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ABSTRACT 

Vulnerability is the degree to which human and 

environmental systems are likely to experience harm due to 

a perturbation or stress. Vulnerability assessment under 

climate change needs a huge amount of simulations. The set 

of simulations needed depends on the uncertainties 

hypothesis. In this study, we propose an approach for 

vulnerability assessment with different types of design of 

experiments. We build up model of these designs, to 

identify a common pattern seen as metamodel, which 

models can be conformed to. In order to build up dedicated 

distribution platform for vulnerability analysis, we use a 

Model Driven Engineering approach. 

INTRODUCTION 

Vulnerability is the degree to which human and 

environmental systems are likely to experience harm due to 

a perturbation or stress (Kasperson et al. 2005). It has 

become in recent years a central focus of the global change 

(including climate change) and sustainability science 

research communities (Füssel 2007). 

The purpose of vulnerability assessment is not only to 

determine which systems are the most vulnerable, but also 

to understand why they are so (Luers et al. 2003). This 

information is crucial in the process of determining 

strategies of adaptation to, or mitigation of the effects of 

change. In the context of climate change, this remains not 

enough studied (Easterling et al. 2007). 

The literature contains many definitions of vulnerability, 

going from the notion of sensitivity (Dowing and 

Patwardhan 2005) to more complex ideas, yet tacking into 

account the exposure history of the system (Turner et al. 

2003) up to residual impacts of climate change after 

adaptation (IPCC 2001). Due to the great number of 

sensitive parameters influencing climate change 

vulnerability, and because of the high level uncertainties in 

climate change impact studies (e.g. emission scenario, 

climate modelling, downscaling and initialization, and 

modelling of the impacts on a target system), vulnerability 

assessment (which is partly correlated to sensitivity 

analysis) will necessary need many simulations. Moreover, 

taking into account potential adaptations means more 

assumptions and more simulations. It is clear that a 

pertinent Design of Experiment (DOE) will be absolutely 

necessary to reduce the time required for simulations. Such 

an amount of simulations also needs high performance 

computing, at least for the distribution of simulations. In 

this context, our paper presents an approach for climate 

change vulnerability assessment with constrained DOE, 

using a model driven engineering approach. This work is 

meant as a preliminary step towards software framework to 

deal with the distribution of experimental designs under 

vulnerability constraint. 

In order to present our approach, we use ModVege (Jouven 

et al. 2006a), a mechanistic model for the dynamics of 

production, structure and digestibility of managed 

permanent pastures. This model has been retained to study 

the feasibility of our approach, because on the one hand, it 

is complex enough to reproduce climate variability impacts 

on a pasture (Jouven et al. 2006b) but on the other hand, it 

requires relatively few inputs and limited computational 

time. Our approach will then be applied to larger classical 

biogeochemical models typically used for this kind of 

studies (e.g. PaSiM, Graux et al. 2011). 

This work is the continuity of the model-driven, reverse-

engineering applied to design of experiment by Lardy et al. 

(2011). The remainder of the paper is structured as follows. 

The next section presents the ModVege model. The three 

following sections present the methodology used, with 

special focus on DOE and Model Driven Engineering 

(MDE). Then, we detail our vulnerability assessment 

methodology with a special spotlight on DOE and 

associated models. Our MDE approach is completed by the 

proposition of a metamodel of agro-ecological models with 

its associated DOE. This approach aims at proposing 

abstractions that will enable the distribution of experimental 

designs on high performance computing platforms. 

MODEL DESCRIPTION 

ModVege (Jouven et al. 2006a) is a multi-year, mechanistic 

model simulating the dynamics of production, structure and 



digestibility of managed permanent pastures. It is designed 

to respond to various defoliation regimes, based on five 

assumptions. Firstly, the average value of the biological 

attributes of vegetation (functional traits) can explain the 

functioning of a permanent pasture (Louault et al. 2005). 

