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Abstract

In this paper we introduce a diffeomorphic constraint on the deforma-
tions considered in the deformable Bayesian Mixed Effect (BME) Template
model. Our approach is built on a generic group of diffeomorphisms, which
is parametrized by an arbitrary set of control point positions and momen-
tum vectors. This enables to estimate the optimal positions of control points
together with a template image and parameters of the deformation distribu-
tion which compose the atlas. We propose to use a stochastic version of the
Expectation-Maximization (EM) algorithm where the simulation is performed
using the Anisotropic Metropolis Adjusted Langevin Algorithm (AMALA).
We propose also an extension of the model including a sparsity constraint to
select an optimal number of control points with relevant positions. Experi-
ments are carried out on the USPS database and on mandibles of mice.

Keywords: Deformable template model; atlas estimation; diffeomorphic deforma-
tions; stochastic algorithm; Anisotropic MALA; control point optimization; sparsity.
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1 INTRODUCTION

1 Introduction

In this paper, we are interested in summarizing the variability observed in a collection
of images by a small number of characteristics. Each image is considered as a differ-
ent instance of the same “shape” or “object”, like the same digit written by different
people or scans of the same bone observed in different individuals. This problem can
be addressed in the framework of Computational Anatomy as introduced in (20).
The goal is to find a representative image of the object, called template, and to
quantify the observed variability in shape of this object by template-to-subject de-
formations. This geometric characteristic together with the template form the atlas.
The corresponding model assumes that each observed image is a smooth deformation
of the template plus an additive noise. The deformation is defined in the underlying
space included in Rd, where d equals 2 or 3 in applications. The template-to-subject
deformations are used to quantify the geometric variability of the population via a
metric on the set of characteristic mappings.

The study of the mathematical foundations of this deformable template model
have been initiated in (19). The characterization of the geometric variability has
been addressed in different ways for example in (33) or (32). This model could be
considered from either a deterministic or stochastic point of view based on the idea
that observations come from deformations of the template image. Such approaches
were developed among others in (28; 25; 24; 27; 11) for instance, and have demon-
strated great impact in the field of image analysis. Models of deformations usually
differ in the smoothness constraint of the mappings, which has to be adapted to
the observations. To deal with the large geometric variability observed in real data,
one could not restrict deformations to be rigid-body and should consider non-rigid
deformations that may have up to an infinite number of degrees of freedom. A
simple model of deformations may be the so-called “linearized deformations”. A
linearized deformation φ is defined by the displacement field v of each point in the
domain D ⊂ Rd: ∀r ∈ D, φ(r) = r + v(r). The main advantage of this class
of deformations is its numerical simplicity as it parametrizes the deformation by
a single vector field v. Nevertheless, even with regularity conditions on v, there
is no guarantee that the deformation is invertible, meaning that the deformation
may create holes or overlapping regions in the domain. To avoid such unrealistic
behaviors, one wants to consider diffeomorphic maps which preserve the topology
of the shapes in the image set. This amounts to assume that every sample has the
same topology or equivalently that differences within sample shapes do not rely on
changes of topology.

Diffeomorphic deformations can be built on linearized deformations in the frame-
work of the Large Diffeomorphic Deformation Metric Mapping (LDDMM), which
has been introduced in (33; 12) and further developed among others in (22; 30; 10;
18; 21; 5). In this framework, the above linearized deformations are considered as
infinitesimal deformations, and the vector field v is seen as an instantaneous veloc-
ity field. The composition of such deformations creates a flow of diffeomorphisms,
which can be written at the limit as the solution of a differential equation. The set of
such diffeomorphisms can be equipped with a group structure and a right-invariant
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1 INTRODUCTION

metric, providing regularity on the driving velocity fields. It follows that the set of
images is given the structure of an infinite-dimensional manifold, on which distances
are computed as the geodesic length in the deformation group between the identity
map and the diffeomorphism that maps one image to another one.

It has been shown in (15) that this infinite dimensional deformation set can be
efficiently approximated by a finite control point parametrization carrying momen-
tum vectors. This finite dimension reduction is a key aspect for statistical analysis.
Durrleman et al. have enforced the velocity fields that are defined everywhere in the
domain to be parameterized by a finite set of control points (see (16)). Positions of
control points are not given as a prior but optimized as parameters of the statistical
model. As a consequence, control points tend to move to the regions showing the
largest variability among samples while optimizing a least-square criterion. This
optimization allows at the same time to reduce the number of control points for the
same matching accuracy, compared to the case where control points are fixed as the
nodes of a regular lattice.

Once the deformation model has been fixed, one needs to estimate the parame-
ters of the associated statistical model including in particular the template image.
Different algorithms have been proposed to solve the template estimation. Most of
them are based on a deterministic gradient descent. In particular, Durrleman et al.
manage simultaneously the optimization in control point positions and momentum
vectors thanks to a joint gradient descent (see (16)). Although providing visually
interesting results in several practical cases, the nature of the limit is not identi-
fied. Moreover, this type of methods fails in specific cases, in particular using noisy
training data. Another point of view is to consider stochastic algorithms. For ex-
ample, Zhang et al. used an Hamiltonian Monte Carlo sampler into a Monte Carlo
Expectation Maximization algorithm in the dense LDDMM setting, although there
is no theoretical convergence property proved for this algorithm (see (35)). In the
linearized deformation setting a convergent algorithm has been proposed in (4) to
solve the atlas estimation issue. It is based on the Stochastic Approximation Expec-
tation Maximization (SAEM) introduced in (13), and further extended using Monte
Carlo Markov Chain (MCMC) methods in (23; 4), thus allowing for wider scope of
applications.

In this paper, we aim at estimating an atlas of a population of images which is
composed of a template image and a quantification of the geometric variability using
the deformable template framework. We consider the LDDMM setting where the
deformations are parametrized by a finite number of initial control point positions
and momenta such as in (16). To this purpose, we extend the generative statistical
model given in (1). In that model, the deformations are assumed to be linearized
and are modeled as random variables which are not observed. This enables to esti-
mate the representative parameters of their distribution which will characterize the
geometric variability. On the one hand, we extend this approach to the LDDMM
framework. On the other hand, we introduce the control point positions as popu-
lation parameters into the model so that they can be optimized in the estimation
process. This enables to better fit the deformation model leading to a more accurate
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1 INTRODUCTION

estimation of the geometric parameters.
From an algorithmic point of view, we propose to use the Anisotropic Metropolis

Adjusted Langevin Algorithm (AMALA) within SAEM algorithm introduced in (2).
This algorithm has shown very interesting theoretical and numerical properties. In-
deed, the AMALA sampler enables to better explore the target distribution support
in very high dimension compared to other samplers. It also increases the speed of
convergence of the estimation algorithm. Moreover, we take advantage in our sam-
pler of the efficient computation used in the joint gradient descent in (16) so that
the optimization of control point positions is of no additional cost at each iteration.

Another interesting question is how to optimize the number of control points
required to parametrize the deformations. Indeed, the number of control points
essentially depends on the variability in the data: it should be estimated rather
than fixed by the user. In the geometric approach given in (16), control points were
automatically selected using a L1 type penalty that tends to zero out momentum
vectors of small magnitude. Numerically it is solved by an adapted gradient descent
called FISTA (see (9)). However, this penalty acts on each observation separately,
meaning that a control point that is needed to match only a single observation
will be kept in the final set of control points. From a statistical point of view,
one may think about this control point as an outlier and would like to remove it
from the basis. The L1 penalty is also not suitable for statistical purposes, since its
associated distribution, namely the Laplace prior, does not generate sparse variables.
In other words, the criterion with L1 penalty that is minimized in (16) could not be
interpreted as the log likelihood of a statistical model generating sparse solutions.

