

Uncovering latent structure in valued graphs: a variational approach

Mahendra Mariadassou, Stephane S. Robin, Corinne C. Vacher

▶ To cite this version:

Mahendra Mariadassou, Stephane S. Robin, Corinne C. Vacher. Uncovering latent structure in valued graphs: a variational approach. Probability and Discrete Mathematics in Mathematical Biology, May 2011, Singapore, Singapore. 47 diapos. hal-02802815

HAL Id: hal-02802815 https://hal.inrae.fr/hal-02802815

Submitted on 5 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Uncovering Latent Structure in Valued Graphs

M. Mariadassou Joint work with S. Robin and C. Vacher

Laboratoire MIG (UR INRA), Jouy-en-Josas, France.

Singapore, IMS, 10 May 2011

Introduction

- 2 MixNet: a Mixture Model for Random Graphs
- 3 Parametric Estimation
- Simulation Study
- 5 Ecological Network

Yeast Protein Interaction Network (PIN)

Figure: Yeast PIN. source: www.bordalierinstitute.com/images/yeastProteinInteractionNetwork.jpg

Mariadassou (INRA)

Goal: Simple Representation of the Graph

Figure: Zachary's karate club (Zachary 77)

Mariadassou (INRA)

Goal: Simple Representation of the Graph

Figure: Zachary's karate club (Zachary 77)

Mariadassou (INRA)

Models for Networks

Classical Models

- Erdos-Renyi random graph (Erdos & Renyi 59);
- Degree distribution (Milo & al 04);
- Preferential Attachment (Barabasi & Albert 99);

Exponential Models

- ERGM (Holland & Leinhardt 81).
- \rightarrow Local structure induced by relative frequencies of motifs.

Mixture Model

- Stochastic Block Model / MixNet (Holland & al 83, Fienberg & al 85, Snijders & Nowicki 97, Daudin & al 08)
- \rightarrow Global structure induced by groups of similar nodes.

Models for Networks

Classical Models

- Erdos-Renyi random graph (Erdos & Renyi 59);
- Degree distribution (Milo & al 04);
- Preferential Attachment (Barabasi & Albert 99);

Exponential Models

- ERGM (Holland & Leinhardt 81).
- \rightarrow Local structure induced by relative frequencies of motifs.

Mixture Model

- Stochastic Block Model / MixNet (Holland & al 83, Fienberg & al 85, Snijders & Nowicki 97, Daudin & al 08)
- \rightarrow Global structure induced by groups of similar nodes.

Models for Networks

Classical Models

- Erdos-Renyi random graph (Erdos & Renyi 59);
- Degree distribution (Milo & al 04);
- Preferential Attachment (Barabasi & Albert 99);

Exponential Models

- ERGM (Holland & Leinhardt 81).
- \rightarrow Local structure induced by relative frequencies of motifs.

Mixture Model

- Stochastic Block Model / MixNet (Holland & al 83, Fienberg & al 85, Snijders & Nowicki 97, Daudin & al 08)
- \rightarrow Global structure induced by groups of similar nodes.

MixNet Probabilistic Model (nodes)

Nodes heterogeneity

- ► The nodes are distributed among Q different classes (e.g. , , , ,);
- ► $\mathbf{Z} = (Z_i)_{i=1..n}$ i.i.d. vectors $Z_i = (Z_{i1}, ..., Z_{iQ}) \sim \mathcal{M}(1, \alpha)$ where $\alpha = (\alpha_1, ..., \alpha_Q)$ are the group proportions;
- Z_i is not observed.

Example: (9 nodes, 3 classes)

MixNet Probabilistic Model (nodes)

Nodes heterogeneity

- ► The nodes are distributed among Q different classes (e.g. ●,▲,■);
- ► $\mathbf{Z} = (Z_i)_{i=1..n}$ i.i.d. vectors $Z_i = (Z_{i1}, ..., Z_{iQ}) \sim \mathcal{M}(1, \alpha)$ where $\alpha = (\alpha_1, ..., \alpha_Q)$ are the group proportions;
- Z_i is not observed.