Secondly, sward heterogeneity can be modelled by the 

relative abundance of the structural plant components 

(Carrère et al. 2002) (i.e. green leaves and sheath, dead 

leaves and sheath, green stems and flowers, and dead stems 

and flowers). Thirdly, like many grassland dynamic models 

(e.g. HPM, Thornley 1998), senescence, growth and 

abscission can be modelled by continuous fluxes, calculated 

on daily-time step. Fourthly, due to reserves storage and 

mobilization in plant organs, shoot growth, based on a 

light-utilization efficiency approach, is modulated by a 

seasonal pattern (e.g. Volenec et al. 1996). The latter is 

considered as a functional trait. The last assumption is that 

the quality of green compartment, abscission and 

senescence are influenced by compartment ageing. The 

model was evaluated for upland grasslands in the Auvergne 

region of France (Jouven et al. 2006b). 

DESIGN OF EXPERIMENTS 

Design of experiments (DOE) has a rich history, with many 

theoretical developments and practical applications in a 

variety of fields. Since the beginning of computer 

simulation, DOE has been an active research field 

(Kempthorne 1952; Amblard et al. 2003). In the modelling 

field, DOE is a needed tool for efficiently testing and 

analysing the behaviour of a model (Kleijnen 1987). Most 

of model simulations aim at exploring and/or testing the 

behaviour of the model. A parameter or an input is called a 

factor in the DOE terminology, it could be either qualitative 

or quantitative (Kleijnen et al. 2005). Each factor can take 

two or more values, called levels of factors. An 

experimental design is a combination of factor levels. 

Whatsoever for verification and validation or for the 

different models’ usage, a huge number of simulation runs 

are necessary. In particular, for environmental dynamics 

modelling, models have become increasingly more complex 

at the pace of computer power. Due to the high number of 

parameters required by the model and to the computation 

time of a single run, the needed time for a full factorial 

DOE is usually too expensive for a sequential machine. 

This implies that, first of all we use smart but less complete 

DOE and, on top of that, we have to use distributed 

computing. The use of a proper DOE will help to get, 

firstly, all the information we are looking for. For example, 

in the case of sensitivity analysis, the DOE is important to 

get relevant sensitivity to all parameters without neglecting 

their interactions. The second point is to have the smallest 

number of simulations for the best quality results, thus 

implying optimization of the total computation time. 

Computation time is then considerably reduced thanks to 

the distribution of processes on parallel architectures. 

SIMULATION WITH MODVEGE 

The ModVege model, initially developed in Python, has 

recently been re-implemented in Java for the purpose of 

integration into a modelling platform. As most field-scale 

management decisions are taken on daily basis, the model 

runs on daily-time step. 

To sum up, model inputs can be grouped into four classes 

(Figure 1): 

- Vegetation data, i.e. average functional traits of 

vegetation community (characteristics of 

functioning of the plant) and initial sward status 

(biomass and age of the four compartments), 

- Site properties, i.e. soil nutrition index and soil 

water-holding capacity, 

- Environment data (photosynthetically active 

radiation, air temperature, precipitations and 

potential evapotranspiration), 

- The management strategy, which is composed of 

a number of mowing events. 

Figure 1. UML metamodel of the ModVege input model 

Few outputs generally are used, either for direct use or for 

coupling with other models (e.g. animal model). The most 

used are the standing and the digestibility of the grass. 

Figure 2 provides an example of result on upland grassland 

in the Auvergne region of France. 

MODEL DRIVEN ENGINEERING 

Model Driven Engineering (MDE) is part of software 

engineering that studies, since more than a decade, software 

development, maintenance and evolution with a unifying 

modelling approach (Favre et al. 2006). The Model Driven 



Architecture (MDA) is a set of industry standard promoted 

by the Object Management Group (OMG). The separation 

between the descriptions of the platform independent 

system part (PIM, Platform Independent Model) and of the 

platform specific one (PSM Platform Specific Model) 

characterizes the MDA, whereas the MDE is a global 

integrative approach (Favre et al. 2006) for various 

technological spaces. MDE relies on three fundamental 

concepts: the “model”, the “metamodel” and the 

“transformation procedure”. 