In this paper, we propose to include a sparsity constraint in the parameter space
of our statistical model through a thresholding step, borrowing ideas from the Group
LASSO literature initiated in (8). This has the advantage to select control points
based on their importance for the description of the variability of the whole popu-
lation, and not only of one single sample. The thresholding step is then included in
the Maximization step, so that the same AMALA-SAEM algorithm can be used for
the estimation process. We also exhibit a criterion to select an optimal threshold
leading to an optimal number of control points.

This paper is organized as follows. We first recall the LDDMM setting in the
case of control point parametrization in Section 2. The generative statistical model
derived for the atlas estimation issue is presented in Section 3. The AMALA-SAEM
algorithm is detailed in Section 4. The extension toward sparsity is presented in
Section 5. Section 6 is devoted to experiments on hand written digit and mouse
mandible images. Section 7 gives conclusions and perspectives for this work.
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2 MODEL OF DIFFEOMORPHIC DEFORMATIONS

2 Model of diffeomorphic deformations

2.1 Large Deformation Diffeomorphic Metric Mapping

The model of diffeomorphic deformations we choose is derived from the Large De-
formation Diffeomorphic Metric Mapping (LDDMM) framework (see (33; 14; 28)),
which generalizes the linearized deformation setting that has been used for the sta-
tistical estimation of atlases in (1). In the linearized deformation setting, the defor-
mation φ is given by:

φ(r) = r + v(r), ∀ r ∈ D , (1)

with d = 2 or 3, and v a vector field on Rd.
It is convenient to assume that v belongs to a Reproducible Kernel Hilbert Space

(RKHS) in order to control its spatial smoothness. Essentially, the RKHS V is the
set of the square integrable functions regularized by the convolution with a known
kernel Kg : V = L2(D) ∗Kg (see (7) for more theoretical details.)

One may further assume that v is given as a finite linear combination of the
RKHS basis vector fields, yielding:

v(r) =

kg∑
k=1

Kg(r, ck)αk, (2)

where (ck)k is a set of kg control points and (αk)k the vector weights attached to the
control points (called momenta in this context). The value of the vector field at any
position r is obtained by interpolating the momenta located at the control points.

The advantage of this formulation is to restrict the vector v to belong to a finite-
dimensional sub-space of the RKHS, which allows the straightforward definition and
estimation of statistics such as means and covariance matrices. Another advantage is
that v depends linearly on the momentum vectors, which greatly eases the derivation
of the statistical model equations.

However, if the magnitude of the vector v(r) or if the Jacobian of the vector
field v becomes too large, then the linearized deformations are not invertible, thus
leading to foldings or holes that may be undesirable for applications.

The LDDMM framework offers a generic way to define diffeomorphic maps, which
guarantees their smoothness and invertibility. The approach introduced in (16) and
(17) is a direct extension of the linearized deformation setting. It is still built on
parameterization of the diffeomorphic maps lying in a finite dimensional subspace
of a given RKHS. However, the dependence of the deformations in their parameters
will not be linear anymore.

2.2 Parametric LDDMM construction

To build a diffeomorphic map, we use the linearized deformations given in Equa-
tion (1) as infinitesimal steps, and consider the corresponding vector field as an
instantaneous velocity field. More precisely, we consider time-dependent velocity
fields (vt)t for a time-parameter t varying in [0, 1]. The motion of a point r0 in the
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2 MODEL OF DIFFEOMORPHIC DEFORMATIONS

domain of interest D describes a curve t → r(t) which is the integral curve of the
following Ordinary Differential Equation (ODE) called flow equation:

dr(t)

dt
= vt(r(t))

r(0) = r0 .
(3)

The deformation φ1 is defined as follows:

∀r0 ∈ D, φ1(r0) = r(1) .

Conditions under which this map φ1 is diffeomorphic can be found in (10). In
particular, the existence, uniqueness and diffeomorphic property of the solution are
satisfied if the velocity vt belongs to a RKHS at all time t and is square integrable
in time.

Under these conditions, the model builds a flow of diffeomorphic deformations
φt : r0 −→ r(t) for all t ∈ [0, 1]. The flow describes a curve in a sub-group of
diffeomorphic deformations starting at the identity map. The RKHS V plays the
role of the tangent space of such an infinite-dimensional Riemannian manifold at
the identity map Id. We can provide this group of diffeomorphisms with a right-
invariant metric, where the square distance between the identity map Id = φ0 and
the final deformation φ1 is given as the total kinetic energy used along the path:
d(Id, φ1)2 =

∫ 1

0
‖vt‖2

V dt, where ‖ · ‖V is the norm in the RKHS. The existence and
uniqueness of minimizing paths have been shown in (28).

According to mechanical principles, one can show that the kinetic energy is pre-
served along the geodesic paths, namely for all t ∈ [0, 1] ‖vt‖V = ‖v0‖V . Moreover,
the velocity fields (vt) along such paths satisfy Hamiltonian equations, meaning that
the geodesic is fully parametrized by the initial velocity field v0. This velocity field
plays the role of the Riemannian logarithm of the final diffeomorphism φ1. There-
fore, it belongs to a vector space and allows the definition of tangent-space statistics
in the spirit of (34) and (31).

Following (17) and (16), we further assume that v0 is the interpolation of mo-
mentum vectors (αk,0)k at control point positions (ck,0)k :

v0(r) =

kg∑
k=1

Kg(r, ck,0)αk,0 , (4)

where Kg is the kernel associated to the RKHS V . In this context, it has been shown
in (29) that the velocity fields (vt)t along the geodesic path starting at the identity
map in the direction of v0 keep the same form:

vt(r) =

kg∑
k=1

Kg(r, ck(t))αk(t) , (5)

where the control point positions (ck(t))k and the momentum vectors (αk(t))k satisfy
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3 STATISTICAL MODEL AND PARAMETER ESTIMATION

the Hamiltonian equations:
dck(t)

dt
=

kg∑
l=1

Kg(ck(t), cl(t))αl(t)

dαk(t)

dt
= −

(
kg∑
l=1

dck(t)(Kg(ck(t), cl(t))αl(t))

)t

αk(t)

(6)

with initial conditions ck(0) = c0,k and αk(0) = α0,k for all 1 ≤ k ≤ kg. This is
similar to the equations of motion of a set of kg self-interacting particles, with Kg

modeling the interactions. One can easily verify that the Hamiltonian defined as
Ht = ‖vt‖2

V =
∑kg

k=1

∑kg

l=1 αl(t)
tKg(cl(t), ck(t))αk(t) is constant in time when control

point positions and momentum vectors satisfy the system (6).

This model defines a finite dimensional subspace of the group of diffeomorphisms.
For a given set of initial control points, the diffeomorphisms are parametrized by
the momentum vectors attached to them. For one instance of the initial momentum
vectors, one builds the motion of the control points and of the momentum vectors by
integrating the Hamiltonian system (6). Then, they define a dense velocity field at
each time t according to Equation (5). Finally, one can find the motion φt(r0) of any
point r0 in the domain D by integrating the flow equation (3). In this framework, the
tangent-space representation of the diffeomorphic deformation φ1 is given by the ini-
tial velocity field v0 parametrized by z = ((c0,k, α0,k))k, called the initial state of the
particle system. The position φ1(r) depends on the parameters ((c0,k, α0,k))k via the
integration of two non-linear differential equations in Equation (6) and Equation (3).