MixNet Probabilistic Model (edges)

Observations

- Edges values X_{ij} where $X_{ij} \in \mathbb{R}^s$;
- Conditional on **Z**, the (X_{ij}) are independent with distribution

$$X_{ij}|\{Z_{iq} = 1, Z_{j\ell} = 1\} \sim f(., \theta_{q\ell})$$

• $\theta = (\theta_{q\ell})_{q,\ell=1..Q}$ is the connectivity parameter.

Example: 3 classes with Poisson-valued edges

MixNet Probabilistic Model (edges)

Observations

- Edges values X_{ij} where $X_{ij} \in \mathbb{R}^s$;
- Conditional on **Z**, the (X_{ij}) are independent with distribution

$$X_{ij}|\{Z_{iq} = 1, Z_{j\ell} = 1\} \sim f(., \theta_{q\ell})$$

• $\theta = (\theta_{q\ell})_{q,\ell=1..Q}$ is the connectivity parameter.

Classical Distributions:

- f_{θ} can be any probability distribution;
- → Bernoulli (interaction graph): presence/absence of an edge; $X_{ij}|\{Z_{iq} = 1, Z_{j\ell} = 1\} \sim \mathcal{B}(\pi_{q\ell})$
- → Poisson (PM) (count): in coauthorship networks, number of copublished papers;

$$X_{ij}|\{Z_{iq}=1, Z_{j\ell}=1\} \sim \mathcal{P}(\lambda_{q\ell})$$

→ Poisson regression with homogeneous effects (PRMH) (counts with covariates): in ecological networks;

$$X_{ij}|\{Z_{iq} = 1, Z_{j\ell} = 1\} \sim \mathcal{P}(\lambda_{q\ell} \exp\{\beta^{\mathsf{T}} \mathbf{y}_{ij}\})$$

Complete data likelihood

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}) = \ln \Pr(\mathbf{X}, \mathbf{Z}) = \ln \Pr(\mathbf{Z}) P(\mathbf{X} | \mathbf{Z})$$

=
$$\sum_{i} \sum_{q} Z_{iq} \ln \alpha_{q} + \sum_{i < j} \sum_{q, l} Z_{iq} Z_{jl} \ln f_{\theta_{ql}}(X_{ij})$$

Observed data likelihood

$$\mathcal{L}(\mathbf{X}) = \ln \sum_{\mathbf{Z}} \exp \mathcal{L}(\mathbf{X}, \mathbf{Z})$$

Sum over Q^n is untractable, use EM algorithm instead.

Complete data likelihood

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}) = \sum_{i} \sum_{q} Z_{iq} \ln \alpha_q + \sum_{i < j} \sum_{q, l} Z_{iq} Z_{jl} \ln f_{\theta_{ql}}(X_{ij})$$

Observed data likelihood

$$\mathcal{L}(\mathbf{X}) = \ln \sum_{\mathbf{Z}} \exp \mathcal{L}(\mathbf{X}, \mathbf{Z})$$

Sum over Q^n is untractable, use EM algorithm instead.

But...

- The random variables *X_{ij}* are not independent;
- The distribution Pr(.|X) of Z conditional on X is not a product distribution;
- → Exact EM is not possible...

Variational Inference: Pseudo Likelihood

• If \mathcal{R}_X is a distribution over Z, let

 $\mathcal{J}(\mathcal{R}_{\mathbf{X}}) = \mathcal{L}(\mathbf{X}) - KL(\mathcal{R}_{\mathbf{X}}, \Pr(.|\mathbf{X}))$

• For $\mathcal{R}_{\mathbf{X}} = \Pr(.|\mathbf{X}), \ \mathcal{J}(\mathcal{R}_{\mathbf{X}}) = \mathcal{L}(\mathbf{X});$

• Variational approximation: replace complicated distribution Pr(.|X) by a simple \mathcal{R}_X such that $KL(\mathcal{R}_X, Pr(.|X))$ is minimal to obtain a tight lower bound of $\mathcal{L}(X)$.

