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Yeast Protein Interaction Network (PIN)

Figure: Yeast PIN. source: www.bordalierinstitute.com/images/yeastProteinInteractionNetwork.jpg
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Goal: Simple Representation of the Graph

Figure: Zachary’s karate club (Zachary 77)
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Models for Networks

Classical Models
Erdos-Renyi random graph (Erdos & Renyi 59);
Degree distribution (Milo & al 04);
Preferential Attachment (Barabasi & Albert 99);

Exponential Models
ERGM (Holland & Leinhardt 81).

→ Local structure induced by relative frequencies of motifs.

Mixture Model
Stochastic Block Model / MixNet (Holland & al 83, Fienberg & al
85, Snijders & Nowicki 97, Daudin & al 08)

→ Global structure induced by groups of similar nodes.
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MixNet Probabilistic Model (nodes)

Nodes heterogeneity
I The nodes are distributed among Q different classes (e.g.  ,N,�);

I Z = (Zi)i=1..n i.i.d. vectors Zi = (Zi1, . . . ,ZiQ) ∼ M(1,α) where
α = (α1, . . . , αQ) are the group proportions;

I Zi is not observed.

Example: (9 nodes, 3 classes)
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MixNet Probabilistic Model (edges)

Observations
I Edges values Xij where Xij ∈ R

s;
I Conditional on Z, the (Xij) are independent with distribution

Xij|{Ziq = 1,Zj` = 1} ∼ f (., θq`)

I θ = (θq`)q,`=1..Q is the connectivity parameter.

Example: 3 classes with Poisson-valued edges
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Flexibility of MixNet

Classical Distributions:
I fθ can be any probability distribution;

→ Bernoulli (interaction graph): presence/absence of an edge;
Xij|{Ziq = 1,Zj` = 1} ∼ B(πq`)

→ Poisson (PM) (count): in coauthorship networks, number of
copublished papers;

Xij|{Ziq = 1,Zj` = 1} ∼ P(λq`)

→ Poisson regression with homogeneous effects (PRMH) (counts
with covariates): in ecological networks;

Xij|{Ziq = 1,Zj` = 1} ∼ P(λq` exp{βᵀyij})
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(Log)-Likelihood of the Model

I Complete data likelihood

L(X,Z) = ln Pr(X,Z) = ln Pr(Z)P(X|Z)

=
∑

i

∑
q

Ziq lnαq +
∑
i<j

∑
q,l

ZiqZjl ln fθql(Xij)

I Observed data likelihood

L(X) = ln
∑

Z
expL(X,Z)

I Sum over Qn is untractable, use EM algorithm instead.
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∑
q

Ziq lnαq +
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i<j

∑
q,l

ZiqZjl ln fθql(Xij)

I Observed data likelihood

L(X) = ln
∑

Z
expL(X,Z)

I Sum over Qn is untractable, use EM algorithm instead.

But...
The random variables Xij are not independent;
The distribution Pr(.|X) of Z conditional on X is not a product
distribution;

→ Exact EM is not possible...
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Variational Inference: Pseudo Likelihood

If RX is a distribution over Z, let

J(RX) = L(X) − KL(RX,Pr(.|X))

For RX = Pr(.|X), J(RX) = L(X);
Variational approximation: replace complicated distribution
Pr(.|X) by a simple RX such that KL(RX,Pr(.|X)) is minimal to obtain
a tight lower bound of L(X).

J(RX) = L(X) − KL(RX,Pr(.|X))

= H(RX) + ERX[L(X,Z)]

where H(RX) is the entropy of RX.
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Variational Inference: Pseudo Likelihood (II)

Computing ERX[L(X,Z)] is easy, computing H(RX) is hard (in
general).
Restrict RX to a comfortable class of distributions:

RX[Z] =
∏

i

h(Zi; τi)

with h(.; τi) the multinomial with paramater τi = (τi1, . . . , τiQ).
Intuitively, τiq ' Pr(Ziq = 1|X).
For such RX,

J((τi)i=1..n) = −
∑

i

∑
q

τiq ln τiq +
∑

i

∑
q

τiq lnαq +
∑
i<j

τiqτj` ln fθq`(Xij)
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2 Steps Iterative Algorithm

