N

N

Uncovering latent structure in valued graphs: a
variational approach
Mahendra Mariadassou, Stephane S. Robin, Corinne C. Vacher

» To cite this version:

Mahendra Mariadassou, Stephane S. Robin, Corinne C. Vacher. Uncovering latent structure in valued
graphs: a variational approach. Probability and Discrete Mathematics in Mathematical Biology, May
2011, Singapore, Singapore. 47 diapos. hal-02802815

HAL Id: hal-02802815
https://hal.inrae.fr /hal-02802815
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.inrae.fr/hal-02802815
https://hal.archives-ouvertes.fr

Uncovering Latent Structure in Valued Graphs

M. Mariadassou
Joint work with S. Robin and C. Vacher

Laboratoire MIG (UR INRA), Jouy-en-Josas, France.

Singapore, IMS, 10 May 2011

Mariadassou (INRA) Uncovering Structure in Valued Graphs EVAR| 1/28



@ Introduction

@ MixNet: a Mixture Model for Random Graphs
e Parametric Estimation

e Simulation Study

e Ecological Network
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Yeast Protein Interaction Network (PIN)
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Figure: Yeast PIN. source: www.bordalierinstitute.com/images/yeastProteininteractionNetwork.jpg

Mariadassou (INRA) Uncovering Structure in Valued Graphs EVAR|

3/28



Goal: Simple Representation of the Graph

Figure: Zachary’s karate club (Zachary 77)
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Goal: Simple Representation of the Graph

Figure: Zachary’s karate club (Zachary 77)
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Models for Networks

Classical Models

@ Erdos-Renyi random graph (Erdos & Renyi 59);
@ Degree distribution (Milo & al 04);
@ Preferential Attachment (Barabasi & Albert 99);
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Models for Networks

Classical Models

@ Erdos-Renyi random graph (Erdos & Renyi 59);
@ Degree distribution (Milo & al 04);
@ Preferential Attachment (Barabasi & Albert 99);

Exponential Models

@ ERGM (Holland & Leinhardt 81).

— Local structure induced by relative frequencies of motifs.
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Models for Networks

Classical Models

@ Erdos-Renyi random graph (Erdos & Renyi 59);
@ Degree distribution (Milo & al 04);
@ Preferential Attachment (Barabasi & Albert 99);

Exponential Models

@ ERGM (Holland & Leinhardt 81).

— Local structure induced by relative frequencies of motifs.

v

Mixture Model

@ Stochastic Block Model / MixNet (Holland & al 83, Fienberg & al
85, Snijders & Nowicki 97, Daudin & al 08)

— Global structure induced by groups of similar nodes.

v
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MixNet Probabilistic Model (nodes)

Nodes heterogeneity

» The nodes are distributed among Q different classes (e.g. @,4,m);

> Z = (Z)i=1.n 1.1.d. vectors Z; = (Zy, ..., Zip) ~ M(1, @) where
a = (aq,...,ap) are the group proportions;

» Z; is not observed.
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MixNet Probabilistic Model (nodes)

Nodes heterogeneity
» The nodes are distributed among Q different classes (e.9. @,4,m);

> Z = (Z)i=1.n 1.1.d. vectors Z; = (Zy, ..., Zip) ~ M(1, @) where
a = (aq,...,ap) are the group proportions;

» Z; is not observed.

Example: (9 nodes, 3 classes)

N ®
[ o P(@)=0.25
[ P(m)=0.25
A P(A)=0.5
A, A
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MixNet Probabilistic Model (edges)

» Edges values X;; where X;; € R®;
» Conditional on Z, the (X;;) are independent with distribution

XiillZiyg = 1,Zj¢e = 1} ~ f(., 04¢)

> 0 = (040)4.0-1.0 IS the connectivity parameter.
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MixNet Probabilistic Model (edges)

» Edges values X;; where X;; € R,
» Conditional on Z, the (X;) are independent with distribution

XiillZiyg = 1,Zj¢e = 1} ~ f(., 04¢)

> 0 = (040)4,0-1.0 is the connectivity parameter.

.

Example: 3 classes with Poisson-valued edges

AO® B
A|0090.25

® . 1 05

.. 1

v
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Flexibility of MixNet

Classical Distributions:
» fy can be any probability distribution;

— Bernoulli (interaction graph): presence/absence of an edge;
XijllZig = 1,Zj¢ = 1} ~ B(mge)

— Poisson (PM) (count): in coauthorship networks, number of
copublished papers;
XiillZig = 1,Zjp = 1} ~ P(A4¢)

— Poisson regression with homogeneous effects (PRMH) (counts
with covariates): in ecological networks;
XiiliZiq = 1, Zj¢ = 1} ~ P(Agc expiBTy;s})
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(Log)-Likelihood of the Model

» Complete data likelihood

L£X,Z) = InPr(X,Z) = InPy(Z)P(X|Z)

Z Z Ziglna, + Z Z ZigZji Info,,(Xij)

i<j gl

» Observed data likelihood

LX) =1n Z exp L(X, Z)

z

» Sum over Q" is untractable, use EM algorithm instead.
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(Log)-Likelihood of the Model

» Complete data likelihood

LX,Z) = Z Z Zignag+ > > ZigZyIn fo, (Xy)

i<j gl

» Observed data likelihood

LX) =1n Z exp L(X, Z)

z

» Sum over Q" is untractable, use EM algorithm instead.

But...
@ The random variables X;; are not independent;

@ The distribution Pr(.|X) of Z conditional on X is not a product
distribution;

— Exact EM is not possible...
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Variational Inference: Pseudo Likelihood

o If Rx is a distribution over Z, let
JRx) = L(X) — KL(Rx, Pr(.[X))
@ For Rx = Pr(.[X), T(Rx) = L(X);
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Variational Inference: Pseudo Likelihood

o If Rx is a distribution over Z, let
JRx) = L(X) — KL(Rx, Pr(.[X))

@ For Rx = Pr(.[X), T(Rx) = L(X);

@ Variational approximation: replace complicated distribution
Pr(.|X) by a simple Rx such that KL(Rx, Pr(.|X)) is minimal to obtain
a tight lower bound of £L(X).
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Variational Inference: Pseudo Likelihood

o If Rx is a distribution over Z, let
JRx) = L(X) — KL(Rx, Pr(.[X))

@ For Rx = Pr(.IX), J(Rx) = L(X);

@ Variational approximation: replace complicated distribution
Pr(.|X) by a simple Rx such that KL(Rx, Pr(.|X)) is minimal to obtain
a tight lower bound of £L(X).

JRx)

L(X) - KL(Rx, Pr(.X))
H(Rx) + Ery[LX, Z)]

where H(Rx) is the entropy of Rx.
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Variational Inference: Pseudo Likelihood (lI)

@ Computing Eg[L(X, Z)] is easy, computing H(Rx) is hard (in
general).
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Variational Inference: Pseudo Likelihood (lI)

@ Computing Eg[L(X, Z)] is easy, computing H(Rx) is hard (in
general).
@ Restrict Rx to a comfortable class of distributions:

Rx[Z] = | | nzis7)

with A(.; 7;) the multinomial with paramater 7; = (t;1, ..., Tig).
Intuitively, 7;, = Pr(Z;, = 11X).
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Variational Inference: Pseudo Likelihood (lI)

@ Computing Eg[L(X, Z)] is easy, computing H(Rx) is hard (in
general).
@ Restrict Rx to a comfortable class of distributions:

Rx[Z] = | | nzis7)

with A(.; 7;) the multinomial with paramater 7; = (t;1, ..., Tig).
Intuitively, 7;, = Pr(Z;, = 11X).
@ For such Ry,

J(@imi) == Y > Tightig+ " > mignag + » TigTie Infa, (X))
i q i q

i<j
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2 Steps lterative Algorithm

@ Maximize pseudo-likelihood:

TU@,0), @imtn) == D > TignTig + > 3 Tignag + 3 TigTie Infy, (Xi)
i q i q

i<j
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2 Steps lterative Algorithm

@ Maximize pseudo-likelihood:

J(@,0),(t)ie1.,) = Z Z TigIn Ty, + Z Z Tignag + )" iy Infy, (X;)

i<j

@ Step 1 Optimize J w.r.t. (1)):
— Constraint: 3, 7;, = 1 for all i;
— T variational parameter found via a fixed point algorithm:

q %@ 1_[ l_[fgql(xl]) !

J#Ei =1
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2 Steps lterative Algorithm

@ Maximize pseudo-likelihood:

J(@,0),(T)i=1.2) = Z Z Tig In Tig t Z Z Tig In @, + Z TigTjt lnf‘qu(Xy)

i<j

@ Step 1 Optimize J w.r.t. (1)):
— Constraint: 3, 7;, = 1 for all i;
— T variational parameter found via a fixed point algorithm:

ey | ]_[feqf(xy) 2

J#EL =1

@ Step 2 Optimize J w.r.t. (a,6):
— Gonstraint: ¥, a, =1
(Y Z ‘T'iq/n
Gy = argmax ) 7Ty logfy(X;)
ij
— Simple expression of §,, for classical distributions (weighted MLE).

S
ES)
Il
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Model Selection Criterion

@ BIC-like criterion to select the number of classes;
@ The likelihood can be split: L(X,Z|Q) = L(X|Z, Q) + L(Z|0);

@ These terms can be penalized separately:

L(ZIQ) — pengz =(Q-1)logn)
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Model Selection Criterion

@ BIC-like criterion to select the number of classes;
@ The likelihood can be split: L(X,Z|Q) = L(X|Z, Q) + L(Z|0);

@ These terms can be penalized separately:

L(ZIQ) — pengz =(Q-1)logn)

ICL(Q) = mng(X, 216, mg) - 3 (Pglogn(n - 1) - (Q — 1) log(n))
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MixNet Properties

Identifiability

@ I|dentifiablity of Parameters (Allman and al., 2009, 2011);

@ Model Selection criteria (Daudin and al., 2008, Latouche and al.,
2011)
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MixNet Properties

Identifiability

@ I|dentifiablity of Parameters (Allman and al., 2009, 2011);

@ Model Selection criteria (Daudin and al., 2008, Latouche and al.,
2011)

Quality of Estimates

@ VEM algorithm converge to a different optimum than ML in the
general case (Gunawardana and Byrne (2005)), except for
degenerated models;

@ SBM are in a certain sense degenerated: Pr(.[X) — dz (ongoing
work of Celisse and Daudin, Mariadassou and Matias)
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Quality of the Estimates: Simulation Setup

— Undirected graph with Q = 3 classes;
— Poisson-valued edges;

— n = 100, 500 vertices;

— agoualfora=1, 0.5, 0.2;
@ a = 1: balanced classes;
@ a =0.2: unbalanced classes (80.6%, 16.1%, 3.3%)

A vyl yad
— Connectivity matrix of the form[ yl A vyl ]for
yd yd A
vy=0.1, 05,09, 1.5and 1 =2, 5.
o y = 1: all classes equivalent (same connectivity pattern);
o vy # 1: classes are different;
e A: mean value of an edge;

— 100 repeats for each setup.
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Quality of the Estimates: Results

@ Root Mean Square Error (RMSE) = VBias? + Variance
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Quality of the Estimates: Results

@ Root Mean Square Error (RMSE) = VBias? + Variance
RMSE for the «, RMSE for the 1,

025
02 02 .
015 05 015
01 01 01
ol B A oo 005

PR T PR E— T

AN e ; J
x-axis: ay, @, 3 x-axis: A11, 22, 433, A12, 413, A23
Top: n = 100, Bottom: n = 500
Leftto right: a = 1, 0.5, 0.2
Solid line: A =5, dashed line: 1 =2
Symbols depend on y: o = 0.1, v=0.5, A= 0.9, * = 1.5
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Number of Classes

— Undirected graph with 0* = 3 classes and Poisson edges;
— n =50, 100, 500, 1000 vertices;
— g = (57.1%,28,6%, 14,3%);

— Connectivity matrix of the form [

—_ = N
i\ Bl
N = =
~——

Q
n 2 3 4
50 |82 17 1
100 | 7 90 3
500 | O 100 O
1000 | O 100 O

Table: Frequency of selected Q for various n.
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Fungi Trees Interactions

@ Dataset Parisitic behavior of 154 fungi on 51 trees;

@ Network Valued Network on trees: X;» = number of fungis
infecting both  and 7.

@ Goal Identify groups of trees sharing similar interactions: is
similarity driven by evolution or geography ?
@ Poisson Model We assume
XiillZig = 1,Zjp = 1} ~ P(A4¢)

@ Covariate

o Phylogenetic relatedness measured by genetic\taxonomic
distance;
o Geographical relatedness measured by Jaccard distance;
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With no covariate (7 classes)

0 5 10 15 20 25 30 35 40 45 50
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Groups of Trees: No Covariate

12 Group size and composition

O Conipherophyta
B Magnoliophyta

Mean nunber

4 o— of interal ons |
'\/
0

T1 T2 T3 T4 T5 T6 T7

@ Taxonomic rank: species j genus j family j order j class j phylum;
@ Strong effect of taxonomic rank on the group composition;
@ Groups T1, T2, T3, T4 are even monofamily;
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Groups of Trees: No Covariate

12 Group size and composition

O Conipherophyta
B Magnoliophyta

Mean nunber

4 o— of interal ons |
'\/
O —

T1 T2 T3 T4 T5 T6 T7

@ Taxonomic rank: species j genus j family j order j class j phylum;
@ Strong effect of taxonomic rank on the group composition;

@ Groups T1, T2, T3, T4 are even monofamily;

@ Need to account for taxonomic distance.
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Groups of Trees: No Covariate (ll)

Age | T T2 3 T4 T5 T6 17
T1 1446 419 599 767 244 013 1.43
T2 | 419 1413 0.68 279 484 053 1.54
T3 | 599 0.68 3.19 4.10 0.66 0.02 0.69
T4 | 767 279 410 7.42 257 0.04 1.05
T5 | 244 484 0.66 257 3.64 0.23 0.83
T6 | 0.13 053 0.02 0.04 0.23 0.04 0.06
T7 | 143 154 0.69 1.05 083 0.06 0.27
ay, ‘ 7.8 78 13.7 13.7 157 19.6 21.6

e T1, T2, T3, T4, T5: trees sharing lots of parasites;
@ T6, T7: Trees with sharing few parasites with any other.
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Groups of Trees: With Covariate

Model: X;; ~ P(1,€”7) with y; taxonomic distance

@ O =4classes;
o B =-0.317;
™ T2 T3 T4

T1 0 0 0 4
T2 | 0 0 0 4
T3 | 2 5 0 0
T4 | O 2 0 5
T5| 0 2 0 6
T6 | O 0 10 O
T7 | 7 2 2 0
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Groups of Trees: With Covariate

Model: X;; ~ P(1,€”7) with y; taxonomic distance

Group size and composition

O Conipherophyta

o Q _ 4 Classes; 15 B Magnoliophyta
e B=-0317; 10
5 _—O—_
™ T2 T3 T4
$; 8 8 8 j ’ T1 T2 T3 T4
E g g 8 g T.| T1 T2 T3 T4
T5 0 5 0 6 T1 1075 246 0.40 3.77
T6 0 0 10 0 T2 | 246 4.30 0.52 8.77
71 7 5 > 0 T3 | 040 052 0.080 1.05
T4 | 3.77 877 1.05 14.22

@, [ 177 215 235 373
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Goodness of fit

Check predictive power of the model for

Weighted degree Single Edge Value

2001
150
100

50

0 20 40 60 80 100 120 140 160 180

K; = Zj;eiXij
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Other covariates

@ Genetic distance: same effect than taxonomic distance;
@ Jaccard distance: no effect;

— Main sources of similarity in trees parasitic assemblages are
evolutionary processes and not ecological processes.
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Other covariates

@ Genetic distance: same effect than taxonomic distance;
@ Jaccard distance: no effect;

— Main sources of similarity in trees parasitic assemblages are
evolutionary processes and not ecological processes.

Tree interaction network
Factor Covariate Q (PM) | Q (PRMH) | AICL
Phylogenetic | Taxonomic Distance 7 4 116.0
relatedness Genetic distance 7 4 94.8
Geographical | Jaccard distance 7 7 -8.6
overlap

Table: Effect of covariates. A ICL = gain of switching from PM to PRMH.
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Summary

@ Flexible probabilistic model to detect structure in complex valued
graphs;

@ Pseudo-likelihood estimators computed through variational EM
(consistency ?);

@ A statistical model selection criteria for the number of classes;

@ Package available at
http://pbil.univ-1lyonl.fr/software/MixNet.
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@ Flexible probabilistic model to detect structure in complex valued
graphs;

@ Pseudo-likelihood estimators computed through variational EM
(consistency ?);

@ A statistical model selection criteria for the number of classes;

@ Package available at
http://pbil.univ-1lyonl.fr/software/MixNet.

o

Host-Parasite Network

@ Similarity in parasitic assemblages of two trees explained by
phylogenetic relatedness, not geographical overlap.
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E. Coli Reaction Network

@ Reaction Network of E.Coli:

— data from http://www.biocyc.org/,

— n = 605 vertices (reactions) and 1 782 edges.

— 2 reactions i and j are connected if the product of i is the substrate
of j (cofactors excluded),

— V. Lacroix and M.-F. Sagot (INRIA - Hélix).

@ Question:
— Interpretation of the connectivity structure of classes?

@ MixNet results:

— ICL gives Q =21 classes,
— Most classes correspond to pseudo-cliques,

Mariadassou (INRA) Uncovering Structure in Valued Graphs EVAR| 26/28



Biological interpretation of the groups |

@ Dot-plot representation
— adjacency matrix (sorted)
@ Biological interpretation:
— Groups 1 to 20 gather

reactions involving all the aoofIIH 1] 14| |4

same compound either as a i

substrate or as a product, soo il |11
— A compound (chorismate,

pyruvate, ATP,etc) can be

associated to each group.
@ The structure of the metabolic

network is governed by the B 1,
compounds.
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Biological interpretation of the groups Il

— Classes 1 and 16 constitute s
single clique corresponding to [%
a single compound (pyruvate), i

— They are split into two classes
because they interact N
differently with classes 7 ; H
(CO2) and 10 (AcetylCoA) e T

— Connectivity matrix (sample): : =

gl 1 7 10 16 i g
110 [ smEEEEES =
7 1.11 .65 ' }
10 | 43 .67

16 | 1.0 1.0

g

g
Sy

Adjacency matrix (sample)
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