$$\begin{aligned} \mathcal{J}(\mathcal{R}_{\mathbf{X}}) &= \mathcal{L}(\mathbf{X}) - KL(\mathcal{R}_{\mathbf{X}}, \Pr(.|\mathbf{X})) \\ &= \mathcal{H}(\mathcal{R}_{\mathbf{X}}) + \mathbb{E}_{\mathcal{R}_{\mathbf{X}}}[\mathcal{L}(\mathbf{X}, \mathbf{Z})] \end{aligned}$$

where $\mathcal{H}(\mathcal{R}_X)$ is the entropy of \mathcal{R}_X .

Variational Inference: Pseudo Likelihood

• If \mathcal{R}_X is a distribution over Z, let

$$\mathcal{J}(\mathcal{R}_{\mathbf{X}}) = \mathcal{L}(\mathbf{X}) - KL(\mathcal{R}_{\mathbf{X}}, \Pr(.|\mathbf{X}))$$

- For $\mathcal{R}_{\mathbf{X}} = \Pr(.|\mathbf{X}), \ \mathcal{J}(\mathcal{R}_{\mathbf{X}}) = \mathcal{L}(\mathbf{X});$
- Variational approximation: replace complicated distribution $Pr(.|\mathbf{X})$ by a simple $\mathcal{R}_{\mathbf{X}}$ such that $KL(\mathcal{R}_{\mathbf{X}}, Pr(.|\mathbf{X}))$ is minimal to obtain a tight lower bound of $\mathcal{L}(\mathbf{X})$.

$$\begin{aligned} \mathcal{J}(\mathcal{R}_{\mathbf{X}}) &= \mathcal{L}(\mathbf{X}) - KL(\mathcal{R}_{\mathbf{X}}, \Pr(.|\mathbf{X})) \\ &= \mathcal{H}(\mathcal{R}_{\mathbf{X}}) + \mathbb{E}_{\mathcal{R}_{\mathbf{X}}}[\mathcal{L}(\mathbf{X}, \mathbf{Z})] \end{aligned}$$

where $\mathcal{H}(\mathcal{R}_{\mathbf{X}})$ is the entropy of $\mathcal{R}_{\mathbf{X}}$.

Variational Inference: Pseudo Likelihood

• If \mathcal{R}_X is a distribution over Z, let

$$\mathcal{J}(\mathcal{R}_{\mathbf{X}}) = \mathcal{L}(\mathbf{X}) - KL(\mathcal{R}_{\mathbf{X}}, \Pr(.|\mathbf{X}))$$

- For $\mathcal{R}_{\mathbf{X}} = \Pr(.|\mathbf{X}), \ \mathcal{J}(\mathcal{R}_{\mathbf{X}}) = \mathcal{L}(\mathbf{X});$
- Variational approximation: replace complicated distribution $Pr(.|\mathbf{X})$ by a simple $\mathcal{R}_{\mathbf{X}}$ such that $KL(\mathcal{R}_{\mathbf{X}}, Pr(.|\mathbf{X}))$ is minimal to obtain a tight lower bound of $\mathcal{L}(\mathbf{X})$.

$$\begin{aligned} \mathcal{J}(\mathcal{R}_{\mathbf{X}}) &= \mathcal{L}(\mathbf{X}) - KL(\mathcal{R}_{\mathbf{X}}, \mathrm{Pr}(.|\mathbf{X})) \\ &= \mathcal{H}(\mathcal{R}_{\mathbf{X}}) + \mathbb{E}_{\mathcal{R}_{\mathbf{X}}}[\mathcal{L}(\mathbf{X}, \mathbf{Z})] \end{aligned}$$

where $\mathcal{H}(\mathcal{R}_X)$ is the entropy of \mathcal{R}_X .

Variational Inference: Pseudo Likelihood (II)

- Computing $\mathbb{E}_{\mathcal{R}_X}[\mathcal{L}(X, \mathbb{Z})]$ is easy, computing $\mathcal{H}(\mathcal{R}_X)$ is hard (in general).
- Restrict $\mathcal{R}_{\mathbf{X}}$ to a comfortable class of distributions:

$$\mathcal{R}_{\mathbf{X}}[\mathbf{Z}] = \prod_{i} h(Z_i; \boldsymbol{\tau}_i)$$

with $h(.; \tau_i)$ the multinomial with parameter $\tau_i = (\tau_{i1}, ..., \tau_{iQ})$. Intuitively, $\tau_{iq} \simeq \Pr(Z_{iq} = 1 | \mathbf{X})$.

For such R_X,

$$\mathcal{J}((\tau_i)_{i=1..n}) = -\sum_i \sum_q \tau_{iq} \ln \tau_{iq} + \sum_i \sum_q \tau_{iq} \ln \alpha_q + \sum_{i < j} \tau_{iq} \tau_{j\ell} \ln f_{\theta_{q\ell}}(X_{ij})$$

Variational Inference: Pseudo Likelihood (II)

- Computing 𝔅_{𝔅X}[𝔅(𝔅,𝔅)] is easy, computing 𝔅(𝔅_𝔅) is hard (in general).
- Restrict $\mathcal{R}_{\mathbf{X}}$ to a comfortable class of distributions:

$$\mathcal{R}_{\mathbf{X}}[\mathbf{Z}] = \prod_{i} h(Z_i; \boldsymbol{\tau}_i)$$

with $h(.; \tau_i)$ the multinomial with parameter $\tau_i = (\tau_{i1}, ..., \tau_{iQ})$. Intuitively, $\tau_{iq} \simeq \Pr(Z_{iq} = 1 | \mathbf{X})$.

• For such $\mathcal{R}_{\mathbf{X}}$,

$$\mathcal{J}((\tau_i)_{i=1..n}) = -\sum_i \sum_q \tau_{iq} \ln \tau_{iq} + \sum_i \sum_q \tau_{iq} \ln \alpha_q + \sum_{i < j} \tau_{iq} \tau_{j\ell} \ln f_{\theta_{q\ell}}(X_{ij})$$

Variational Inference: Pseudo Likelihood (II)

- Computing 𝔅_{𝔅X}[𝔅(𝔅,𝔅)] is easy, computing 𝔅(𝔅_𝔅) is hard (in general).
- Restrict \mathcal{R}_X to a comfortable class of distributions:

$$\mathcal{R}_{\mathbf{X}}[\mathbf{Z}] = \prod_{i} h(Z_i; \boldsymbol{\tau}_i)$$

with $h(.; \tau_i)$ the multinomial with parameter $\tau_i = (\tau_{i1}, ..., \tau_{iQ})$. Intuitively, $\tau_{iq} \simeq \Pr(Z_{iq} = 1 | \mathbf{X})$.

For such *R*_X,

$$\mathcal{J}((\tau_i)_{i=1..n}) = -\sum_i \sum_q \tau_{iq} \ln \tau_{iq} + \sum_i \sum_q \tau_{iq} \ln \alpha_q + \sum_{i < j} \tau_{iq} \tau_{j\ell} \ln f_{\theta_{q\ell}}(X_{ij})$$

2 Steps Iterative Algorithm

• Maximize pseudo-likelihood:

$$\mathcal{J}((\boldsymbol{\alpha},\boldsymbol{\theta}),(\boldsymbol{\tau}_i)_{i=1..n}) = -\sum_i \sum_q \tau_{iq} \ln \tau_{iq} + \sum_i \sum_q \tau_{iq} \ln \alpha_q + \sum_{i < j} \tau_{iq} \tau_{j\ell} \ln f_{\theta_{q\ell}}(X_{ij})$$

• Step 1 Optimize \mathcal{J} w.r.t. (τ_i) :

- \rightarrow Constraint: $\sum_{q} \tau_{iq} = 1$ for all *i*;
- $\rightarrow \tau_{iq}$ variational parameter found via a fixed point algorithm:

$$\tilde{\tau}_{iq} \propto \alpha_q \prod_{j \neq i} \prod_{\ell=1}^{Q} f_{\theta_{q\ell}}(X_{ij})^{\tilde{\tau}_{j\ell}}$$

• Step 2 Optimize
$$\mathcal{J}$$
 w.r.t. (α, θ) :
 \rightarrow Constraint: $\sum_{q} \alpha_{q} = 1$
 $\tilde{\alpha}_{q} = \sum_{i} \tilde{\tau}_{iq}/n$
 $\tilde{\theta}_{ql} = \arg \max_{\theta} \sum_{i,j} \tilde{\tau}_{iq} \tilde{\tau}_{jl} \log f_{\theta}(X_{ij})$

 \rightarrow Simple expression of $\tilde{\theta}_{ql}$ for classical distributions (weighted MLE)

2 Steps Iterative Algorithm

Maximize pseudo-likelihood:

$$\mathcal{J}((\boldsymbol{\alpha},\boldsymbol{\theta}),(\boldsymbol{\tau}_i)_{i=1..n}) = -\sum_i \sum_q \tau_{iq} \ln \tau_{iq} + \sum_i \sum_q \tau_{iq} \ln \alpha_q + \sum_{i < j} \tau_{iq} \tau_{j\ell} \ln f_{\theta_{q\ell}}(X_{ij})$$

• Step 1 Optimize \mathcal{J} w.r.t. (τ_i) :

- \rightarrow Constraint: $\sum_{q} \tau_{iq} = 1$ for all *i*;
- $\rightarrow \tau_{iq}$ variational parameter found via a fixed point algorithm:

$$ilde{ au}_{iq} \propto lpha_q \prod_{j
eq i} \prod_{\ell=1}^Q f_{ heta_{q\ell}}(X_{ij})^{ ilde{ au}_{jl}}$$

• Step 2 Optimize
$$\mathcal{J}$$
 w.r.t. (α, θ) :
 \rightarrow Constraint: $\sum_{q} \alpha_{q} = 1$
 $\tilde{\alpha}_{q} = \sum_{i} \tilde{\tau}_{iq}/n$
 $\tilde{\theta}_{ql} = \arg \max_{\theta} \sum_{ij} \tilde{\tau}_{iq} \tilde{\tau}_{jl} \log f_{\theta}(X_{ij})$

 \rightarrow Simple expression of $\tilde{\theta}_{ql}$ for classical distributions (weighted MLE)

2 Steps Iterative Algorithm

Maximize pseudo-likelihood:

$$\mathcal{J}((\boldsymbol{\alpha},\boldsymbol{\theta}),(\boldsymbol{\tau}_i)_{i=1..n}) = -\sum_i \sum_q \tau_{iq} \ln \tau_{iq} + \sum_i \sum_q \tau_{iq} \ln \alpha_q + \sum_{i < j} \tau_{iq} \tau_{j\ell} \ln f_{\theta_{q\ell}}(X_{ij})$$

• Step 1 Optimize \mathcal{J} w.r.t. (τ_i) :

- \rightarrow Constraint: $\sum_{q} \tau_{iq} = 1$ for all *i*;
- $\rightarrow \tau_{iq}$ variational parameter found via a fixed point algorithm:

$$ilde{ au}_{iq} \propto lpha_q \prod_{j
eq i} \prod_{\ell=1}^Q f_{ heta_{q\ell}}(X_{ij})^{ ilde{ au}_{jl}}$$

• Step 2 Optimize \mathcal{J} w.r.t. (α, θ) : \rightarrow Constraint: $\sum_{q} \alpha_{q} = 1$ $\tilde{\alpha}_{q} = \sum_{i} \tilde{\tau}_{iq}/n$ $\tilde{\theta}_{ql} = \arg \max_{\theta} \sum_{i} \tilde{\tau}_{iq} \tilde{\tau}_{jl} \log f_{\theta}(X_{ij})$

 \rightarrow Simple expression of $\tilde{\theta}_{ql}$ for classical distributions (weighted MLE).

- BIC-like criterion to select the number of classes;
- The likelihood can be split: $\mathcal{L}(\mathbf{X}, \mathbf{Z}|Q) = \mathcal{L}(\mathbf{X}|\mathbf{Z}, Q) + \mathcal{L}(\mathbf{Z}|Q);$
- These terms can be penalized separately:

$$\begin{aligned} \mathcal{L}(\mathbf{X}|\mathbf{Z}, Q) &\to & \mathsf{pen}_{\mathbf{X}|\mathbf{Z}} P_Q \log n(n-1) \\ \mathcal{L}(\mathbf{Z}|Q) &\to & \mathsf{pen}_{\mathbf{Z}} = (Q-1) \log(n) \end{aligned}$$

$$ICL(Q) = \max_{\boldsymbol{\theta}} \mathcal{L}(\mathbf{X}, \tilde{\mathbf{Z}} | \boldsymbol{\theta}, m_Q) - \frac{1}{2} \left(P_Q \log n(n-1) - (Q-1) \log(n) \right)$$

- BIC-like criterion to select the number of classes;
- The likelihood can be split: $\mathcal{L}(\mathbf{X}, \mathbf{Z}|Q) = \mathcal{L}(\mathbf{X}|\mathbf{Z}, Q) + \mathcal{L}(\mathbf{Z}|Q);$
- These terms can be penalized separately:

$$\begin{aligned} \mathcal{L}(\mathbf{X}|\mathbf{Z}, Q) &\to & \mathsf{pen}_{\mathbf{X}|\mathbf{Z}} P_Q \log n(n-1) \\ \mathcal{L}(\mathbf{Z}|Q) &\to & \mathsf{pen}_{\mathbf{Z}} = (Q-1) \log(n) \end{aligned}$$

$$ICL(Q) = \max_{\boldsymbol{\theta}} \mathcal{L}(\mathbf{X}, \tilde{\mathbf{Z}} | \boldsymbol{\theta}, m_Q) - \frac{1}{2} \left(P_Q \log n(n-1) - (Q-1) \log(n) \right)$$

Identifiability

- Identifiability of Parameters (Allman and al., 2009, 2011);
- Model Selection criteria (Daudin and al., 2008, Latouche and al., 2011)

Quality of Estimates

- VEM algorithm converge to a different optimum than ML in the general case (Gunawardana and Byrne (2005)), except for degenerated models;
- SBM are in a certain sense degenerated: $Pr(.|X) \rightarrow \delta_Z$ (ongoing work of Celisse and Daudin, Mariadassou and Matias)

Identifiability

- Identifiability of Parameters (Allman and al., 2009, 2011);
- Model Selection criteria (Daudin and al., 2008, Latouche and al., 2011)

Quality of Estimates

- VEM algorithm converge to a different optimum than ML in the general case (Gunawardana and Byrne (2005)), except for degenerated models;
- SBM are in a certain sense degenerated: $Pr(.|X) \rightarrow \delta_Z$ (ongoing work of Celisse and Daudin, Mariadassou and Matias)

Quality of the Estimates: Simulation Setup

- \rightarrow Undirected graph with Q = 3 classes;
- → Poisson-valued edges;
- \rightarrow *n* = 100, 500 vertices;

$$\rightarrow \alpha_q \propto a^q$$
 for $a = 1, 0.5, 0.2;$

- *a* = 1: balanced classes;
- *a* = 0.2: unbalanced classes (80.6%, 16.1%, 3.3%)
- $\rightarrow \text{ Connectivity matrix of the form} \begin{pmatrix} \lambda & \gamma\lambda & \gamma\lambda \\ \gamma\lambda & \lambda & \gamma\lambda \\ \gamma\lambda & \gamma\lambda & \lambda \end{pmatrix} \text{for}$

$$\gamma=0.1,\ 0.5,\ 0.9,\ 1.5$$
 and $\lambda=2,\ 5$

- $\gamma = 1$: all classes equivalent (same connectivity pattern);
- $\gamma \neq 1$: classes are different;
- λ : mean value of an edge;
- \rightarrow 100 repeats for each setup.

