The Migraine project :

A "user-friendly" software for likelihood-based inference of spatial structure and demographic history from genetic data

Summer Research School
"Software and Statistical Methods for Population Genetics" June 2013

Raphaël Leblois ${ }^{1} \quad$ Champak Beeravolu $^{1} \quad$ François Rousset ${ }^{2}$
${ }^{1}$ Centre de Biologie pour la Gestion des Populations (CBGP), INRA Montpellier ${ }^{2}$ Institut des Sciences de l'Évolution (ISE-M), Université Montpellier 2

Overview

(1) Introduction

2 Algorithms used in Migraine
(3) Demographic \& mutational models
(4) The Migraine software
(5) Demo

6 Simulation studies

- Inferences under Isolation By Distance
- Inferences of past changes in population sizes
(7) Future directions
(8) Conclusions

Migraine project: objectives and methods

FOCUS

Inference by ML of demographic and historical parameters from genetic data :

- Migration rates, dispersal distributions, changes in population size, divergence events,...
- Allelic data (microsatellites), short DNA sequence data, SNPs

Migraine project: objectives and methods

FOCUS

Inference by ML of demographic and historical parameters from genetic data :

- Migration rates, dispersal distributions, changes in population size, divergence events,...
- Allelic data (microsatellites), short DNA sequence data, SNPs

AIM

Assess validity and robustness of the method :

- Bias, RMSE, coverage properties of confidence intervals
- robustness to realistic but "uninteresting" mis-specifications
\rightarrow provide an "easy to use" software based on a validated method

Migraine project: objectives and methods

Methods

Estimation of likelihood by an absorbing MC algorithm using Importance Sampling (IS) technics :

- first described by Griffiths \& Tavaré (1994)
- further improved by Stephens \& Donnelly (2000) for single pop.
- and generalized by de lorio \& Griffiths (2004 Adv. Appl. Probability)

This approach uses coalescent simulation to estimate the likelihood of a genetic sample, but is very different from the more common MCMC approaches (e.g. LAMARC, IM, MsVar)

Overview

(1) Introduction
(2) Algorithms used in Migraine
(3) Demographic \& mutational models
(4) The Migraine software
(3) Demo

6 Simulation studies

- Inferences under Isolation By Distance
- Inferences of past changes in population sizes
(7) Future directions
(8) Conclusions

Coalescent-based algorithms to estimate the likelihood

IS algorithms:

- Griffiths et al.
- absorbing Markov chain on the genealogical space
- Independent exploration of the parameter space

MCMC algorithms:

- Felsenstein et al.
- Monte Carlo Markov Chain on the genealogical and parameter spaces

Coalescent-based algorithms to estimate the likelihood

IS algorithms:

- absorbing Markov chain on the genealogical space
- Independent exploration of the parameter space

Coalescent-based algorithms to estimate the likelihood

IS algorithms:

- Griffiths et al.
- absorbing Markov chain on the genealogical space
- Independent exploration of the parameter space
- difficult to implement, only simple models
- not much used : GeneTree and Migraine only

MCMC algorithms:

- Felsenstein et al.
- Monte Carlo Markov Chain on the genealogical and parameter spaces
- Easier to implement, can consider complex models
- Commonly used and implemented in many softwares : e.g. Lamarc, Migrate, Batwing, IM, MsVar,...

IS Coalescent-based algorithms used in Migraine

- Let \mathbf{n} be the sample configuration:
$\mathbf{n}=\left\{n_{\alpha i}\right\}$ (allele/haplotype counts in each location sampled)
- Denote \mathcal{H} an ancestral history (i.e. a coalescent tree with mutations) from the present configuration, $H_{0}=\mathbf{n}$, to the MRCA, H_{-m} :

$$
\mathcal{H}=\left\{H_{k} ; k=0,-1, \ldots,-m\right\}
$$

- Then for any given state H_{k} of the history :

$$
p\left(H_{k}\right)=\sum_{\left\{H_{k-1}\right\}} p\left(H_{k} \mid H_{k-1}\right) p\left(H_{k-1}\right)
$$

