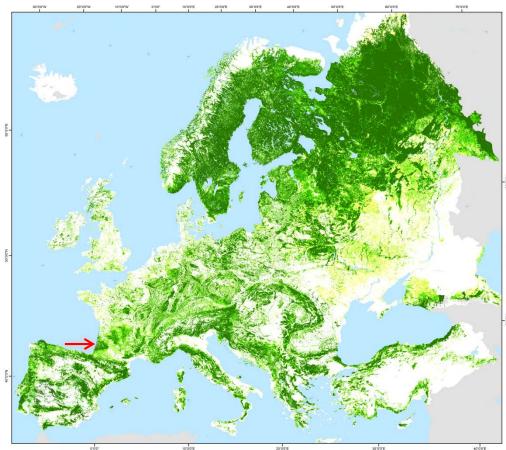
October 10th, 2014

IUFRO world congress 2014

Predicting the spore infection depending on climate to model the *Heterobasidion annosum* dynamics in evenaged *Pinus pinaster* stands: results from FORRISK Project


Céline Meredieu, Didier Bert, Xavier Capdevielle, Thierry Labbé, Gilles Saint-Jean, Raphaël Segura, Brigitte Lung-Escarmant INRA, UMR1202 BIOGECO, F-33610 Cestas, FRANCE Celine.Meredieu@pierroton.inra.fr

→South-Western France : maritime pine planted forest

FOREST MAP OF EUROPE (geographical Europe and Turkey) Proportion of forest from land area

ETRS89 Lambert Azimuthal Equal Area projection

Data sources Earth observation data:

Earth observation data: EU27, AL, BA, CH, HR, ME, MK, NO, RS, TR: Forestmon-forest map 2006 (beta version) developed by the EC Joint Research Cente, aggregated to item resolution. Based on IRS-P6 LISS-III, SPC74 (HVNR) and SPC15 HRG satellite data of 2006. Belarus, Moldova, Ukraine, Russian Federation: Forest thrane estimates based on MVHR NOA, satellite data of 1980-1998.

itatistical data. lational forest inventory statistics itate of Europe's Forests country statistics 2011

Method

Two offeners samb dearwaters products (Kempeneses et al. 2011, Peakemen et al. 2010; Charlos et al. 2010; Descent et al. 2011, Peakemen et al. 2010; Charlos et al. 2010; Descent et al. 2011, peakement al. 2010; Charlos et al. 2010; Descent et al. 2011, and/or regional level. This assilter based front cover data was fet and/or regional and/or feet invertory based to the cover data was fet and/or regional and/or feet invertory based for the cover data was federation regional statistics were utilized during the calibration, while for the determines statistics attending the Russian Federation (regional statistics were utilized during the calibration with the for the determines statistics attending the Russian Federation (were the statistics) of the statistics and the statistics international with the statistics of the comparation (between the countries).

www.efi.int/portal/Virtual_library/information_services mapping_services/forest_map_of_europe