Quality of the Estimates: Results

• Root Mean Square Error (RMSE) = $\sqrt{Bias^2 + Variance}$

Quality of the Estimates: Results

Root Mean Square Error (RMSE) = $\sqrt{Bias^2 + Variance}$ • RMSE for the λ_{al} RMSE for the α_a 0.3 0.25 0.25 0.25 0.2 0.15 0.15 0.15 0.1 0.1 0.05 0.05 0.3 0.3 0.25 0.25 0.25 0.2 0.2 0.2 0.15 0.15 0.15 0.1 0.05 0.04 x-axis: $\alpha_1, \alpha_2, \alpha_3$ *x*-axis: $\lambda_{11}, \lambda_{22}, \lambda_{33}, \lambda_{12}, \lambda_{13}, \lambda_{23}$ Top: n = 100, Bottom: n = 500Left to right: a = 1, 0.5, 0.2Solid line: $\lambda = 5$, dashed line: $\lambda = 2$ Symbols depend on γ : $\circ = 0.1$, $\nabla = 0.5$, $\Delta = 0.9$, * = 1.5

Number of Classes

 \rightarrow Undirected graph with $Q^* = 3$ classes and Poisson edges;

 \rightarrow *n* = 50, 100, 500, 1000 vertices;

$$\rightarrow \alpha_q = (57.1\%, 28, 6\%, 14, 3\%);$$

 \rightarrow Connectivity matrix of the form 1

		Q	
п	2	3	4
50	82	17	1
100	7	90	3
500	0	100	0
1000	0	100	0

Table: Frequency of selected Q for various n.

- Dataset Parisitic behavior of 154 fungi on 51 trees;
- **Network** Valued Network on trees: $X_{tt'}$ = number of fungis infecting both *t* and *t'*.
- **Goal** Identify groups of trees sharing similar interactions: is similarity driven by evolution or geography ?
- Poisson Model We assume

$$X_{ij}|\{Z_{iq}=1,Z_{j\ell}=1\}\sim \mathcal{P}(\lambda_{q\ell})$$

Covariate

- Phylogenetic relatedness measured by genetic\taxonomic distance;
- Geographical relatedness measured by Jaccard distance;

With no covariate (7 classes)

Mariadassou (INRA)

• Taxonomic rank: species ; genus ; family ; order ; class ; phylum;

- Strong effect of taxonomic rank on the group composition;
- Groups T1, T2, T3, T4 are even monofamily;
- Need to account for taxonomic distance.

• Taxonomic rank: species ; genus ; family ; order ; class ; phylum;

- Strong effect of taxonomic rank on the group composition;
- Groups T1, T2, T3, T4 are even monofamily;
- Need to account for taxonomic distance.

$\widehat{\lambda}_{q\ell}$	T1	T2	Т3	T4	T5	T6	T7
T1	14.46	4.19	5.99	7.67	2.44	0.13	1.43
T2	4.19	14.13	0.68	2.79	4.84	0.53	1.54
Т3	5.99	0.68	3.19	4.10	0.66	0.02	0.69
T4	7.67	2.79	4.10	7.42	2.57	0.04	1.05
T5	2.44	4.84	0.66	2.57	3.64	0.23	0.83
T6	0.13	0.53	0.02	0.04	0.23	0.04	0.06
T7	1.43	1.54	0.69	1.05	0.83	0.06	0.27
$\widehat{\alpha}_q$	7.8	7.8	13.7	13.7	15.7	19.6	21.6

- T1, T2, T3, T4, T5: trees sharing lots of parasites;
- T6, T7: Trees with sharing few parasites with any other.