IS Coalescent-based algorithms used in Migraine

- $\mathbf{n}=\left\{n_{\alpha i}\right\}$: sample configuration
- $\mathcal{H}=\left\{H_{k} ; k=0,-1, \ldots,-m\right\}$: ancestral history of the sample
- $p\left(H_{k}\right)=\sum_{\left\{H_{k-1}\right\}} p\left(H_{k} \mid H_{k-1}\right) p\left(H_{k-1}\right)$
- Expending the recursion over all ancestral histories compatible with the sample, leads to :

$$
\begin{aligned}
p\left(H_{0}\right) & =\sum_{\left(H_{0}, \ldots, H_{-m}\right)} p\left(H_{0} \mid H_{1}\right) \ldots p\left(H_{-m+1} \mid H_{-m}\right) p\left(H_{-m}\right) \\
& =E_{p}\left[p\left(H_{0} \mid H_{1}\right) \ldots p\left(H_{-m+1} \mid p\left(H_{-m}\right)\right]\right.
\end{aligned}
$$

IS Coalescent-based algorithms used in Migraine

- $\mathbf{n}=\left\{n_{\alpha i}\right\}$: sample configuration
- $\mathcal{H}=\left\{H_{k} ; k=0,-1, \ldots,-m\right\}$: ancestral history of the sample
- $p\left(H_{k}\right)=\sum_{\left\{H_{k-1}\right\}} p\left(H_{k} \mid H_{k-1}\right) p\left(H_{k-1}\right)$
- Expending the recursion over all ancestral histories compatible with the sample, leads to :

$$
p(\mathbf{n})=p\left(H_{0}\right)=E_{p}\left[p\left(H_{0} \mid H_{1}\right) \ldots p\left(H_{-m+1} \mid p\left(H_{-m}\right)\right]\right.
$$

However:

- Forward transition prob. $p\left(H_{k} \mid H_{k-1}\right)$ can not be directly used in a backward process
- Backward transition prob. $p\left(H_{k-1} \mid H_{k}\right)$ are generaly unknown (except for parent independent mutations (PIM) in a single panmictic population)

IS Coalescent-based algorithms used in Migraine

- $\mathbf{n}=\left\{n_{\alpha i}\right\}$: sample configuration
- $\mathcal{H}=\left\{H_{k} ; k=0,-1, \ldots,-m\right\}$: ancestral history of the sample
- $p\left(H_{k}\right)=\sum_{\left\{H_{k-1}\right\}} p\left(H_{k} \mid H_{k-1}\right) p\left(H_{k-1}\right)$
- Importance Sampling (IS) technic is used:

Let $Q\left(H_{k-1}\right)$ be a proposal distribution such that

$$
\begin{aligned}
p\left(H_{k}\right) & =\sum_{\left\{H_{k-1}\right\}} p\left(H_{k} \mid H_{k-1}\right) \frac{p\left(H_{k-1}\right)}{Q\left(H_{k-1}\right)} Q\left(H_{k-1}\right) \\
& =\mathrm{E}_{Q}\left[p\left(H_{k} \mid H_{k-1}\right) \frac{p\left(H_{k-1}\right)}{Q\left(H_{k-1}\right)}\right]
\end{aligned}
$$

but need an efficient proposal distribution...

IS Coalescent-based algorithms used in Migraine

The ideal proposal: $Q\left(H_{k-1}\right)=p\left(H_{k-1} \mid H_{k}\right)$

- The ideal proposal is the backward transition probability $p\left(H_{k-1} \mid H_{k}\right)$, then

$$
p\left(H_{k} \mid H_{k-1}\right) \frac{p\left(H_{k-1}\right)}{Q\left(H_{k-1}\right)}=\frac{p\left(H_{k} \cap H_{k-1}\right)}{p\left(H_{k-1} \mid H_{k}\right)}=p\left(H_{k}\right)
$$

and a single tree reconstruction allows exact likelihood computations (null variance).

- $p\left(H_{k-1} \mid H_{k}\right)$ is unknown, instead we use approximations $\hat{p}\left(H_{k-1} \mid H_{k}\right)$:

$$
\mathrm{E}_{Q}\left[p\left(H_{k-1}\right) \frac{p\left(H_{k} \mid H_{k-1}\right)}{\hat{p}\left(H_{k-1} \mid H_{k}\right)}\right]=p\left(H_{k}\right)
$$

but then many trees are necessary to get a good estimation of the likelihood.