Maximize pseudo-likelihood:

J((α, θ), (τi)i=1..n) = −
∑

i

∑
q

τiq ln τiq +
∑

i

∑
q

τiq lnαq +
∑
i<j

τiqτj` ln fθq` (Xij)

Step 1 Optimize J w.r.t. (τi):
→ Constraint:

∑
q τiq = 1 for all i;

→ τiq variational parameter found via a fixed point algorithm:

τ̃iq ∝ αq

∏
j,i

Q∏
`=1

fθq` (Xij)τ̃jl

Step 2 Optimize J w.r.t. (α, θ):
→ Constraint:

∑
q αq = 1

α̃q =
∑

i

τ̃iq/n

θ̃ql = arg max
θ

∑
i,j

τ̃iqτ̃jl log fθ(Xij)

→ Simple expression of θ̃ql for classical distributions (weighted MLE).
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Model Selection Criterion

BIC-like criterion to select the number of classes;

The likelihood can be split: L(X,Z|Q) = L(X|Z,Q) +L(Z|Q);

These terms can be penalized separately:

L(X|Z,Q) → penX|ZPQ log n(n − 1)

L(Z|Q) → penZ = (Q − 1) log(n)

ICL(Q) = max
θ
L(X, Z̃|θ,mQ) − 1

2

(
PQ log n(n − 1) − (Q − 1) log(n)

)
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MixNet Properties

Identifiability
Identifiablity of Parameters (Allman and al., 2009, 2011);

Model Selection criteria (Daudin and al., 2008, Latouche and al.,
2011)

Quality of Estimates
VEM algorithm converge to a different optimum than ML in the
general case (Gunawardana and Byrne (2005)), except for
degenerated models;

SBM are in a certain sense degenerated: Pr(.|X)→ δZ (ongoing
work of Celisse and Daudin, Mariadassou and Matias)
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Quality of the Estimates: Simulation Setup

→ Undirected graph with Q = 3 classes;

→ Poisson-valued edges;

→ n = 100, 500 vertices;

→ αq ∝ aq for a = 1, 0.5, 0.2;
a = 1: balanced classes;
a = 0.2: unbalanced classes (80.6%, 16.1%, 3.3%)

→ Connectivity matrix of the form

 λ γλ γλ

γλ λ γλ

γλ γλ λ

 for

γ = 0.1, 0.5, 0.9, 1.5 and λ = 2, 5.
γ = 1: all classes equivalent (same connectivity pattern);
γ , 1: classes are different;
λ: mean value of an edge;

→ 100 repeats for each setup.
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Quality of the Estimates: Results

Root Mean Square Error (RMSE) =
√

Bias2 + Variance
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Number of Classes

→ Undirected graph with Q? = 3 classes and Poisson edges;

→ n = 50, 100, 500, 1000 vertices;

→ αq = (57.1%, 28, 6%, 14, 3%);

→ Connectivity matrix of the form

 2 1 1
1 2 1
1 1 2


Q

n 2 3 4
50 82 17 1

100 7 90 3
500 0 100 0

1000 0 100 0

Table: Frequency of selected Q for various n.
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Fungi Trees Interactions

Dataset Parisitic behavior of 154 fungi on 51 trees;

Network Valued Network on trees: Xtt′ = number of fungis
infecting both t and t′.

Goal Identify groups of trees sharing similar interactions: is
similarity driven by evolution or geography ?

Poisson Model We assume
Xij|{Ziq = 1,Zj` = 1} ∼ P(λq`)

Covariate
Phylogenetic relatedness measured by genetic\taxonomic
distance;
Geographical relatedness measured by Jaccard distance;
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With no covariate (7 classes)
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Groups of Trees: No Covariate

T1 T2 T3 T4 T5 T6 T7

Conipherophyta
Magnoliophyta

0

4

8

12

Mean number
 of interactions

Group size and composition

Taxonomic rank: species ¡ genus ¡ family ¡ order ¡ class ¡ phylum;
Strong effect of taxonomic rank on the group composition;
Groups T1, T2, T3, T4 are even monofamily;
Need to account for taxonomic distance.
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Groups of Trees: No Covariate (II)

λ̂q` T1 T2 T3 T4 T5 T6 T7
T1 14.46 4.19 5.99 7.67 2.44 0.13 1.43
T2 4.19 14.13 0.68 2.79 4.84 0.53 1.54
T3 5.99 0.68 3.19 4.10 0.66 0.02 0.69
T4 7.67 2.79 4.10 7.42 2.57 0.04 1.05
T5 2.44 4.84 0.66 2.57 3.64 0.23 0.83
T6 0.13 0.53 0.02 0.04 0.23 0.04 0.06
T7 1.43 1.54 0.69 1.05 0.83 0.06 0.27
α̂q 7.8 7.8 13.7 13.7 15.7 19.6 21.6

T1, T2, T3, T4, T5: trees sharing lots of parasites;
T6, T7: Trees with sharing few parasites with any other.
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Groups of Trees: With Covariate

Model: Xij ∼ P(λqleβyij) with yij taxonomic distance

Q̂ = 4 classes;
β̂ = −0.317;

T’1 T’2 T’3 T’4
T1 0 0 0 4
T2 0 0 0 4
T3 2 5 0 0
T4 0 2 0 5
T5 0 2 0 6
T6 0 0 10 0
T7 7 2 2 0

λ̂q` T’1 T’2 T’3 T’4
T’1 0.75 2.46 0.40 3.77
T’2 2.46 4.30 0.52 8.77
T’3 0.40 0.52 0.080 1.05
T’4 3.77 8.77 1.05 14.22
α̂q 17.7 21.5 23.5 37.3
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Goodness of fit

Check predictive power of the model for

Weighted degree Single Edge Value

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

0 2 4 6 8 10 12 14
0

5

10

15

20

25

Ki =
∑

j,i Xij Xij
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Other covariates

Genetic distance: same effect than taxonomic distance;
Jaccard distance: no effect;

→ Main sources of similarity in trees parasitic assemblages are
evolutionary processes and not ecological processes.

Tree interaction network
Factor Covariate Q (PM) Q (PRMH) ∆ ICL
Phylogenetic Taxonomic Distance 7 4 116.0
relatedness Genetic distance 7 4 94.8
Geographical Jaccard distance 7 7 -8.6
overlap

Table: Effect of covariates. ∆ ICL = gain of switching from PM to PRMH.
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Summary

MixNet
Flexible probabilistic model to detect structure in complex valued
graphs;
Pseudo-likelihood estimators computed through variational EM
(consistency ?);
A statistical model selection criteria for the number of classes;
Package available at
http://pbil.univ-lyon1.fr/software/MixNet.

Host-Parasite Network
Similarity in parasitic assemblages of two trees explained by
phylogenetic relatedness, not geographical overlap.
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E. Coli Reaction Network

Reaction Network of E.Coli:
→ data from http://www.biocyc.org/,
→ n = 605 vertices (reactions) and 1 782 edges.
→ 2 reactions i and j are connected if the product of i is the substrate

of j (cofactors excluded),
→ V. Lacroix and M.-F. Sagot (INRIA - Hélix).

Question:
→ Interpretation of the connectivity structure of classes?

MixNet results:
→ ICL gives Q̂ = 21 classes,
→ Most classes correspond to pseudo-cliques,
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Biological interpretation of the groups I

Dot-plot representation
→ adjacency matrix (sorted)

Biological interpretation:
→ Groups 1 to 20 gather

reactions involving all the
same compound either as a
substrate or as a product,

→ A compound (chorismate,
pyruvate, ATP,etc) can be
associated to each group.

The structure of the metabolic
network is governed by the
compounds.
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Biological interpretation of the groups II

→ Classes 1 and 16 constitute s
single clique corresponding to
a single compound (pyruvate),

→ They are split into two classes
because they interact
differently with classes 7
(CO2) and 10 (AcetylCoA)

→ Connectivity matrix (sample):
q, l 1 7 10 16
1 1.0
7 .11 .65
10 .43 .67
16 1.0 .01 ε 1.0

Adjacency matrix (sample)
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