Further details www.eff.int/po mapping_serv References

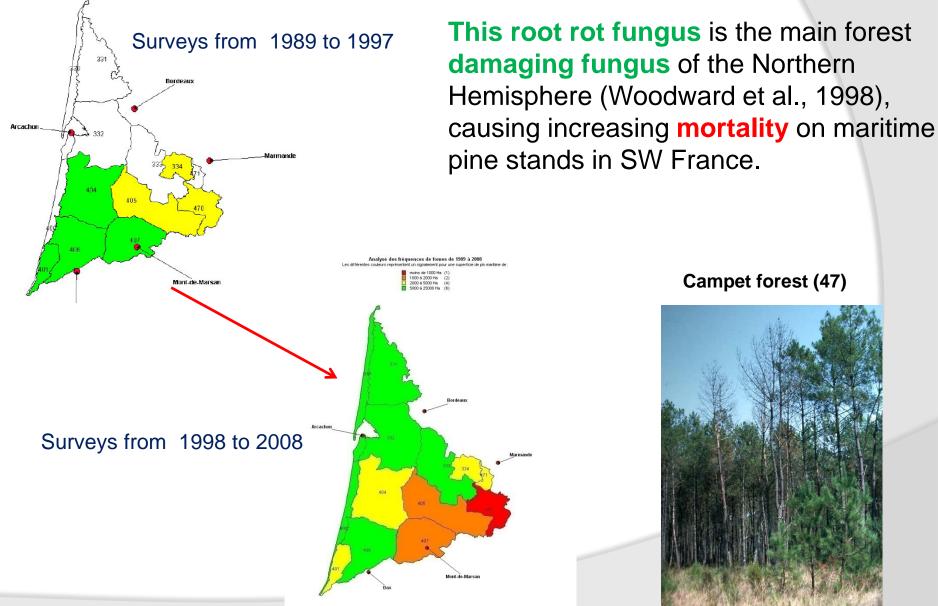
Kempeneers, P., Sedano, F., Seebach, L., Strobl, P., San-Miguel-Ayarz, J. 2011: Data fusion of different spatial resolution remote sensing images applied to forest type mapping, IEEE Transactions on Geoscience and Remote Sensing, in press.

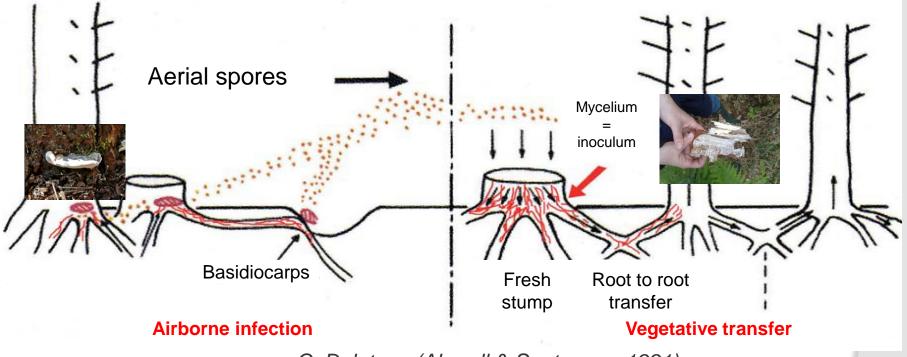
Päkvinen, R., Lehikoinen, M., Schuck, A., Härne, T., Väätäinen, S., Kennedy, P. and Folving, S. 2001. Combining Earth Observation Data and Forest Statistics. EFI Research Report 14. European Forest Institute and Joint Research Centre - European Commission.

Schuck, A., Van Brusselen, J., Palvinen, R., Harne, T., Kennedy, P. and Folving, S. 2002. Compilation of a calibrated European forest map derived from NOAA-AVHRR data. EFI Technical Report 13, European Forest Institute.

and the second second

opean Forest Institute / EC Joint Research Centre Sentember 2011




.02 10/10/2014

Introduction: Heterobasidion annosum

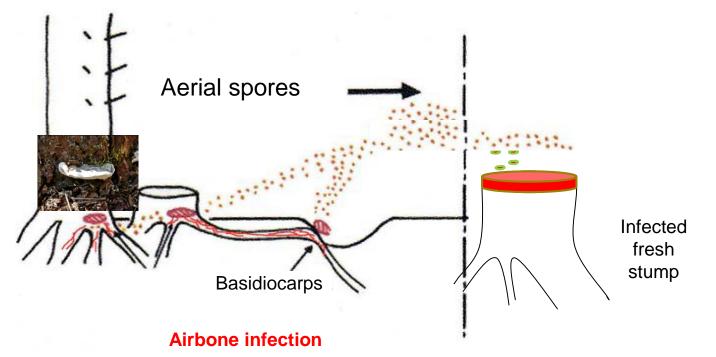
Introduction: Ecology and life cycle

C. Delatour, (Abgrall & Soutrenon, 1991)

 Perennial basidiocarps → Sexual spore emission→ Spore deposition on freshly thinning stumps → Colonization of stump roots → Vegetative transfer to healthy tree root via root-to-root contacts

Introduction:

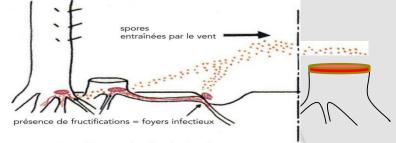
How to model the disease dynamics ?