IS Coalescent-based algorithms used in Migraine

- The likelihood of the present configuration can then be written as a product of importance weights:

$$
\begin{aligned}
p(\mathbf{n})=p\left(H_{0}\right) & =\mathrm{E}_{\hat{p}} \underbrace{\left[\frac{p\left(H_{0} \mid H_{-1}\right)}{\hat{p}\left(H_{-1} \mid H_{0}\right)} \cdots \frac{p\left(H_{-m+1} \mid H_{-m}\right)}{\hat{p}\left(H_{-m} \mid H_{-m+1}\right)} p\left(H_{-m}\right)\right]}_{\mathcal{W}_{r}} \\
& =\mathrm{E}_{\hat{p}}\left[\frac{p\left(\mathcal{H}_{\rightarrow}\right)}{\hat{p}\left(\mathcal{H}_{\leftarrow}\right)}\right]
\end{aligned}
$$

- Then we use Monte Carlo simulations on the absorbing backward Markov chain process describe above, using the IS transition probabilities, to infer the likelihood for a given parameter point Θ

$$
L(\Theta)=p_{\Theta}(\mathbf{n}) \approx \frac{1}{R} \sum_{r=1}^{R \gg 1} \mathcal{W}_{r}
$$

IS Coalescent-based algorithms used in Migraine

- Griffiths \& Tavaré 1994, Nath \& Griffiths 1996, Bahlo \& Griffiths 2000 : "uniform" IS proposal, not very efficient (millions of trees).
- Stephens \& Donnelly 2000 : much more efficient IS proposal for a single isolated population (1-100 trees).
- delorio \& Griffiths 2004a, b : generalization of SD2000 proposal for structured population models (30-100 trees).

IS Coalescent-based algorithms used in Migraine

Additional approximate but fast algorithm : the PAC-likelihood

Migraine also uses an heuristic approximation known as PAC-likelihood defined by Li and Stephens 2003, Cornuet and Beaumont 2007

- Based on $\hat{\pi}$ an approximation of $\pi(j, \alpha \mid \mathbf{n})$ the probability that, given an observed sample configuration \mathbf{n}, the next sampled gene is of type j and from population α (same approx. than SD2000 \& DIG2004)
- No tree reconstruction, only based on the different type of gene observed in the sample

IS Coalescent-based algorithms used in Migraine

Additional approximate but fast algorithm : the PAC-likelihood

Migraine also uses an heuristic approximation known as PAC-likelihood defined by Li and Stephens 2003, Cornuet and Beaumont 2007

- Based on $\hat{\pi}$ an approximation of $\pi(j, \alpha \mid \mathbf{n})$ (same approx. than SD2000 \& DIG2004)
- No tree reconstruction,

Basic idea : each sampled genes is added one by one with associated probability $\hat{\pi}(j, \alpha \mid \mathbf{n})$ to reconstruct the whole sample

$$
\begin{aligned}
p(\mathbf{n}) & =p(\mathbf{n}-\mathbf{1}) \pi(j, \alpha \mid \mathbf{n}-\mathbf{1}) \\
& \approx p(\mathbf{n}-\mathbf{1}) \hat{\pi}(j, \alpha \mid \mathbf{n}-\mathbf{1})
\end{aligned}
$$

IS Coalescent-based algorithms used in Migraine

Additional approximate but fast algorithm : the PAC-likelihood
Migraine also uses an heuristic approximation known as PAC-likelihood defined by Li and Stephens 2003, Cornuet and Beaumont 2007

- Based on $\hat{\pi}$ an approximation of $\pi(j, \alpha \mid \mathbf{n})$ (same approx. than SD2000 \& DIG2004)
- No tree reconstruction,

$$
\hat{L}_{P A C}(\theta)=\underbrace{\frac{1}{R} \sum_{r=1}^{R \gg 1} \mathcal{M}_{n} \prod_{n}^{i=2} \hat{\pi}\left(\text { gene }_{i} \mid \mathbf{n}_{i}=\left\{\text { gene }_{k}\right\}_{k<i}\right)}_{R \text { random sample reconstruction }}
$$

IS Coalescent-based algorithms used in Migraine

Additional approximate but fast algorithm : the PAC-likelihood
Migraine also uses an heuristic approximation known as PAC-likelihood defined by Li and Stephens 2003, Cornuet and Beaumont 2007

- Based on $\hat{\pi}$ an approximation of $\pi(j, \alpha \mid \mathbf{n})$ (same approx. than SD2000 \& DIG2004)
- No tree reconstruction,
- Pros: very fast, very accurate
- Cons : can only be applied for equilibrium models (IBD, OnePop, NPop)

IS Coalescent-based algorithms : conclusion

- Very different from classical coalescent-based MCMC
- Very efficient since the work of SD2000, and DIG2004
- PAC-likelihood is a good fast approximation for equilibrium models
- But it is not always straightforward to add new mutational or demographic features

Overview

(1) Introduction
(2) Algorithms used in Migraine
(3) Demographic \& mutational models
(4) The Migraine software
(5) Demo

6 Simulation studies

- Inferences under Isolation By Distance
- Inferences of past changes in population sizes
(9) Future directions

8 Conclusions

Mutational models implemented in Migraine

PIM $=$ KAM (allelic data, Crow and Kimura 1970)

Parent independent mutation : each mutation \rightarrow one of the K (or $\mathrm{K}-1$) possible allelic states

Allows to consider the most efficient proposal distributions for any demographic model (optimal IS proposal distribution under a single population model, i.e. a single tree give the exact likelihood) most basic approximation for microsatellite mutation processes

Mutational models implemented in Migraine

SMM (allelic data, Ohta and Kimura 1973)

Strict stepwise model :
each mutation adds or removes a motif
better approximation for microsatellite mutation processes than KAM

GSM (allelic data, Pritchard et al. 1999)
Generalized stepwise model :
each mutation adds or removes X motif, with $X \sim \mathcal{G e o m}(p G S M)$
better approximation for microsatellite mutation processes than SMM but adds a parameter, pGSM (\nearrow computation times)

Mutational models implemented in Migraine

ISM (DNA sequence data, Kimura 1969)

- The most simple model of sequence evolution
- Polymorphisms at a base pair correspond to a unique mutation in the coalescent
- New mutations only occur at sites never previously mutant
- Each mutation produces a new haplotype
\rightarrow The haplotypes in a sample define a unique perfect phylogeny

Demographic models implemented in Migraine: OnePop

One stable WF population (Eq.)

- One demographic parameter ($+\mu$, mutation rate/locus/generation): * N : pop size (nber of genes)
- Availlable mutation models : KAM/PIM, SMM, GSM, ISM
- Inference of one or two scaled parameters:

$$
\begin{aligned}
& *[p G S M] \text { if GSM } \\
& * \theta=2 N \mu
\end{aligned}
$$

One population with single past change in size : The OnePopVarSize model

Ex: a single population undergoing an exponential contraction that started T generation ago

Demographic models implemented in Migraine: OnepopVarSize

One WF population with variable size : single past change (Diseq.)

- Three parameters ($+\mu$, mutation rate/locus/generation):
* $N_{\text {act }}$: pop size at sampling time (nber of genes)
* T : Time in the past when demographic change starts,
* $N_{\text {anc }}$: ancestral population size
- Availlable mutation models : KAM/PIM, SMM, GSM, ISM
- Inference of 3-4 scaled parameters:

$$
\begin{aligned}
& *[p G S m] \text { if GSM } \\
& * \theta=2 N_{\text {act }} \mu \\
& * D=\frac{T}{2 N_{a c t}} \\
& * \theta_{a n c}=2 N_{a n c} \mu
\end{aligned}
$$

Demographic models implemented in Migraine: OnepopVarSize

One WF population with variable size : single past change (Diseq.)

- Three parameters: $N_{\text {act }}, T, N_{\text {anc }}$
- Availlable mutation models : KAM/PIM, SMM, GSM, ISM
- Inference of 3-4 scaled parameters:
* $[p G S m]$ if GSM
* $\theta=2 N_{\text {act }} \mu$
* $D=\frac{T}{2 N_{\text {act }}}$
* $\theta_{a n c}=2 N_{a n c} \mu$
- Tested with exponential decrease in population size (section OPVS), but can consider discret, linear or logistic growths and declines.

Demographic models implemented in Migraine: Npop

Two populations connected by migration (Eq.)

- Four parameters ($+\mu$, mutation rate/locus/generation):
* N_{T} : total pop size (nber of genes, $N_{1}+N_{2}$)
* $q_{1}=N_{1} / N_{2}$: relative pop sizes,
* $m_{1 \rightarrow 2}$ and $m_{1 \rightarrow 2}$, the migration rates
- Availlable mutation models : KAM/PIM, SMM, GSM, ISM
- Inference of 4-5 scaled parameters:
* $[p G S m]$ if GSM
* $\theta=2 N_{T} \mu$
* q_{1}
* $M_{1}=2 N_{1} m_{1 \rightarrow 2}$
* $M_{2}=2 N_{2} m_{2 \rightarrow 1}$

Demographic models implemented in Migraine: Npop

Two populations connected by migration (Eq.)

- