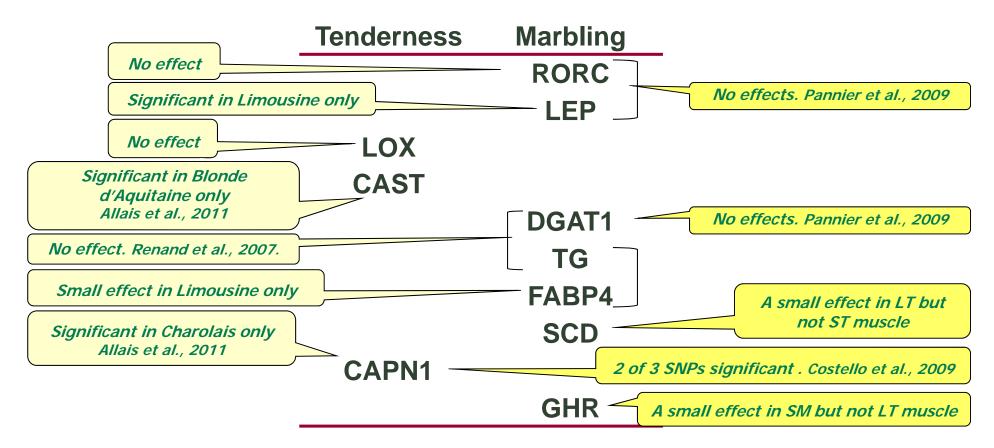
1.2. Recent progress in biochemistry and genomics

2. Win-win strategies or trade-offs for extrinsic and intrinsic quality traits of beef

2.1. Win–win strategies for sensory quality and welfare issues

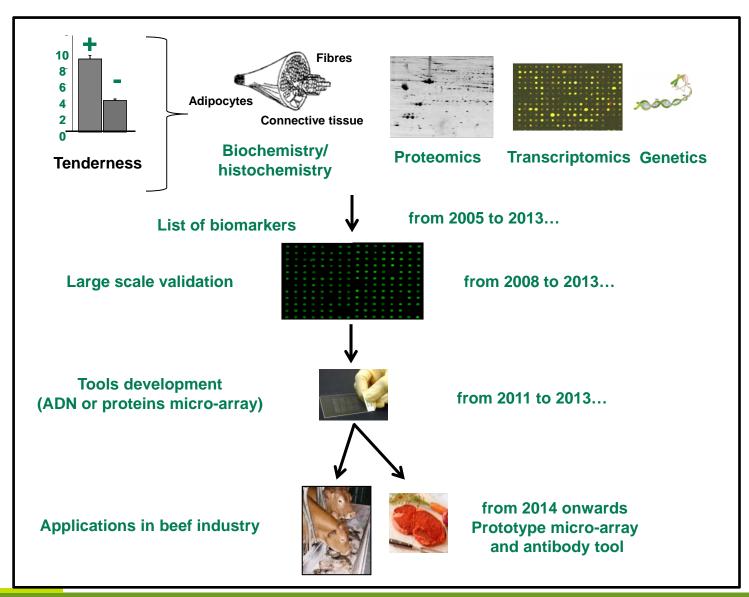
2.2. Win–win strategies and trade-offs between environmental value and other beef quality traits

3. Future research priorities



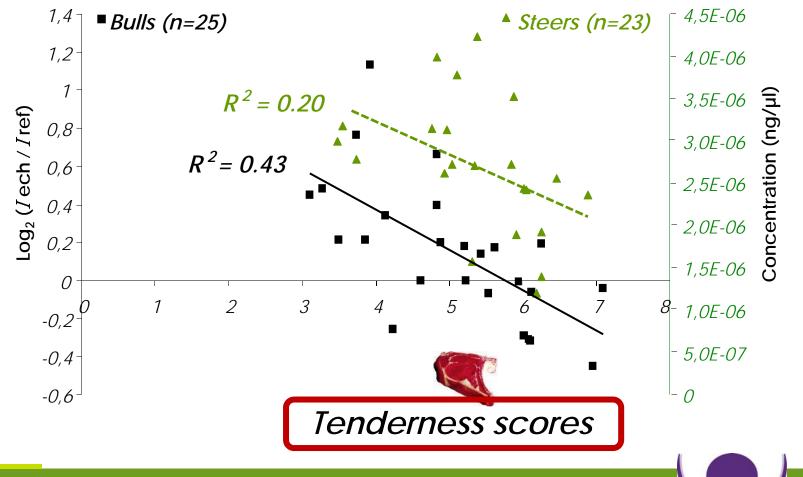
Adapted from: http://people.eku.edu/ritchisong/301notes3.htm

Relationships between genetic markers and Meat Quality attributes



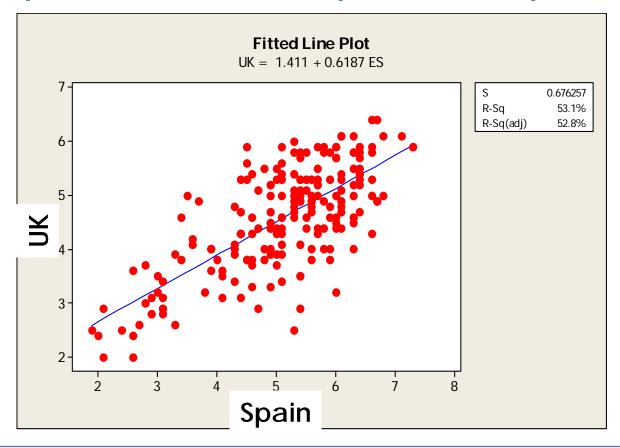
The effects of the markers studied are variable, breed specific and muscle-specific (French and Irish results)

From G Renand (France) and R Hamill (Ireland)


The overall strategy in functional genomics

DNAJA1: A negative marker for tenderness (patented)

Expression level of DNAJA1 with DNA chips Expression level of DNAJA1 by RT- PCR

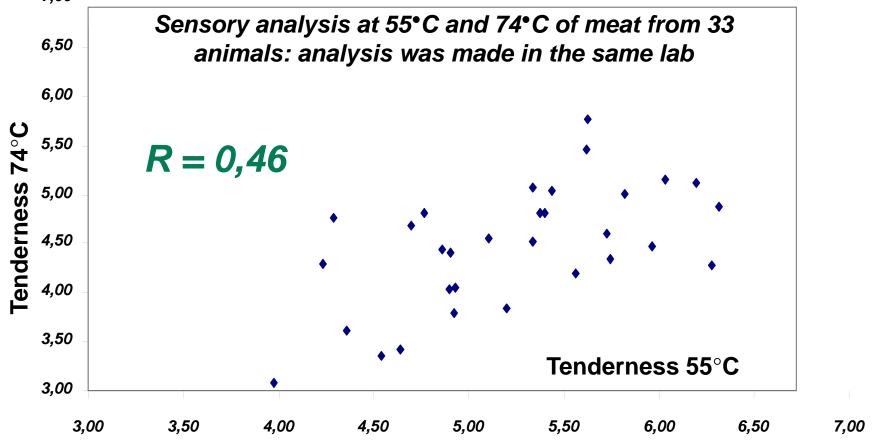


Bernard et al., 2007. J. Agric. Food Chem., 55, 5229-5237

APIS-GENE 15

Sensory analysis in the GEMQUAL EU Programme (Genetics of Meat Quality)

✓ Comparison of the same samples between Spain and UK



Measurement of tenderness is more or less repeatable across countries

Courtesy from Goeff Nute, University of Bristol

Tenderness scores at 55°C and 74°C

Measurement of tenderness is not very repeatable across temperatures

Micol et al., 2011. EAAP

Challenges

• Genotyping is performed in a standardized and automated way using robots.

\rightarrow It should be the same for phenotyping

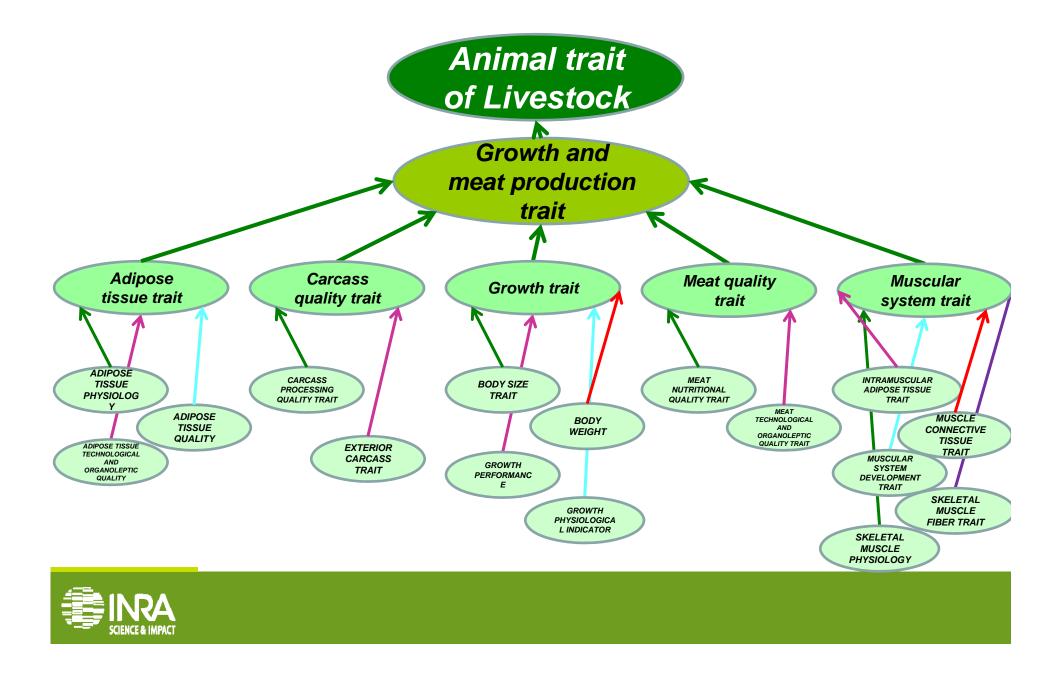
- For traits with low measurement repeatability (r < 0.95), 2 or 3 independent measurements of the same trait should be obtained on the same samples.
- Individuals should be genotyped solely for strongly correlated traits for independent measurements (Barendse 2011).

→ In a few words: standardization, automation, high repeatibility.

• 'In the age of the genotype, phenotype is king' (Coffey 2011, ICAR Meeting).

ATOL (Animal Trait Ontology of Livetock) The objectives

- 1. To have a reference ontology for phenotyping of farm animals shared by international scientific and teaching community.
- 2. To have a language usable by software (data basis management, semantic analysis, modeling...)
- 3. To have the traits as generic as possible
- 4. To have the ontology as efficient as possible and close to technical measurements
- 5. To have a structure applied to production targets



Hierarchy for growth and meat production trait

Outline

1. Recent progress to predict beef quality

1.1. Grading systems

1.2. Recent progress in biochemistry and genomics

2. Win–win strategies for extrinsic and intrinsic quality traits of beef

2.1. Win–win strategies for sensory quality and welfare issues

2.2. Win-win strategies and trade-offs between environmental value and other beef quality traits

3. Future research priorities

Slaughter: Stress and welfare – A lot of measurements

Physiological responses

GC, catecholamines, heart rate... Muscle contractions

Metabolic changes

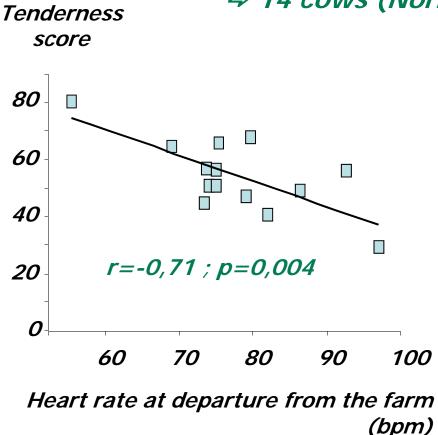
Blood; Muscle ante/post-mortem

Glycogen, enzymes,

temperature, pH...

Behavioural responses

Vocalizations, escape, immobility...


Quality of meat

Stress and welfare

From C. Terlouw

Stress at slaughter and beef quality

⇒ 14 cows (Normand breed)

Win-win relationship:

Cows

- with the lowest stress

low heart rate before slaughtering

- provide the most tender beef

Terlouw et al., 2012

Outline

1. Recent progress to predict beef quality

1.1. Grading systems

1.2. Recent progress in biochemistry and genomics

2. Win–win strategies for extrinsic and intrinsic quality traits of beef

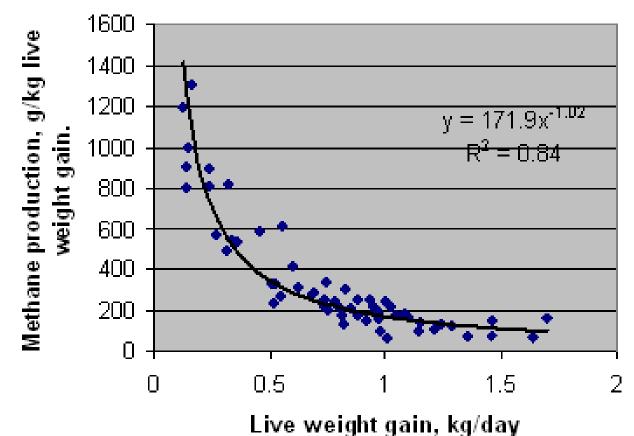
2.1. Win–win strategies for sensory quality and welfare issues

2.2. Win-win strategies and trade-offs between environmental value and other beef quality traits

3. Future research priorities

Environmental impacts of three contrasting diets

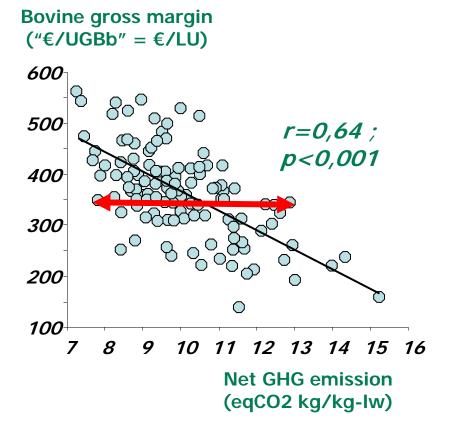
Blond d'Aquitaine young bulls


% concentrate → % forages→	35% 65% corn silage	50% 50% hay	86% 14% wheat straw			
	Per kg of body weight gain					
greenhouse gas (GHG) emissions in kg eq-CO ₂ Including enteric methane	4.74 2.23	4.56 2.23	☺ <mark>3.75</mark> <i>0.84</i>			
Energy consumption eq-MJ	©13.0	18.7	19.8			
Eutrophication potential g eq-PO ₄ ³⁻	18.6	©15.8	20.8			

Each diet has different advantages and disadvantages

Doreau et al, 2011; Nguyen et al, 2012

The relationship between live weight gain and methane production per kg of gain



The most efficient animals produce the least methane

Kurihara et al 1997, Klieve. and Ouwerkerk 2007, Howden and Reyenga 1999

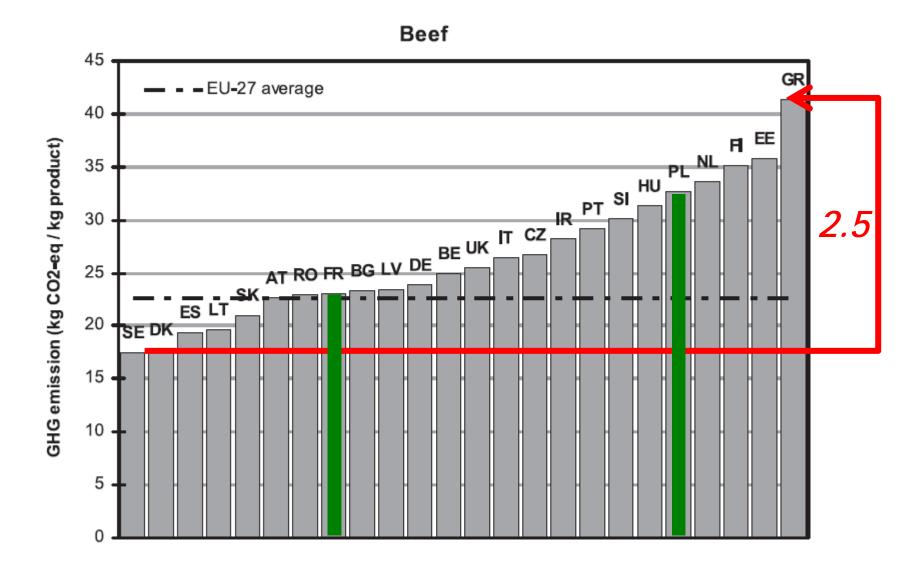
Win-win strategies between environmental value and economic efficiency

High variability :

- from 7 to 15 for GHG emissions
- from 150 to 550 for gross margin

59 farms in the Charolais area from 2010 to 2011.