The root fungus dynamics

- The pattern of spore deposition
- The stump and root colonization of thinning stumps
- The spread of fungus in roots of healthy tree

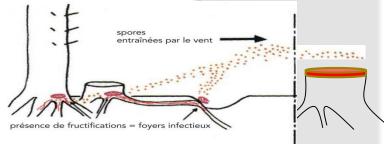
Image: Effect on trees

Disease effect on tree growth and survival


Model description: root fungus dynamics Air Born infection

Prediction of a fresh stump becoming infected by spores after thinning: Pinf

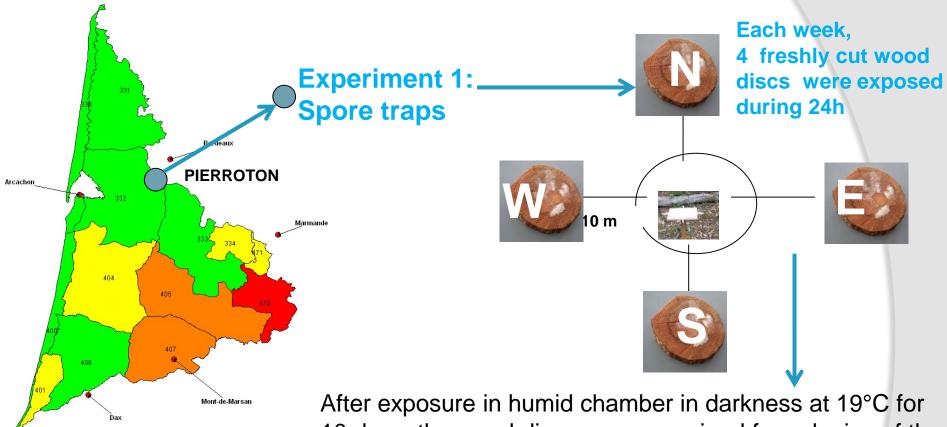
- Number of aerial spore per m² per season
- Percentage of infected stumps after a thinning


Range pattern of primary spread

Phase de dissémination

- International bibliography
 - Spores can travel hundred of kilometers
 BUT
 - The spore viability is weak at long distance
 - Effective spore dispersal is between 100 and 1 300 m.

Temporal pattern of primary spread


Phase de dissémination

International bibliography

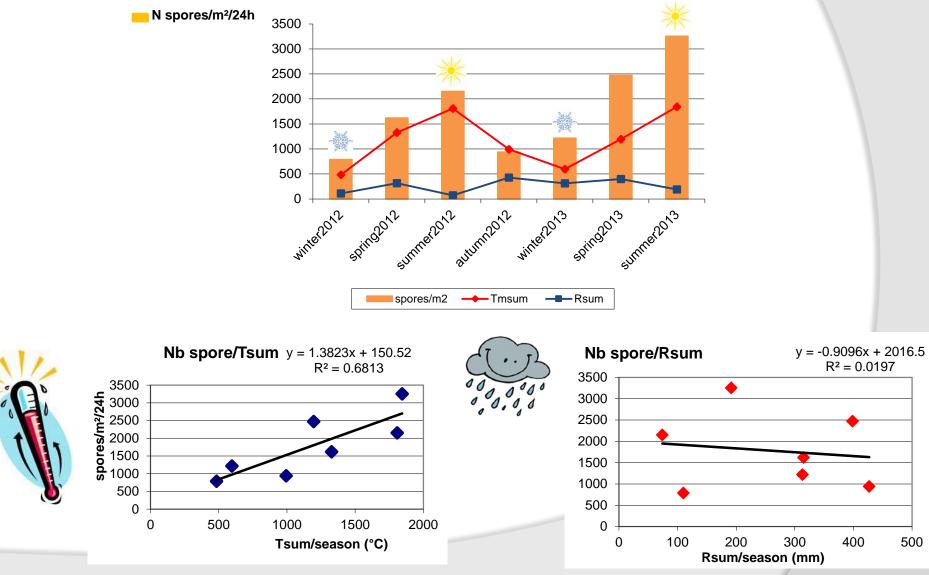
- Highly variable in the Northern hemisphere
- For Continental climates (Northern Europe) : Maximum probability of infection during summer and no infection during winter
- For Atlantic climate (United Kingdom) : Most of the year
- For Mediterranean climate : High level probability in winter and a significant lower level in summer