A)

B) 

Figure 2. A) Standing biomass and B) digestibility of the 

grass on intensive permanent grassland at Marcenat, in the 

Auvergne region of France. 

A model is a simplified representation of a system. The 

system is an entity modelled in order to study it, to 

understand it, and to predict in a mastered context other 

than reality. The model could be defined by the relation “is 

a representation of” between itself and the studied system 

(Hill 1996; Atkinson and Kuhne 2003; Seidewitz and 

Technologies, 2003; Bézivin 2004). Nevertheless, in the 

MDE context, this definition is not sufficient because it 

does not allow the model to become “productive” (i.e. 

interpretable and exploitable by a machine). That is why 

many authors have preferred the following definition 

(Kleppe et al. 2003): “A model is a description of (part of) a 

system written in a well-defined language”, since it is more 

adapted to transformation procedures that enable models to 

become productive. 

The notion of well-defined language indirectly points to 

the second MDE principle, i.e. the “metamodel”. Different 

definitions can be found in the literature: “a metamodel is a 

model that defines the language for expressing a model” 

(OMG 2002); “a metamodel is a specification model for a 

class of SUS (System Under Study) where each SUS in the 

class is itself a valid model expressed in a certain modelling 

language” (Kleppe et al. 2003). Unlike to the popular 

opinion, a metamodel is not a model of model, since it is 

better defined as a model of modelling language. This 

definition is based on the following relation: a model “is 

conform to” a metamodel. For instance, in the context of 

Object-Oriented Programming, if we consider the object as 

a model of reality, then the class is a metamodel and the 

object “is conform to” its class. However, metamodels can 

have specific forms depending on the technical domain 

such as: 

� XML technologies: an XML file is conform to a 

Document Type Definition (DTD) or to an XML 

schema,  

� language theory and compilation: a source code is 

conform to its grammar, 

� in cartography, if our system is France, our model could 

be an IGN (French National Geographic Institute) map 

and its metamodel its legend: a map is conform to its 

legend, 

� Standard Template Library (STL): a vector<int> is 

conform to Vector<T> metamodel. 

MDE principles are relevant for all types of models, 

either object-oriented or not. MDE is not restrained to a 

technical domain. 

Nevertheless, to get a productive model, it is necessary 

to describe how to transform it. This aspect corresponds to 

the third MDE concept: “transformation of model”. Unlike 

the two other notions, there is no consensus for its 

definition (Rahim and Mansoor 2008; Lano and 

Clark 2008; Iacob et al. 2008). According to Favre (2004), 

the relation could be defined as “is transformed in”. As for 

the metamodel, the transformation can take different forms 

under the technical domain (Favre et al. 2006), for example: 

� eXtensible Stylesheet Language (XSLT) into XML 

language, 

� compilation and code generation for language theory

� Model to Model: Atlas Transformation Language 

(ATL) 
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The Model Driven Engineering approach is in our case a 

good way to tackle the problem of designing a framework 

dealing with many types of experimental design and 

different ways to assess vulnerability. 

VULNERABILITY ASSESSMENT METHODOLOGY 

A two-stage approach 

Climate change vulnerability literature is rich on 

definitions. For example, Füssel and Klein (2006) identified 

three categories of vulnerability definitions: 

- The “risk-hazard framework” definition. In this 

case, vulnerability is defined as response relation 

between an exogenous stress and its negative 

effects (Dowing and Patwardhan, 2003). This 

definition is rather similar to the sensitivity 

definition in the IPCC (2001). 

- The social constructivist model. Here, 

vulnerability is seen as the set of socio-economic 

causes explaining the difference between 

sensitivity and exposure. 

- The IPCC 2001 definition: “vulnerability is 

defined as the extent to which a natural or social 

system is susceptible to sustaining damage from 

climate change. Vulnerability is a function of the 

sensitivity of a system to changes in climate (the 

degree to which a system will respond to a given 

change in climate, including beneficial and 

harmful effects), adaptive capacity”. This 

definition is only centred on climate change, but 

could be easily extended: Vulnerability is the 

degree to which a human or environmental system 

is likely to experience harm before being damaged 

(Kasperon et al. 2003; Turner et al. 2003). 

A few indicators exist in the literature on vulnerability 

assessment. In this publication, we will narrow their 

use to what is proposed by Luers et al. (2003) in their 

method. This vulnerability evaluation is based on four 

concepts: the state of the system relatively to a damage 

threshold, its sensitivity, its exposure history, and its 

adaptation capacity. 

As we wish to evaluate different vulnerability 

assessments in a comparative fashion, depending on 

definitions, outputs of interest and tested hypotheses, 

we will need to be able to deal with vulnerability with 

or without adaptation. This is why we propose a two-

step approach (Figure 3): 

1. Firstly, a sensitivity analysis step, whose aim 

will be to estimate vulnerability without 

adaptation and to calculate response surfaces. 

A response surface is a model or 

approximation of this implicit Input/Output 

(I/O) function that characterizes the 

relationship between inputs and outputs in 

much simpler terms than the full simulation 

(Kleijnen et al. 2005). 

2. In the next step, we will try to minimize 

vulnerability under constraints of actual 

adaptation capacity. 

In the first stage, the approach will consist in building up a 

suitable experimental design for sensitivity analysis, then to 

achieve simulations thanks to the impact model. The 

analysis of the results will give us an estimation of 

vulnerability without adaptation (i.e. climate change 

potential impacts). It will also allow us to build up response 

surfaces (one per considered output). If the quality of the 

sensitivity analysis and the response surface is considered 

good enough, then we go throw the next step, otherwise we 

complete the experimental design for sensitivity analysis. 

Figure 3. Proposed approach for vulnerability assessment 

In the second stage, we start by a step of vulnerability 

minimization thanks to a metaheuristic applied on the 

previously calculated response surface, while taking into 

account the real adaptation capacity. Then, we build up an 

experimental design to evaluate the vulnerability minimum 

and its robustness. Robustness is defined, here, as the 

inverse of sensitivity to uncertainties (e.g. climate, 

management). A local sensitivity analysis, at the 

vulnerability minimum, should be suitable. Once performed 

these simulations, we evaluate the results and update the 

response surfaces thanks to these new simulations. If we 

consider that the vulnerability minimum found is suitable, 

then we can stop and we have obtained a vulnerability 

assessment taking into account adaptation; otherwise, we 

restart this stage by searching a new vulnerability 

minimum. 

The proposed approach is generic for all kinds of impact 

model. However, biogeochemical models used for climate 

change impact projections (for example, PaSim (Graux et 

al. 2011)) are usually time-consuming and require lots of 

inputs. That is why we previously explained that we will 

test and illustrate this approach with a “simpler and faster” 

model (i.e. the ModVege model (Jouven et al. 2006a,b)). 



This model, relatively simple (about 20 equations) and fast 

(in computing time), is thus suitable for the purpose of 

assessing our approach. 

Vulnerability assessment without adaptation 

Different approaches can be chosen, depending on what is 

taken into account for sensitivity analysis. For instance, we 

could suppose that all forcing parameters (like vegetation 

traits) and variables (as climate data) are known with 

enough accuracy. Otherwise, we could account for 

uncertainties of one or many model-forcing components. In 

fact, we could define a whole set of approaches depending 

on released degrees of freedom. All these approaches are 

summed up into Table 1. To illustrate the different 

approaches, we will consider a simple case: a permanent 

pasture with a well known climate (30 years of weather 

data) and a known (and similar in time) management. We 

will only consider possible uncertainties on climate and 

management. 

Table 1. Summary of design of experiments for vulnerability assessment 
Evaluation Description Design of Experiment 

“simple” The coefficient of variability gave us sensitivity of 

vulnerability assessment.  

No account for uncertainties. 

1 site × 

1 vegetation × 

1 Environment × 

1 Strategy of management 

“climate uncertainties” The coefficient of variability gave us sensitivity of 

vulnerability assessment.  

Climate uncertainties: correlation of years order is null or 

can be neglect in front of the appurtenance of one year to 

the considered period. 