Remark 1 The LDDMM framework formulation involves a coupling on the control
point and the momentum evolutions along the geodesic path which is not the case in
the linearized deformation setting. This joint equation introduces more constraints
reducing the dimension of the solution space. Therefore, the identifiability of the
control point positions may be expected in our LDDMM framework. This property
would most probably fail in the linearized deformation setting where the momenta
and the control points are not coupled.

In Section 3, we will define the stochastic model of deformations based on para-
metric distributions of the initial state of particles.

3 Statistical model and parameter estimation

As pointed out in (1), the gradient descent optimization with respect to the template
together with the momenta does not necessarily converge if the training set is noisy.
To solve this problem, we introduce here a statistical model where we consider the
deformations as well as the control point positions as non-observed random variables,
in the spirit of the Bayesian Mixed Effect (BME) Template model given in (4).
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3 STATISTICAL MODEL AND PARAMETER ESTIMATION

3.1 Statistical generative model

We choose to model our data by a generative hierarchical model. This allows to gen-
erate images from the atlas. The ability to generate synthetic images is important
to interpret the features captured by the model. It may highlight variability pat-
terns that could not be perceived by simple visual inspection of the training images.
In this model, the distribution of the deformations in the diffeomorphism group is
parametrized. In a statistical approach, these parameters are estimated from the
data, thus providing a metric in the shape space which is adapted to the data and
takes into account the deformation constraints. This is in contrast to geometric
approaches that estimate the template using a fixed metric.

More precisely, let I0 be a template image: I0 : Rd → R. We consider an
observation, namely an image y, as a noisy discretization on a regular grid Λ of a
diffeomorphic deformation of the template image. Let φz1 be the solution of both
the flow equation (3) and the Hamiltonian system (6) with initial condition z =
((c0,k, α0,k))k. Then, for all s ∈ Λ,

y(s) = I0((φz1)−1(rs)) + σε(s), (7)

where σε denotes an additive centered Gaussian random noise on the grid Λ with
variance σ2, and rs is the coordinate of the voxel s in the continuous domain D.

We are provided with n images y = (yi)1≤i≤n in a training set. We assume that
each of them follows the probabilistic model (7) and that they are independent.

We consider the initial state of particles, namely the control point positions and
the momentum vectors, as random variables and estimate their probabilistic distri-
butions, restricting ourselves to the case of parametric distributions. We assume
that control points live in the template domain D and that they are the same for
all observations. By contrast, the momentum vectors attached to them are specific
to each observation, as they parametrize the matching of the template with each
sample image.

Therefore, we propose the following probabilistic model: we assume that the ini-
tial control point positions c0 = (c0,k)1≤k≤kg are drawn through a Gaussian distribu-
tion with mean c̄0 and covariance acId where Id is the identity matrix of dimension
dkg. We define the initial momenta α0 = (αi0)1≤i≤n with αi0 = (αi0,k)1≤k≤kg . We
assume that the variables (αi0)1≤i≤n are independent identically distributed and fol-
low a Gaussian distribution with mean 0 and covariance matrix Γg. Note that this
covariance matrix depends on the initial control point positions as the momenta are
attached to them. Moreover the momenta α0 are assumed to be independent of the
control point positions c0 given Γg.

Following the same lines as in (1), we parametrize the template function I0 as
a linear combination of gray level values of fixed voxels (bk)1≤k≤kp equidistributed
on the domain D. The interpolation kernel is denoted by Kp and the combination
weights are denoted by w. Thus we have for all r ∈ D,

I0(r) =

kp∑
k=1

Kp(r, bk)wk . (8)
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3 STATISTICAL MODEL AND PARAMETER ESTIMATION

The action of a diffeomorphism on this template is the linear combination of the
deformed kernel with the same weights: ∀r ∈ D,

Kz
pw(r) = I0 ◦ (φz1)−1 (r) =

kp∑
k=1

Kp

(
(φz1)−1 (r), bk

)
wk . (9)

The parameters of the model are θ = (w, σ2,Γg, c̄0) and the random variables
(α0, c0) are considered as hidden random variables. As we often deal with small
sample size in practice, we restrict our inference to a Bayesian setting. Some of the
priors can be informative as the one of Γg. Other priors may be non-informative as
for the expectation of the control point positions for which no additional information
is available. The complete model writes therefore:

θ = (w, σ2,Γg, c̄0) ∼ νp ⊗ νg

c0 ∼ Ndkg(c̄0, acId)| θ,

αi0 ∼ Ndkg(0,Γg)| θ, ∀1 ≤ i ≤ n ,

yi ∼ N|Λ|(K
(c0,αi

0)
p w, σ2Id) | (c0,α

i
0), θ, ∀1 ≤ i ≤ n .

(10)

We define the prior distributions as follows: νg(dΓg, dc̄0) ∝

(
exp(−〈Γ−1

g ,Σg〉F/2) 1√
|det(Γg)|

)ag

· exp
(
− 1

2
(c̄0 − µc)tΣ−1

c (c̄0 − µc)
)
dΓgdc̄0,

νp(dw, dσ2) ∝ exp
(
− 1

2
wtΣ−1

p w
)
·
(

exp
(
− σ2

0

2σ2

)
1√
σ2

)ap
dwdσ2 ,

where 〈., .〉F designs the Frobenius scalar product and the hyper-parameters satisfy
ag ≥ 4kg + 1, Σg = Id, σ2

0 > 0, ap ≥ 3 and Σp is derived from the interpolation
kernel Kp and the photometric grid (bk)1≤k≤kp (see (1) for more details). Concern-
ing the hyper-parameters of the control point prior (µc,Σc), we choose µc to be the
vector of the equidistributed grid coordinates. The covariance matrix Σc is assumed
non-informative. All priors are the natural conjugate priors and are assumed inde-
pendent to ease derivations.

Remark 2 From a modeling point of view, the positions of the control points could
have been consider as parameters of our model since they are fixed effects of the
whole population as well as the template. However considering control points as
parameters does not lead to a model belonging to the exponential family. Thus, we
could not benefit from the convergence properties and efficient implementation of
the SAEM algorithm for this class of models. Therefore, we model the control point
positions as random variables following a Gaussian distribution.

3.2 Parameter estimation

Let us define y = (y1, ..., yn). We consider the Maximum A Posteriori (MAP) esti-
mator denoted by θ̂n obtained by maximizing the posterior density of θ conditional
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3 STATISTICAL MODEL AND PARAMETER ESTIMATION

to y as follows:

θ̂n = argmax
θ

q(θ|y). (11)

For sake of simplicity all likelihoods will be denoted by q. We will state the existence
and the consistency of this MAP estimator in the next paragraphs.

3.2.1 Existence of the MAP estimator

We first show that for any finite sample the maximum a posteriori will lie in the
parameter set Θ; this is non-trivial due to the highly non-linear relationship between
parameters and observations in the model.

Theorem 1 For any sample y, there exists θ̂n ∈ Θ such that q(θ̂n|y) = supθ∈Θ q(θ|y) .

Proof 1 From Equation (10) we have that for any θ = (w, σ2,Γg, c̄0) ∈ Θ

q(y|α0, c0,w, σ
2)q(α0|Γg)q(c0|c̄0) ≤ (2πσ2)−|Λ|/2(2π)−kg | det(Γg)|−1/2 exp

(
−1

2
αt0Γ−1

g α0

)
× (2πac)

−dkg/2 exp

(
− 1

2ac
‖c0 − c̄0‖2

)
(12)

so that integrating over α0 and c0 and adding the priors on each parameters, we get:

log(q(θ|y)) ≤ −ag

2
〈Rg,Σg〉F + ag

2
log(| det(Rg)|)− apσ2

0

2σ2 − n|Λ|+ap

2
log(σ2)

− 1

2
wtΣ−1

p w − 1

2
(c̄0 − µc)tΣ−1

c (c̄0 − µc) + C

where Rg = Γ−1
g , and C does not depend on the parameters. If we denote by η0

g the
smallest eigenvalue of Σg and by ‖ · ‖ the operator norm, we get

〈Rg,Σg〉F ≥ η0
g‖Rg‖ and log(| det(Rg)|) ≤ (2kg − 1) log(| det(Rg)|)− log(‖Γg‖)

so that
lim

‖Rg‖+‖Γg‖→∞
−ag

2
〈Rg,Σg〉F +

ag
2

log(| det(Rg)|) = −∞ .

Similarly, we can show

lim
σ2+σ−2→∞

−apσ
2
0

2σ2
− n|Λ|+ ap

2
log(σ2) = −∞ ,

lim
‖w‖→∞

−1

2
wtΣ−1

p w = −∞

and

lim
‖c̄0‖→∞

−1

2
(c̄0 − µc)tΓ−1

c (c̄0 − µc) = −∞ .

Now considering the Alexandrov one-point compactification Θ ∪ {∞} of Θ, we have

lim
θ→∞

log q(θ|y)→ −∞ .

Since θ → log q(θ|y) is smooth on Θ, we get the result.
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4 ALGORITHMIC METHOD

3.2.2 Consistency of the MAP estimator

We are interested in the consistency properties of the MAP estimator without mak-
ing strong assumptions on the distribution of the observations y denoted by P . We
seek to prove the convergence of the MAP estimator to the set Θ∗ defined by:

Θ∗ = { θ∗ ∈ Θ | EP (log q(y|θ∗)) = sup
θ∈Θ

EP (log q(y|θ))}.

Theorem 2 Assume that Θ∗ is non empty. Then, for any compact set K ⊂ Θ, for
all ε > 0,

lim
n→+∞

P ( δ(θ̂n,Θ∗) ≥ ε ∧ θ̂n ∈ K ) = 0 ,

where δ is any metric compatible with the usual topology on Θ.

The proof follows the lines of (1). Indeed, the observed likelihood of our diffeo-
morphic BME Template model has the same regularity properties and asymptotic
behaviors in the parameters as the linearized one.

Remark 3 In (1), the authors have proved that under a weak additional condition,
Θ∗ is not empty. This makes the use of an important property of the linearized
deformations: the amplitude of the deformation increases as the amplitude of its co-
efficients increases. This enables to prove that large amplitude deformations would
not be suitable to optimize the observed likelihood. In the LDDMM setting, this
property cannot be guaranteed anymore. The relation between the range of the de-
formation and its momenta depends on the curvature of the diffeomorphisms space
(which is flat in the linearized deformation framework). Therefore, proving that Θ∗
is not empty will require to know the curvature of the deformation space. This is
unfortunately not known except in very simple cases (see (26)) preventing from a
direct generalization of the previous proof.

4 Algorithmic method

In this section, we detail the estimation algorithm chosen to maximize the posterior
distribution q(θ|y) in the parameter θ. We use the Stochastic Approximation Ex-
pectation Maximization (SAEM) algorithm introduced in (13) coupled with Monte
Carlo Markov Chain (MCMC) method as suggested in (23) and (4). Let us first
recall the principles of the SAEM-MCMC algorithm in the general case of a model
belonging to the curved exponential family. This algorithm is iterative, each itera-
tion consisting in four steps:

Simulation step The missing data (here positions of initial control points and
momentum vectors) are drawn using a transition probability of a convergent
Markov chain Πθ having the conditional distribution πθ(.) = q(.|y, θ) as sta-
tionary distribution.

Stochastic approximation step A stochastic approximation is done on the suffi-
cient statistics of the model using the simulated value of the missing data and
a decreasing sequence of positive step-sizes.

12



4 ALGORITHMIC METHOD

Projection on random boundaries If the result of the stochastic approximation
falls outside a compact set of increasing size, it is projected back to a fixed
compact set.

Maximization step The parameters θ are updated by maximizing the complete
log-likelihood evaluated in the projected sufficient statistics.

Due to the high dimension of the hidden variables (i.e. the initial momenta and
control points), we need to pay attention to the sampling step, as detailed in Sub-
section 4.1. The other steps of the algorithm are presented in Subsection 4.2. The
theoretical properties of this estimation algorithm are discussed in Subsection 4.3.

4.1 Simulation step of the stochastic EM

4.1.1 AMALA sampler

In our applications, the missing variables composed of the initial momenta and
positions of control points z = (c0,α0) are of very high dimension. In this case,
the AMALA sampler proposed in (2) seems better suited for our stochastic EM
algorithm than more standard samplers. For example, the Gibbs sampler solves
the problems of low numerical acceptation rate and trapping states by looping over
each coordinate to better stride the target density support. However, this involves
a huge number of loops and heavy computations in the acceptation ratio preventing
from any use in very high dimension. By contrast, the AMALA sampler is more
performant in terms of computational time while exploring the target support as
well as the Gibbs sampler.

To be more precise, the AMALA sampler is an anisotropic version of the well-
known Metropolis Adjusted Langevin Algorithm (MALA), where the covariance
matrix of the proposal is optimized to take into account the anisotropy and the
coordinate correlations of the target distribution. Using our previous notation, the
drift vector denoted by Dθ(z) is equal to:

Dθ(z) =
b

max(b, |∇ log πθ(z)|)
∇ log πθ(z) , (13)

with b > 0 a truncation boundary. This vector Dθ(z) is the concatenation of
the truncated gradients with respect to c0 and (αi0)1≤i≤n denoted respectively by
D0
θ(z), D1

θ(z), ..., Dn
θ (z).

Starting from the current value zk of the Markov chain, the candidate zc is
sampled from the Gaussian distribution with expectation zk+δDθ(zk) and covariance
matrix δΣθ(zk) where Σθ(z) is given as:

Σθ(z) = εId(n+1)dkg + diag
(
D0
θ(z)D0

θ(z)t, D1
θ(z)D1

θ(z)t, ..., Dn
θ (z)Dn

θ (z)t
)
, (14)

with ε > 0 a small regularization parameter and δ > 0.
We denote by pθ the probability density function (pdf) of this proposal distribu-

tion and by ρθ(zk, zc) the acceptance rate defined as:

ρθ(zk, zc) = min

(
1,
πθ(zc)pθ(zc, zk)

pθ(zk, zc)πθ(zk)

)
. (15)

13



4 ALGORITHMIC METHOD

Then, the new value zk+1 of the Markov chain equals zc with probability ρθ(zk, zc)
and zk otherwise.