Win-win relationships:


Farms

- the most efficient on an economic basis
- are also the most efficient in terms of GHG emissions

Veysset et al., 2013

GHG emissions/kg of beef for EU member states

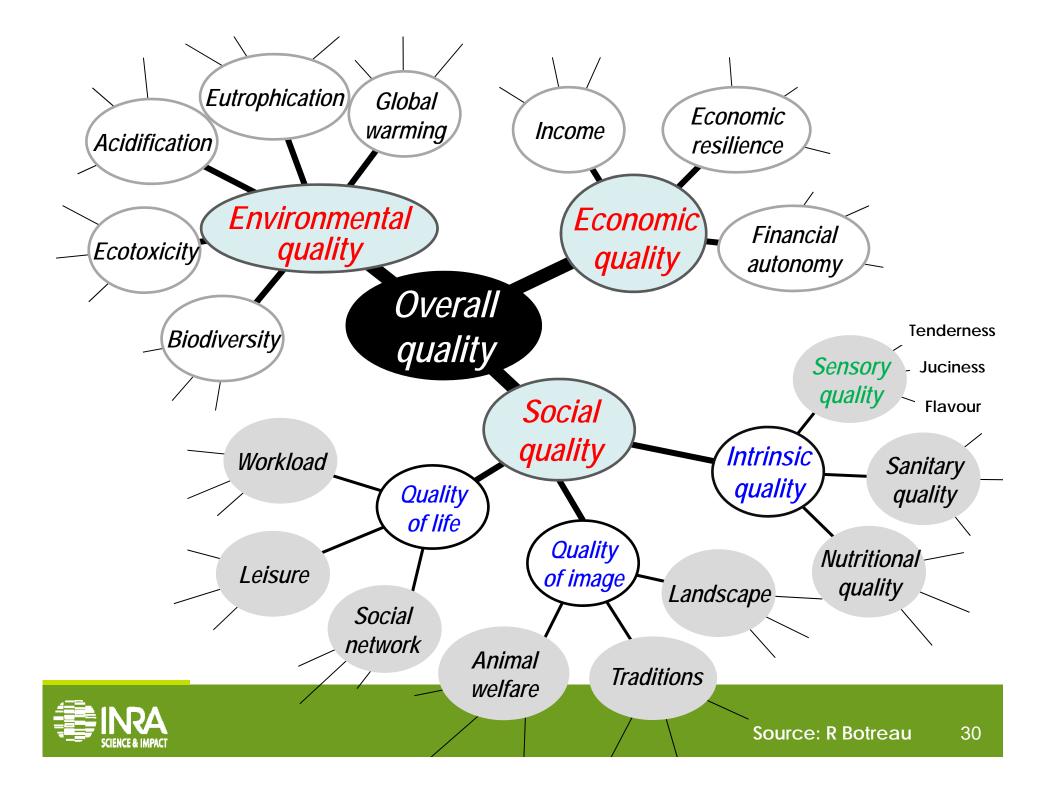
Lesschen et al., Animal Feed Science and Technology 166–167 (2011) 16–28

Outline

1. Recent progress to predict beef quality

1.1. Grading systems

1.2. Recent progress in biochemisor trade-offs try and genomics


2. Win–win strategies for extrinsic and intrinsic quality traits of beef

2.1. Win-win strategies for sensory quality and welfare issues

2.2. Win-win strategies and trade-offs between environmental value and other beef quality traits

3. Future research priorities

Need to combine different criteria of quality. But how?

- **1. Analysis by an expert:** done by traditional butchers. Not transparent, not exhaustive and also not consistent across experts.
- 2. Minimum requirements (= thresholds) easy to understand and implement but rough evaluation (good *vs* bad).
- **3.** A ranking system from best (rank 1) to worst (rank n), and a summation of the ranks: this is only a 'relative' judgment, comparing alternatives among themselves, and not an 'absolute' assessment.
- 4. Conversion of quality traits into value-scores

(e.g. quantitative information on a common scale) which are then compounded (e.g. the MSA system for sensory analysis based on a weighted sum, difficult to do).

Potential of grazed based systems **Beautiful landscape** Happy cows **PUFA-rich meat**

Biodiversity

Natural feeding

Carbon sequestration

Photo credit ©: JF Hocquette

Conclusions about multicriteria approaches

- Consumer satisfaction when eating beef involves a complex response based on objective and emotional assessments of the product.
- ✓ Scientific research must provide methods to predict, in a reliable manner *intrinsic* quality traits of beef (as MSA does).
- ✓ Scientific research must also provide methods to predict, in a reliable manner *extrinsic* quality traits of beef.
- Combining intrinsic and extrinsic quality traits by relevant and new methods is a key driver for the future.