1 site × 

1 vegetation × 

n2 Environments × Managements (Bootstrapping 

without replacement on couple Management x 

Environment Year) 

“uncertainties on 

climate extreme 

events frequency ” 

The sensitivity, in the vulnerability assessment with 

account for exposure (i.e. perturbations to which a system 

is exposed), is weighted by extreme events occurrence 

probabilities.  

Account for extreme events frequency uncertainties.

1 site × 

1 vegetation × 

n3 Environments × Managements, made of 30 

Management x Environment years with 

eventually extreme years repetitions 

“uncertainties on 

management” 

The sensitivity, in the vulnerability assessment with 

account for exposure, is weighted by deviation form 

reference management occurrence probabilities.  

Account for management uncertainties. 

1 site × 

1 vegetation × 

1 Environment × 

n4 Management strategies (composed of 30 

management years, similar to reference with 

eventually a “delta”) 

“uncertainties on 

management, climate 

and extreme events” 

The sensitivity, in the vulnerability assessment with 

account for exposure, is weighted by occurrences 

probabilities for deviation to reference management and 

extreme events. Account for management, climate and 

extreme events frequency uncertainties. 

1 site × 

1 vegetation × 

n5 Environments × Managements, composed of 

n5’ Strategies of management and n5" 

Environments 

“Simple” evaluation 

The first case consists in simply simulating the system over 

30 years. The coefficient of variability (CV) will be taken 

as measure of sensitivity, needed for vulnerability 

assessment. As every year is considered as equiprobable, 

CV will allow us to calculate vulnerability while also 

accounting for exposure to climate variability. This first 

approach does not account for any kind of uncertainties. 

The DOE model is simple (Figure 4), as each factor 

(element of the ModVege metamodel input) only appears 

once. This approach allows a “simple” evaluation of the 

climate change impacts and its associated vulnerability. 

Figure 4. Design of experiment model for “simple” 

evaluation of the vulnerability to climate change 

Evaluation with account for climatic uncertainties 

In this case, we consider that climatic years are 

representative of a period, and that correlation between 

realizations at year N and year N-1 are negligible compared 

to the correlation of theses years and their membership to 

the period. So, we could consider that the order of 

occurrence of individual years is random. This is without 

any consideration for the fact that atmospheric CO2

increases over year. We could generate them by 

bootstrapping (sampling without replacement, e.g. 

Efron 1993), thus keeping climate realizations paired with 

management practices. As before, coefficient of variability 

can be used to evaluate sensitivity in the vulnerability 

assessment. 

The resulting DOE (Figure 5) is, in this case, composed of 

fixed factors (Site and Vegetation) and of many 

Management strategies and Environments, which are 

composed of 30 realizations (without repetitions) of 

respectively Management Year and Environment Year. 

Due to the uniqueness of the constraint defined by the pair 

Management x Environment year, the latter has only 30 

occurrences. The interest of this design is that it only takes 

into account part of the climate uncertainties. 



Figure 5. DOE model for vulnerability assessment under 

climate change when accounting for climatic uncertainties 

Evaluation with climate extreme events frequency 

uncertainties 

Now, we suppose that in the initial climatic set, extreme 

events (EE) frequency could be higher than observed. So, 

we will simulate 30-year series, in which we will replace 

one or more years by an EE year. For the vulnerability 

assessment, it will be necessary to weigh up the relevance 

of the occurrence probability of extreme events in the 

climate series. For example, let’s suppose that the observed 

series contains one EE year, we could consider that the 

occurrence probability of the observed series is 50%, that 

the probability for the set of series with one more EE year 

(i.e. two EE years on 30 years) is 40%, and 9% and 1% for 

the series with two and three more EE years (i.e. three and 

four EE years on 30-year series, respectively). 

Figure 6. DOE model for vulnerability assessment under 

climate change when accounting for uncertainties on 

extreme climate event frequency 

The DOE (Figure 6) is made of two fixed elements: Site

and Vegetation. The main differences with the previous 

DOE (Figure 5) are the cardinalities of yearly realizations. 