Remark 4 For numerical efficiency, we do not take into account correlations be-
tween the momenta and the control point positions in the proposal. Moreover, the ob-
servations being independent, the covariance matrix of the momenta is block-diagonal
since the momenta are independent conditionally to the control point positions.

We now move to the computation of the gradient of the conditional distribution
logarithm which appears in the drift Dθ. It happens that the conditional distribution
logarithm is actually equaled to minus the usual energy used to compute the best
match between images in the LDDMM framework. Therefore, we pay attention to
the computation of the gradient of this quantity in the following paragraph.

4.1.2 Gradient computation in the LDDMM deformation model

We recall here the result established in (16). For clarity purposes, we adopt compact
matrix notation. The initial state of the system, which consists of the initial positions
of control points c0 and their associated momentum vectors α0 is denoted by z =
(c0,α0). The position of this set of particles at later time t is denoted by z(t) =
(c0(t),α(t)), and satisfies the set of coupled ODEs (6). This system of ODE can be
re-written in short as: {

ż(t) = F (z(t))

z(0) = z .
(16)

Let Xz(t, .) denotes the mapping: r ∈ D → Xz(t, r) = φzt ((φ
z
1)−1(r)). For t = 1,

Xz(1, .) = IdL2(D) is the identity map. For t = 0, Xz(0, .) = (φz1)−1(.) is the inverse
mapping of the domain D that is needed to deform the images. The interest of
using the flow φzt ◦ (φz1)−1 (and not (φzt )

−1 for instance) is that the trajectory of
any pixel under this flow in D is exactly the same as for the direct flow, but in the
reverse direction. More precisely, Xz(t, .) is solution of the following ODE integrated
backward from t = 1 to t = 0:

∂Xz(t, .)

∂t
= −vt(Xz(t, .)) = −

kg∑
k=1

Kg(X
z(t, .), ck(t))αk(t)

Xz(1, .) = IdL2(D) ,

(17)

which can be re-written in short as:
dXz(t, r)

dt
= G(Xz(t, r), z(t))

Xz(1, r) = r ,
(18)

for all r ∈ D.
The solution at t = 0, Xz(0, .), is used to deform the template image I0:

I0((φz1)−1(r)) = I0(Xz(0, r)). (19)

14



4 ALGORITHMIC METHOD

From a numerical point of view, we discretize the image domain D into an
array of |Λ| pixels. The map Xz(t, .) is therefore a vector of dimension d|Λ|:
{Xz(t, rs)}s=1,...,|Λ|, which gives the trajectory of any pixel rs under the flow equa-
tion (17) (where G is a map from Rd|Λ| × Rdng to Rd|Λ|). The grey value of the
deformed image at pixel rs is computed by interpolating the grey values in I0 lo-
cated at pixels around position Xz(0, rs) using Equation (8).

Proposition 1 Let us denote by z = (c0,α0) the (n+1)dkg parameters of a generic
criterion Eθ of the form:

Eθ(z) = A(Xz(0, .)) + L(z),

where:

A(Xz(0, .)) =
1

σ2

n∑
i=1

‖yi − I0((φzi
1 )−1)‖2

L(z) =
n∑
i=1

(αi0)tΓ−1
g α

i
0

ż(t) = F (z(t)) z(0) = z

Ẋz(t, .) = G(Xz(t, .), z(t)) Xz(1, .) = IdL2(D)

. (20)

and Xz(t, .) ∈ L2(D,Rd) for all t and A is a differentiable map from L2(D,Rd) to
R.

Then, the gradient of Eθ is given by:

∇zEθ = ξ(0) +∇zL, (21)

where two auxiliary variables ξ(t) (in R(n+1)dkg) and η(t, .) (in L2(D,Rd)) satisfy the
following linear ODEs:{

η̇(t, .) = −(∂1G(Xz(t, .), z(t)))∗η(t, .)

η(0, .) = −∇Xz(0,.)A ,
(22)

{
ξ̇(t) = −∂2G(Xz(t, .), z(t))∗η(t, .)− dz(t)F

tξ(t)

ξ(1) = 0 ,
(23)

where ∗ denotes the adjoint operator in L2(D,Rd).

This proposition states that the gradient is computed by integrating two linear
ODEs that couple the information in the initial momenta and in the initial control
points. Computing the gradient only with respect to the initial momenta does
not decrease the computation time. The coupling implies that the gradient with
respect to each coordinate of the hidden variables are computed simultaneously.
The expression in coordinates of the terms in Proposition 1 as well as its proof can
be found in (16).
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4 ALGORITHMIC METHOD

Remark 5 The gradient of Eθ is indeed equal to −∇z log πθ. This vector belongs to
the tangent space of the Riemannian manifold of the data at the template point. Thus
it provides crucial information about the local shape of this manifold. Therefore, it
is of great interest to include this quantity into the estimation algorithm. It has been
done from a deterministic point of view in (16) through a gradient descent on Eθ.
Nevertheless, this algorithm may be stuck into local minima of this energy Eθ. To
avoid such behaviors, stochastic algorithms are well-known powerful tools. In par-
ticular, the AMALA-SAEM combines both advantages: it is a stochastic algorithm
whose samples are based on this gradient direction.

Remark 6 The AMALA-SAEM requires the computation of this gradient at each
iteration of the algorithm. Its numerical cost has to be compared with the cost when
using other samplers. The hybrid Gibbs sampler that was chosen in (4) for the lin-
earized deformation may also be used here. Although it does not require to compute
the gradient, it needs to loop over each coordinate of the hidden variables. This
loop in our generalized LDDMM model would involve an integration of the Hamilto-
nian system (6) and the flow equation (3) for each coordinate. This scheme would
be particularly inefficient due to the coupling between all control points and initial
momenta in these equations: one would need to compute the full set of coupled equa-
tions each time one updates a coordinate. For kg control points in dimension d and
n observations, the hidden variable is of dimension (n + 1)dkg. The Gibbs sampler
needs then to integrate (n + 1)dkg times the Hamiltonian system (6) and the flow
equation (3) which are differential systems in dimension (n + 1)dkg and d|Λ|. The
AMALA only requires one single of this step and the gradient computation which
involves two differential equations (22) and (23) both in dimension (n + 1)dkg. Al-
though the differential equations in the gradient are more complex than those in the
Hamiltonian system (as they require the Hessian of the kernel and not only its gra-
dient), the AMALA sampler is still much more efficient in very high dimension than
the Gibbs sampler.

4.2 Stochastic approximation, projection and maximization
steps of the algorithm

We detail here the other steps of the algorithm. The generalized large deformation
BME Template model belongs also to the curved exponential family. Indeed, the
log-likelihood writes:

log q(y, c0,α0, θ) =
n∑
i=1

(
− |Λ|

2
log(2πσ2)− 1

2σ2‖yi −K
(c0,αi

0)
p w‖2

)
+

n∑
i=1

(
−dkg

2
log(2π)− 1

2
log(| det(Γg)|)− 1

2
(αi0)tΓ−1

g α
i
0

)
− 1

2ac
‖c0 − c̄0‖2

+ ag
(
−1

2
〈Γ−1

g ,Σg〉F − 1
2

log(| det(Γg)|)
)

+ ap

(
− σ2

0

2σ2 − 1
2

log(σ2)
)

− 1
2
wtΣ−1

p w − 1
2
(c̄0 − µc)tΣ−1

c (c̄0 − µc) + C ,
(24)

where ∀u ∈ Λ, K
(c0,αi

0)
p w(ru) =

kp∑
k=1

Kp((φ
c0,αi

0
1 )−1(ru), bk)wk.
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4 ALGORITHMIC METHOD

This enables to exhibit the following sufficient statistics:

S0(z) = c0

S1(z) =
∑

1≤i≤n

(
K

(c0,αi
0)

p

)t
yi

S2(z) =
∑

1≤i≤n

(
K

(c0,αi
0)

p

)t (
K

(c0,αi
0)

p

)
S3(z) =

∑
1≤i≤n

(αi0)tαi0 .