Groups of Trees: With Covariate

Model: $X_{ij} \sim \mathcal{P}(\lambda_{ql}e^{\beta y_{ij}})$ with y_{ij} taxonomic distance

• $\hat{Q} = 4$ classes; • $\hat{\beta} = -0.317$;										
	T'1	T'2	Т'З	T'4						
T1	0	0	0	4						
T2	0	0	0	4						
Т3	2	5	0	0		Î	T'4	T'O	T'O	Т'Л
T4	0	2	0	5		$\frac{\Lambda_{q\ell}}{\mathbf{T}'}$	0.75	1 2	1.3	1 4
Τ5	0	2	0	6		11	0.75	2.46	0.40	3.77
T6	0	0	10	0		12	2.46	4.30	0.52	8.77
T7	7	2	2	õ		Τ'3	0.40	0.52	0.080	1.05
17		2	2	0		T'4	3.77	8.77	1.05	14.22

Groups of Trees: With Covariate

Model: $X_{ij} \sim \mathcal{P}(\lambda_{ql}e^{\beta y_{ij}})$ with y_{ij} taxonomic distance

Check predictive power of the model for

Other covariates

- Genetic distance: same effect than taxonomic distance;
- Jaccard distance: no effect;
- → Main sources of similarity in trees parasitic assemblages are evolutionary processes and not ecological processes.

Tree interaction network							
Factor	Covariate	Q (PM)	Q (PRMH)	Δ ICL			
Phylogenetic	Taxonomic Distance	7	4	116.0			
relatedness	Genetic distance	7	4	94.8			
Geographical	Jaccard distance	7	7	-8.6			
overlap							

Table: Effect of covariates. \triangle ICL = gain of switching from PM to PRMH.

Other covariates

- Genetic distance: same effect than taxonomic distance;
- Jaccard distance: no effect;
- → Main sources of similarity in trees parasitic assemblages are evolutionary processes and not ecological processes.

Tree interaction network							
Factor	Covariate	Q (PM)	Q (PRMH)	Δ ICL			
Phylogenetic	Taxonomic Distance	7	4	116.0			
relatedness	Genetic distance	7	4	94.8			
Geographical	Jaccard distance	7	7	-8.6			
overlap							

Table: Effect of covariates. \triangle ICL = gain of switching from PM to PRMH.

MixNet

- Flexible probabilistic model to detect structure in complex valued graphs;
- Pseudo-likelihood estimators computed through variational EM (consistency ?);
- A statistical model selection criteria for the number of classes;
- Package available at http://pbil.univ-lyon1.fr/software/MixNet.

Host-Parasite Network

• Similarity in parasitic assemblages of two trees explained by phylogenetic relatedness, not geographical overlap.

MixNet

- Flexible probabilistic model to detect structure in complex valued graphs;
- Pseudo-likelihood estimators computed through variational EM (consistency ?);
- A statistical model selection criteria for the number of classes;
- Package available at http://pbil.univ-lyon1.fr/software/MixNet.

Host-Parasite Network

 Similarity in parasitic assemblages of two trees explained by phylogenetic relatedness, not geographical overlap.

Reaction Network of E.Coli:

- → data from http://www.biocyc.org/,
- \rightarrow *n* = 605 vertices (reactions) and 1 782 edges.
- \rightarrow 2 reactions *i* and *j* are connected if the product of *i* is the substrate of *j* (cofactors excluded),
- → V. Lacroix and M.-F. Sagot (INRIA Hélix).

Question:

→ Interpretation of the connectivity structure of classes?

MixNet results:

- \rightarrow ICL gives $\hat{Q} = 21$ classes,
- → Most classes correspond to pseudo-cliques,

Biological interpretation of the groups I

- Dot-plot representation
 - → adjacency matrix (sorted)
- Biological interpretation:
 - → Groups 1 to 20 gather reactions involving all the same compound either as a substrate or as a product,
 - → A compound (chorismate, pyruvate, ATP, etc) can be associated to each group.
- The structure of the metabolic network is governed by the compounds.

Biological interpretation of the groups II

- → Classes 1 and 16 constitute s single clique corresponding to a single compound (pyruvate),
- → They are split into two classes because they interact differently with classes 7 (CO2) and 10 (AcetylCoA)
- → Connectivity matrix (sample):

q, l	1	7	10	16
1	1.0			
7	.11	.65		
10	.43		.67	
16	1.0	.01	ϵ	1.0

Adjacency matrix (sample)