Indeed, Management strategies and Environments are 

still composed of 30 years but some years can be repeated. 

In this DOE, we must differentiate “Normal” years from 

“Extreme” years, which can replace normal years. The 

interest of this DOE is that it accounts for uncertainties on 

EE frequency. 

Evaluation with account for management uncertainties 

Another possibility could be to consider that the 

management could have been slightly different (for 

example, mowing dates slightly altered). In this case, we 

will use an experimental design testing the gap between 

new and initial dates. Thus, the first cutting date of the first 

year can be moved one week earlier, whereas the first 

cutting date of the second year is three days later, and so 

on. For the vulnerability assessment, we can estimate 

vulnerability, while accounting for exposure, by 

considering that the gap of days follows a known 

distribution (Gaussian for example). The DOE (Figure 7) is 

this time made of three fixed components (Site, 

Vegetation, Environment) and a set of Management 

strategies, which are in turn made of 30 Management 

years in which we can distinguish years similar to 

observation (Base) and those with a modification (With 

delta). This vulnerability assessment DOE allows 

accounting for management uncertainties. 

Figure 7. DOE model for vulnerability assessment under 

climate change when accounting for management 

uncertainties 

Evaluation with uncertainties on management and 

climate (including climate extremes) 

To take into account all uncertainties and having a 

sensitivity evaluation, we could combine the three previous 

approaches. The main issue is the DOE size. A Latin 

Hypercube Design could be a suitable way to reduce the 

number of needed simulations (McKay et al. 1979). 

The aim of this DOE (Figure 8) is to account for the 

different uncertainties sources (only the most probable, we 

have excluded Site and Vegetation) and to bring a good a 

priori knowledge for the response surface and for 

vulnerability assessment. In this DOE, we find a 

combination of Management Strategy and Environment. 

These are made of 30 elements, possibly with repetitions. 



Figure 8. UML DOE Model for vulnerability assessment 

under climate change, accounting for uncertainties on 

management, climate including extreme events 

Evaluation of vulnerability minimum 

Once response surfaces will be fitted, a vulnerability 

minimum will be searched for. But, in fact, what we are 

really looking for is more a robust solution to reduce 

vulnerability than an optimal solution by a mathematically-

suited fit. Indeed, due to the high environment uncertainties 

level, an optimal solution could completely fail (Kleijnen et 

al. 2005). Robust solutions should be in fact satisfactory 

with respect to vulnerability. For example, a robust solution 

should provide high grassland yield with low sensitivity to 

environment (that is, high stability); it should have by the 

way low vulnerability. An example of robust design, 

inspired by Taguchi (1987) can be found in Sanchez et al. 

(1996) and Kleijen and Gaury (2003). The evaluation of the 

found vulnerability will have two aims: firstly, we have to 

check that we really found a minimum of vulnerability and, 

secondly, we need to perform sensitivity analysis to 

evaluate the robustness of the solution. Finally, the DOE 

needed for this step will be similar to the DOE previously 

described (Figure 8). 

METAMODEL OF IMPACT MODELS WITH 

ASSOCIATED DOE FOR VULNERABILITY 

ASSESSMENT 

Figure 9. UML metamodel of agro-ecological model 

Considering the DOE models we have previously proposed, 

we can identify a common pattern (Figure 9 and Figure 10). 

Indeed, all Agro-ecological models use a set of Inputs, in 

which we can distinguish two types. On one hand, the 

Decision inputs are those who help applying a management 

strategy impacting results, and which must be optimised in 

function of the study criteria. On the other hand, the 

Environment inputs only bring uncertainties. 

This distinction between these two types of inputs 

corresponds to Taguchi’s approach (Taguchi 1987). This 

classification is helpful to propose a metamodel in the MDE 

context (Bézivin 2005), which all agro-ecological model 

inputs would be conform to. We could also notice that there 

is a relationship linking the Inputs. This information is 

contained in the Constraint class, and it could also be 

specified mathematically: 

“Let fT : D � D’ be the characteristic function of a type of 
experimental design T, where D = D1xD2x…xDN is the 

domain of definition of the N inputs and 

D’ = D’1xD’2x…xD’N the target domain of the function fT. 
D’ contains the set of factor level combinations ranged by 

the experimental design T.”  