• Experimental results in South West France...

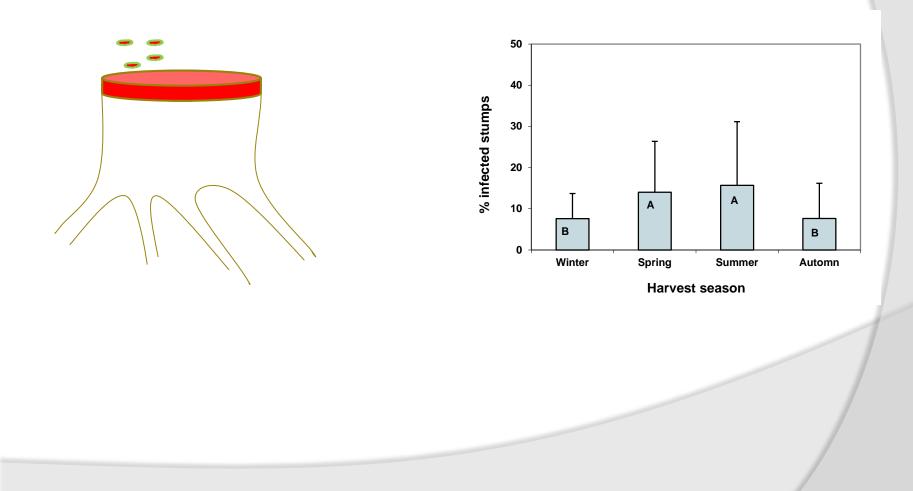
Monitoring the aerial spore deposition: wood-disk method

Experiment 2: Thinning stump disks

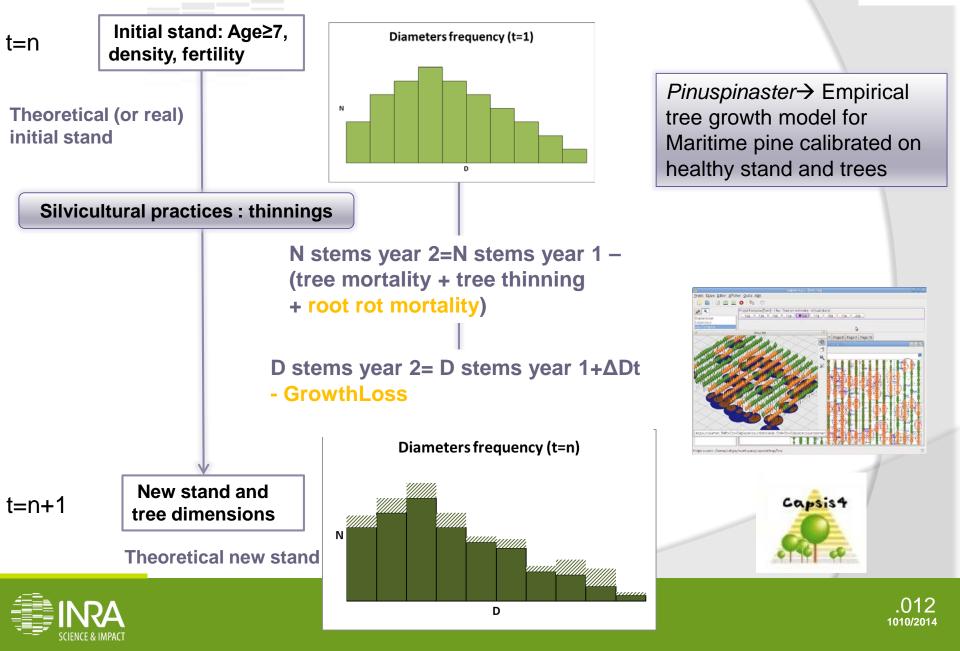
In 48 stands, harvest of 50 wood discs of stumps at different seasonal dates and in different soil types (12 stands/season/soil type) After exposure in humid chamber in darkness at 19°C for 10 days, the wood discs were examined for colonies of the imperfect stage of *H. annosum* (*Spiniger meineckellus*)


% of stumps infected by H. annosum

Nb spores/m²/24h (as the result of the germination of one aerial spore)


Experiment 1: Seasonal pattern of spore deposition - Results

Prediction of the probability of a fresh stump becoming infected by spores


Experiment 2: Infection of thinning stumps - Results

Actual infection probability = f(Season)

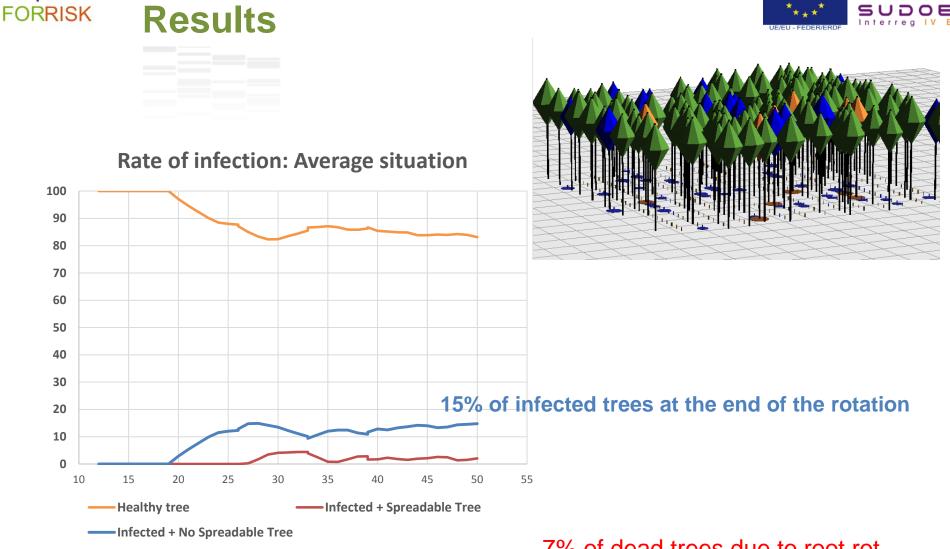
FORRISK Data integration into *Pinuspinaster*

Features for the user

Creation parameters			
From a normalized distrubution curve			
Random seed : 1			
Forest : F			
Compartment : 1			
Area (ha) : 1.0 Length (m) : 100.0	Depth (m) : 100.0		
Edge Aspect : Unknown 👻 Broadleaved hedgerow : 🕅			
(i) Simple	With modality choice		
Stems/ha : 1250	O Dune O Without treatment		
	 Light cultivation with 		
Site index (Hdom at age 40) : 21.0	 Light cultivation with 	🐺 Fompine Thinner	
Age : 12	 Dry Lande 	Clear cut :	
Site type : Unknown	🔘 Wet Lande 🔘 Sowing		
FomPine Module	🔘 Planting 🔘 L	selectionDbh0 : 20.0	
FomPine Module :	O L	Stumps	
Number of stumps / ha : 250 Min distance to other stumps and trees (m) : 1.5	0	Cut the trees at this given height (m) :	0.3
Stumps diameter mean (cm): 40.0 Standard deviation (cm): 5.0	Calibration values	probability of stump infection (0 -> 1) :	0.4
Probability of infected stumps : 0.4	Mean	Stump traitment after intervention :	NONE
Intact stumps	Stems/ha :		NONE
Stumps were treated		rate treatment failure (0 -> 1) :	0.0 NONE treated
Stumps were removed Rate of removed stumps : 1.0	Cg:		removed
Stumps were crushed	Hdom :		crushed
			Ok Cancel

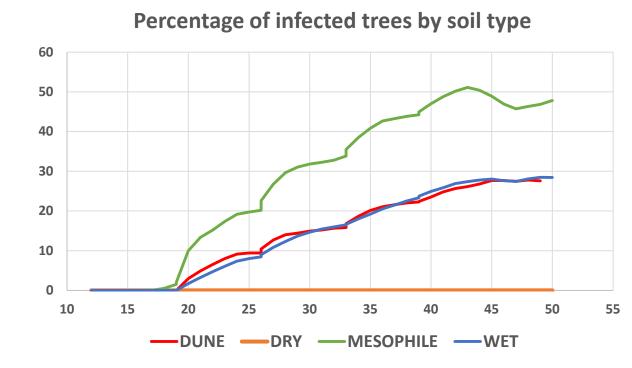
Parameter set

Model parameters	Available for South-West France	
Probability of infection	Yes, depending on precipitation/season	
Probability of colonization	Yes and variable (soil type)	
Spreading probability from stump to tree	Yes and variable (soil type)	
Spreading probability from tree to tree	Based on literature	
Growth rate of fungus in roots of stumps	Yes and variable (soil type)	
Max of growth rate in roots of stumps	Yes and variable (soil type)	
Growth rate in roots of living trees	Yes: one value	
Tree growth rate reduction parameter	Yes: one value	



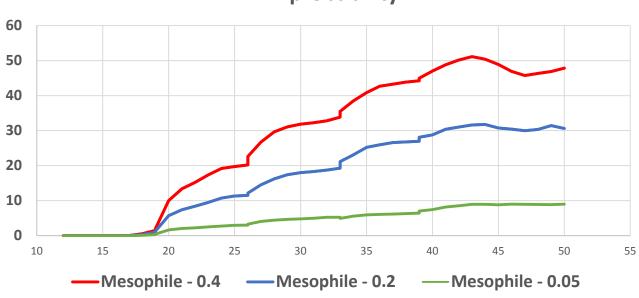
Silvicultural scenario of undamaged stand

- Initial stand: 1250 t/ha
- Initial age: 12 ans
- Site index: 23.5 m at 40 years-old
- 5 thinnings:
 - 13 y: 875 t/ha
 - 19 y: 650 t/ha
 - 26 y: 455 t/ha
 - 33 y: 320 t/ha
 - 39 y: 250 t/ha
- Target age: 50 years-old


7% of dead trees due to root rot => 9 m² of basal area

For different types of soil

	P colonization	Prob from Stump to Tree
Mesophylous	0.88	0.49
Dune	0.4	0.47
Wet	0.69	0.22
Dry	0.57	0.0



For mesophylous soil type : Impact of level of probability of infection at each thinning

Percentage of infected trees depending on Infection probability

	P Infection	Prob Colonization
Low	0.05	0.88
Average	0.2	0.88
High	0.4	0.88

For mesophylous soil type : Impact of growth rate in the roots of stump

-----0.99 cm/year

-0.35 cm/year

Percentage of infected trees dependning on
the growth rate in roots of stump

	Growth rate (cm/year)
Average	0.35
Max	0.99

- \rightarrow Results on spore pattern
 - \rightarrow All year long in Atlantic climate
 - → Depending on sum of temperature : so can increase with CC in autumn and winter and level of in summer ?
 - \rightarrow Important factor for the level of contamination
- Development of a model containing all the knowledge of root rot for Maritime pine forest
 - \rightarrow Possibility of simulations:
 - Optimize the management of contaminated stands Describe the management to prevent contamination

- → Validate this model through a network of plots especially to assess contamination from the previous rotation
- → Next steps: Add an economic component to the biological model to calculate if preventive or curative operations are cost effective

Thank you for your attention !