(25)

For simplicity, we denote S(z) = (S0(z), S1(z), S2(z), S3(z)) for any z = (c0,α0) ∈
R(n+1)dkg . We define the sufficient statistic space

S =
{

(s0, s1, s2, s3)|s0 ∈ Rdkg , s1 ∈ Rkp , s2 + σ2
0Σ−1

p ∈ Σ+
kp,∗(R), s3 + agΣg ∈ Σ+

2kg ,∗(R)
}
.

Identifying in the sequel s2 and s3 with their lower triangular part, the set S can be
viewed as an open convex set of Rns with ns = dkg + kp + kp(kp+1)

2
+ kg(2kg + 1).

Moreover, there exists a maximizing function θ̂ satisfying

∀θ ∈ Θ,∀s ∈ S, L(s; θ̂(s)) ≥ L(s; θ) , (26)

which yields:

ŵ(s) = (s2 + σ̂(s)2(Σp)
−1)
−1
s1

σ̂2(s) = 1
n|Λ|+ap

(‖y‖2 + ŵ(s)ts2ŵ(s)− 2ŵ(s)ts1 + apσ
2
0) ,

Γ̂g(s) = 1
n+ag

(s3 + agΣg) ,

ˆ̄c0(s) = s0 .

(27)

Since we are not dealing with hidden variables with compact support, we in-
troduce a usual projection of the sufficient statistics on random boundaries. Let
(Kq)q≥0 be an increasing sequence of compact subsets of S such as ∪q≥0Kq = S
and Kq ⊂ int(Kq+1),∀q ≥ 0. Let (εk)k≥0 be a monotone non-increasing sequence
of positive numbers and Rnz where nz = (n + 1)dkg a subset of Rns . We construct
the sequence ((sk, zk))k≥0 as follows. As long as the stochastic approximation does
not fall out the current compact set and is not too far from its previous value, we
run the AMALA-SAEM algorithm. If one of the two previous conditions is no more
satisfied, we reinitialize the sequences of s and z using a projection (s̃, z̃) ∈ K0 ×K
(for more details see (6) ).

We are now able to summarize the complete estimation algorithm (see Algo-
rithm 1).

4.3 Discussion on theoretical properties

The AMALA-SAEM algorithm has already been applied to the BME Template
model in the context of linearized deformations (see (2)). In that paper, the almost
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4 ALGORITHMIC METHOD

Algorithm 1 AMALA-SAEM with truncation on random boundaries

Set κ0 = 0, s0 ∈ K0 and z0 ∈ K.
for all k ≥ 1 do
Sample z̄ from the AMALA transition kernel :

Sample zc ∼ N (zk + δDθk
(zk), δΣθk

(zk)) where

Dθ(z) =
b

max(b, |∇ log πθ(z)|)
∇ log πθ(z) ,

and

Σθ(z) = εId(n+1)dkg + diag
(
D0
θ(z)D0

θ(z)t, D1
θ(z)D1

θ(z)t, ..., Dn
θ (z)Dn

θ (z)t
)
,

with ε > 0 a small regularization parameter and δ > 0.
Then set z̄ = zc with probability ρθk

(zk, zc) and z̄ = zk otherwise,

where ρθ is given in Equation (15).

Compute s̄ = sk−1 + ∆k−1(S(z̄) − sk−1) where (∆k)k∈N is a decreasing

positive step size sequence.
if s̄ ∈ Kκk−1

and |s̄− sk−1| ≤ εk−1 then
set (sk, zk) = (s̄, z̄) and κk = κk−1,

else
set (sk, zk) = (s̃, z̃) ∈ K0 ×K and κk = κk−1 + 1,
where (s̃, z̃) ∈ K0 ×K.

end if
θk = θ̂(sk)

end for
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5 EXTENSION TOWARD SPARSE REPRESENTATION OF THE
GEOMETRIC VARIABILITY

sure convergence of the parameter sequence as well as its asymptotic normality
(Theorems 1 and 2 in (2)) have been proven under usual assumptions on both the
model and the step size sequences. Thus, we can wonder whether our LDDMM
BME Template model fits into these assumptions. First of all, we notice that our
model belongs to the curved exponential family. Moreover, it satisfies the regularity
and integrability conditions required in assumptions (M1-M6) and (B2) of Theorem
1 in (2). However, due to the very complex dependencies of the LDDMM model,
the super-exponential property (B1) of the conditional density and, related to it, its
polynomial upper bound (M8) cannot be guaranteed. Nevertheless, both assump-
tions sound reasonable in the applications that we are targeting. In the following
experiments, the convergence of the algorithm is demonstrated, thus corroborating
our hypothesis.

5 Extension toward sparse representation of the

geometric variability

Obviously, the number of degrees of freedom needed to describe the variability of a
given shape should be adapted to this shape. Therefore, the number of control points
in our model should be estimated as a parameter of the model and not fixed by the
user. This leads to automatically optimize the dimension of the deformation model.
We propose here to simultaneously optimize the positions of the control points and
select a subset of the most relevant ones for the description of the variability.

In (16), the control point selection is done adding an L1 penalty on the momenta
to the energy Eθ and performing an adapted gradient descent called FISTA (see
(9)). The effect of this penalty is to zero out momenta of small magnitude and
to slightly decrease the magnitude of the other ones. A control point which does
not contribute to at least one of the template-to-observation deformations at the
convergence of the algorithm is called inactive. Note that since control points move
in the domain, inactive control points may become active during the optimization
process, and vice-versa.

This method suffers from three main limitations. First, the Laplace prior asso-
ciated to the L1 penalty does not generate sparse observations. Second, the method
keeps active control points that may contribute to only few template-to-observation
deformations. Lastly, L1 penalty implies a soft thresholding step on the momentum
vectors, thus reducing the norm of these vectors keeping the direction and therefore
the local curvature. As a consequence, important momenta for the description of
the variability will also be penalized. In the following, we propose to select control
points given their importance to describe the variability of the whole population,
and not of outliers. The idea is to inactivate a control point if the distribution of the
momenta attached to it is not strongly correlated with the momentum distribution
of other control points. Therefore our procedure selects control point positions and
their number, relevant with regards to the whole population.