Figure 10. Instance diagram corresponding to a UML 

metamodel of DOE associated to an agro-ecological model. 

All DOE are compositions of Input instances, forming 

itself a set (class Input 1 x 2 x … x N).  

Moreover, all DOE are the instance composition of Inputs

(element 1, element 2 … element N). Those inputs can be 

combined (depending on the type of experimental design T) 

to create a set of inputs (Input 1 x 2 x … x N). All these 

inputs are constrained by instances of Constraint classes. 

They could be specified more accurately thanks to the OCL 

(“Object Constraint Language”, OMG 2010). OCL is a 

formal language to specify constraints between elements of 

UML graphs. The resulting cardinality (cardT) of the set of 

inputs is a direct function of the DOE type. For example, if 

the design is a full factorial design then: 

∏
=

=
N

i

iT cardcard
1

)(

Where cardi is the cardinality of input i instance definition 

domain; we could notice that, in this special case, fT is in 

fact the Identity function. If the design is a “One factor At a 

Time” (Kleijnen 1987), then: 
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All DOE are conform to that representation. 

All the examples of DOE we have presented are suitable for 

deterministic models. In the case of stochastic models, the 

approach will stay almost the same. A slight difference 

exists to add the replications of simulations in the DoE. It 

will also be necessary to account for noise into the response 

surface. Still in the case of stochastic DoE, it is interesting 

to specify the pseudo-random number generator in use and 

also to vary this generator among a set of reliable ones 

(Mersenne Twister series, WELLs and the latest MRGs 

from L’Ecuyer) (Hill 2010). The initialization and 

parallelization techniques of the random number generator 

do also have to be specified in high quality DOE.  

DISCUSSION AND POSSIBLE SOLUTIONS 

Vulnerability assessment is based on sensitivity analysis. 

Depending on the chosen definition, it can include the 

notion of exposure (by, for example, weighting years with 

extreme events). But it could also account for adaptations 

(limited by its real capacity). Identification and evaluation 

of adaptation options need a lot of simulations. In order to 

reduce this number (and mainly the computation time), we 

intend to use response surfaces instead of real simulations, 

for vulnerability minimum searching. Indeed, response 

surface can be used as model of simulations with a rather 

good accuracy and a faster computation time. Whatever the 

chosen definition and method, this requires a large number 

of simulations. Facing this issue, the choice of pertinent 

experimental designs appears as much critical as the 

simulation distribution question. Indeed, a suitable DOE 

will allow us to reduce the number of experiments as much 

as possible, whereas distribution to multiple computing 

platforms (i.e. clusters, grid, cloud computing) will reduce 

the waiting time to get all the results. We have already 

tackled the design of such software tools, which provide 

distributed computation and platform independent DOE 

(Amblard et al, 2003; Reuillon et al, 2008; Reuillon et al, 

2010). However, theses tools do not take into account 

vulnerability assessments, in their actual state. To adapt 

them, we will need metamodels of the agro-ecological 

model and of the associated design of experiment. 

CONCLUSION 

Many simulations are necessary to perform a vulnerability 

assessment. We have defined different designs depending 

on the uncertainty levels that we wish to account for. For 

each of these designs, we have proposed a model. The 

study of the obtained models enabled us to go one step 

further with the proposition of a metamodel of agro-

ecological models with their associated DOE. Each of the 

previously proposed models is conform to this metamodel. 

This work, following a reverse engineering experience 

(Lardy et al. 2011), can be seen as preliminary to build up a 

dedicated software framework for vulnerability assessment 

under climate change scenarios. This framework will tackle 

distribution of constrained experimental designs. We 

consider that a Model Driven Engineering approach will 

help us in the design and production of our future 

framework. The different models, according to the released 

degrees of freedom, and the associated metamodels 

presented in this paper enable establishing the first step 

towards the design of a generic tool for climate change 

vulnerability assessment. 
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