This constraint on the momenta is taken into account in the model by assuming
that the geometric covariance matrix Γg is of the form Γg = Ag + εgId, where εg
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GEOMETRIC VARIABILITY

is a small positive real number and Ag is a sparse symmetric positive matrix. To
construct Ag, we modify the third update in Equation (27). Let cgk be one of the
control points. We compute the sum of the Frobenius norms of the sub-matrices
of the sufficient statistic s3 given by the stochastic approximation of the empirical
covariance of this control point with all others:

tk =

kg∑
j=1

‖s3(cgk, c
g
j )‖F , (28)

where s3(cgk, c
g
j ) is the d× d sub-matrix of s3 corresponding to the control points cgk

and cgj . Let us fix a positive threshold λ. The control point cgk is said active if:

tk ≥ λ . (29)

Let us denote A the set of all active points. Then, we define the sparse matrix
Ag as follows:

∀(k, j) ∈ {1, ...kg} Ag(c
g
k, c

g
j ) = s3(cgk, c

g
j )1ck∈A1cj∈A . (30)

By analogy with Equation (27), the matrix Γg is updated as follows:

Γg =
1

n+ ag
(Ag + agIddkg) , (31)

which also corresponds to introduce a specific prior on Γg.

This update is performed at each iteration of the estimation algorithm in the
M-step.

The threshold λ in our approach plays an equivalent role as the weight of the L1

penalty in the criterion optimized in (16). The larger, the sparser the solution.

In order to be self-adapted to the data, it could be a benefit to fix the threshold
λ as a ratio of the maximum correlations between control points instead of setting
a fixed value as in Equation (29). Thus, a control point cgk is now active if

tk ≥ λ max
1≤j≤kg

tj . (32)

Moreover, starting to threshold before the Markov chain reaches its stationarity can
lead to poor covering of the target distribution support. Therefore, in practice, we
start the threshold process after the burn-in period of the estimation algorithm.

To go one step further, we propose to automatically select an optimal threshold λ.
We consider a criterion based on two relevant quantities namely the data attachment
residual over the training images (denoted by A in Section 4.1.2) and the number of
active control points. Indeed, the larger the threshold, the larger the residual and
the lower the number of active control points. These quantities are computed for
different values of the threshold. These sequences are then normalized to 1. The
optimal threshold is chosen to be the point where the two normalized sequences
intersect.
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6 EXPERIMENTS

6 Experiments

6.1 Handwritten digit experiments

Our first experiments are run on the USPS handwritten digit database which is a
traditional benchmark for quantitative performance evaluation of template estima-
tion. Twenty images of each digit are used as the training sample which is presented
in Figure 1. This sample shows a large geometric and photometric variability. We
consider the model with random control points presented in Equation (10) as well
as its simplified version where the control points are fixed. The number of control
points is chosen equal to 4, 9 or 16 depending on the experiments. We infer the
atlas of each digit independently using our stochastic estimation algorithm for the
two models.

Figure 1: Training set of the USPS database (20 images per digit - inverse video)

We present the estimated templates obtained with both models and varying num-
ber of control points in Figure 2. The first row shows the template images estimated
with control points fixed. The second one provides the estimated templates together
with the estimated control point positions.

As expected, the contours in the template image become sharper in both cases
as the number of control points is increased. Moreover, the number of control
points being fixed, the sharpness of the estimated template is improved by allowing
the control points to move toward optimized positions. We can also note that the
estimated control points are informative as they tend to move toward the contours
of the digits, and in particular toward those that correspond to the regions of highest
variability among samples. It is particularly noticeable on digits 5 and 6 for example.

Note that we checked empirically the identifiability of the control point positions
by running several times the same experiment with different random initializations.

We evaluate the relevance of the estimated covariance matrix via the generation
of synthetic samples. In Figure 3, we compare the geometry captured with 9 control
points using fixed (top) and estimated (bottom) control point models. Although
the template of the digit 6 looks similar in both cases, this experiment shows that
the geometric variability captured by the model is rather different. The model with
equidistributed fixed control points generates unrealistic shape of the digit 6 and
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Figure 2: Estimated templates with varying numbers of control points: 4 (left), 9
(middle) and 16 (right), with either fixed (top) or estimated (bottom) control points
positions.

therefore does not reflect well the geometric variability observed in the training set.
Optimizing for control point positions enables to retrieve a much more natural ge-
ometric variability. This optimization increases the number of hidden variables to
sample, although the dimension of the covariance matrix remains the same, namely
dkg × dkg. Updates in control point positions optimize the sub-group of diffeomor-
phisms of fixed dimension that is the most adapted to describe the variability of a
given data set.

Figure 3: Synthetic samples from the generative model with either fixed (top) or
estimated (bottom) control point positions.

In Figure 4, we compare the geometry captured with 4 (top) and 9 (bottom)
estimated control points for digit 8. As shown in Figure 2, the contours of the
template image with only 4 control points is less sharp particularly in its upper part
as the one with 9 control points. For the 4 point model, there are only two close
control points in the lower part of the shape, whereas there are three of them spread
around the loop with 9 control points. These additional degrees of freedom make the
deformation model more flexible as highlighted in Figure 4. Not only the template
looks better with an increasing number of control points but the captured geometric
variability is also improved.

Nonetheless, one can notice that beyond a certain number of control points, the
improvement is less obvious (see Figure 2). This suggests that there may be an
intrinsic dimension of the deformation space that is optimal (neither too small nor
too redundant) for the description of the variability of a given data set. This is also
highlighted by the following classification experiment. To perform the classification,
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Figure 4: Synthetic samples from the generative model with estimated control point
positions. Top: 4, bottom: 9 control points.

we use the test set available in the USPS data base. It contains 2007 digit images.
The allocated class for a test image is calculated as follows: we approximate the
posterior distribution q(c|y; θc) of the class c given this image y using

q(c|y; θc) ' Cq(y|(α∗0)c, (c̄0)c, θc)q((α
∗
0)c|θc)q((c̄0)c|θc)q(θc) , (33)

where (c̄0)c is the estimated vector of control points for the class c and

(α∗0)c = argmax
α0

q(α0|y, (c̄0)c, θc) .

This approximation has already been used in (1).
Classification results are presented in Figure 5 for 4, 9, 16, 36 and 64 control

points using both fixed (blue) and random (red) control point models. The scale of
the Gaussian interpolation kernel Kg is fixed such that considering 36 control points
leads to one point every kernel scale.

With no control point, the model classifies according to the L2 similarity with
the grey level average image. This mean image, though very fuzzy, is still infor-
mative and leads to a classification score of about 85%. If the number of control
points is increased, the model incorporates deformations. The template images be-
come less fuzzy (see Figure 2), deformations explain part of the shape variability
in an interpretable way (see Figure 3) and the classification scores increase (see
Figure 5). Near the maximal classification score, models with estimated control
points perform better. As already noted, the slight increase in classification score
goes with a much more realistic and interpretable representation of the variability
(see Figure 3 and Figure 4). If the number of control points is drastically increased,
overall classification scores drop down, as we fall typically in an overfitting situation.
Allowing control point positions to be optimized further increases the dimension of
parameters. In this case, the deformation model becomes so flexible that it can
accommodate for any small differences in shapes, and does not generalize well.

The best performances are reached for in between numbers of control points. In
this region, estimating the positions of these control points allows to reach higher
classification scores. This confirms the idea of the existence of an intrinsic dimension
of the deformation space. How to find such dimension is the purpose of the sparse
extended model presented in Section 5 and experimented in Section 6.3.

6.2 Mouse mandible experiment

We consider a second training set composed of 36 X-ray scans of mouse mandibles.
Five of them are presented in Figure 6. The estimated template images resulting
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Figure 5: Evolution of the classification score for varying numbers of control points
either fixed (blue) or estimated (red).

from three different experiments are shown in Figure 7. The image on the left shows
the template estimated using 260 fixed equidistributed control points. The image
on the middle (resp. right) shows the estimated template using 117 (resp. 70)
estimated control points. These templates look similar, thus showing that the same
photometric invariants have been captured in each experiment. These invariants
include the main bones of the mandibles (i.e. the brightest areas in the image).
The decrease in number of control points is balanced by the optimization of their
optimal positions. Control points in the right image are noticeably located on the
edges of the shape in order to drive the dilation, contraction and opening of the
mandible. Depending on the desired precision of the atlas, we can reduce even more
the number of control points. This enables a faster estimation task at the cost of
providing less information about the data.

Figure 6: Five training images from the mouse mandibles.

6.3 Toward sparse representation

We test our estimation procedure for the sparse constrained model on a toy example
in order to exhibit the stability of the estimated geometry with respect to outliers.
We create a data set of 20 images which are composed of vertical translations and
vertical dilations of a given rectangle. An outlier image is then introduced into this
data base. This outlier has an excrescence on its left border (see Figure 8). We run
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6 EXPERIMENTS

Figure 7: Estimated templates of the mouse mandible images obtained with 260 fixed
control points (left), with 117 (middle) and 70 (right) estimated control points.

first our algorithm with the 20 regular training images. Then we run our algorithm
and the one proposed in (16) with these 20 images together with the outlier. The
three estimated templates with their respective optimized control point positions are
shown in Figure 9. The grey level differences are negligible. Runing our estimation
procedure for the training images with or without the outlier leads to very similar
estimate of the control point positions, thus showing the robustness of our estimate
with respect to outliers. Samples generated from both estimated models are pre-
sented in Figure 10. They show only vertical deformations up to the isotropy of
the Gaussian interpolation kernel. This confirms the ability of the threshold process
to limit the effect of the outlier in the data set. By contrast, the method proposed
in (16) run on the same data set including the outlier exhibits a very different result.
On the left border of the shape, two control points, with momentum magnitude of
the same order as the other ones, play an important role in this model although only
explaining the variability of the outlier.

Figure 8: Synthetic training sample: 10 examplars among the 20 regular base and
the outlier on the right end.

We run the estimation algorithm presented above with the extension described
in Section 5 and the threshold rule (32) on the USPS database presented above.
We conduct different experiments with different thresholds λ between 0.3 and 0.8
in order to see the evolution of the sparsity with respect to this parameter and also
to capture the most interesting one (depending on the training digit). The initial
number of control points is set to 16. The results of these experiments are presented
in Figure 11 and Figure 12.

As expected, increasing the threshold λ decreases the final number of selected
control points, whose effects on template sharpness and description of variability
have been presented in Figure 2, Figure 3 and Figure 4. Using the modified prior
given in Equation (31) to enforce sparsity allows to automatically select a subset of
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6 EXPERIMENTS

Figure 9: Estimated templates. Left: template estimated with the deterministic
gradient descent of (16) for the data set including the outlier. The colored arrows
represent the initial momenta for different subjects (in different colors) which are
given as output of the algorithm. Middle and right: templates estimated with the
stochastic algorithm for the 20 regular images (middle) and the 20 regular images
plus the outlier (right).

Figure 10: Estimated geometry: samples generated from the 20 regular image esti-
mated model (top) and from the 20 regular images plus the outlier estimated model
(bottom).
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control points leading to estimation results of the same accuracy (see Figure 11 and
Figure 12). Contrary to the L1 prior used in (16), our sparsity prior selects a small
number of control points without penalizing the magnitude of the momenta. Hence
the variability of the model is not under-estimated. In this respect, our thresholding
process has an effect which is closer to the expected L0 norm than its surrogate L1

norm.
Independently of the threshold λ, control points move in areas where the shape

is the most variable. This can be noticed in the loop of the digit 2 which is highly
variable, especially in contrast to the loop of the digit 6 which is much more stable
in shape across observations. This can be seen by a fastest decrease in number of
control points when the threshold λ is increased for the digit 6 compared to digit 2.
It is also interesting to notice how our model deals with a mixture of 2 that could
be written with or without a loop. Such variability violates the hypothesis of our
model, which assumes that observations derive from a diffeomorphic deformations of
the template image. In this situation, the model estimates a template image that is
fuzzy in the region of the loop: the non-diffeomorphic variability has been interpreted
as a photometric variation. To overcome this problem, one may investigate the use
of several template images in the atlas along the lines of (3).

Figure 11: Evolution of the estimated templates and of their number of active
control points with respect to the threshold parameter. From left to right: λ equals
to 0.3, 0.45, 0.6, 0.75 and 0.8.

The optimal threshold is chosen applying the criterion described in Section 5.
Figure 13 shows the estimated templates with their control points corresponding
to the optimal threshold. The number of control points reflects the variability of
the digits. In particular, very constrained shapes (see digits 1 and 9) require fewer
control points than very complex irregular forms (see digits 3 and 8). Note that
in most of the case (nine digits among ten) the selection criterion enables to select
thresholds between 50 and 60%.
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6 EXPERIMENTS

Figure 12: Synthetic samples of digit 2 from the generative model using the estimated
parameters for thresholds 0.3 (top), 0.6 (middle) and 0.8 (bottom).

Figure 13: Estimated templates with their optimal numbers and positions of control
points.
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7 Conclusion and perspectives

In this paper, we presented a generalization of the BME Template model where a
diffeomorphic constraint has been added on the deformations. Moreover, a finite
dimensional parametrization of these deformations via control points has been used
which enabled to include the positions of these points as parameters of the model.
The AMALA-SAEM algorithm appears to be particularly well suited to estimate
the parameters of such models, especially in comparison with the Gibbs-SAEM.
This opened up the possibility to root the usual atlas estimation using large diffeo-
morphic deformations into a rigorous statistical framework and to propose tractable
stochastic algorithm to estimate its parameters. The results on both handwritten
digits and mouse mandibles show the interest in such model. Moreover, the issue
of the optimal number of control points has been addressed including a selection
step to only keep the most informative points. We proposed an empirical criterion
to optimize the threshold leading to a model selection. This choice is usually done
by cross-validation which requires a large training data base and is computationally
costly.

A natural extension is to consider the mixture model introduced in (3) using the
same LDDMM formulation with estimated control points. This model can easily be
proposed, however, the difficulty stands in adapting the stochastic algorithm with
the AMALA sampler so that it remains tractable.

Another remark concerns the choice of a Gaussian distribution for the momenta.
In the linearized deformation model, this looks reasonable; indeed, in a flat manifold,
the mean of the deformation (and thus the equivalent of the momentum α) starting
from the ideal template to all the data should be close to 0. The global behaviors
can be well approximated by some Gaussian behavior. But as soon as you consider
large deformations, you are no longer in a flat manifold and the curvature has to be
taken into account. In this manifold, matching one point (the template) to two close
points (two different targets) will not necessarily imply that the two corresponding
momenta are close to each other. This leads up to think that the Gaussian model
should be changed to some other which will take the curvature of points (images)
into account.

Finally, looking at the analytical expression of the observed log likelihood, we
recognize the terms coming from the Gaussian distributions on the observations and
on the initial momenta as the two terms of a LDDMM registration energy (resp.
data attachment and L2 penalty terms). For this reason, it would be coherent with
this setting to use the metric Γg both into the penalty term and the definition
of the velocity field using interpolation matrix Kg. One further interest of this
generalization will be to include a correlation between these two matrices which is
not straightforward.
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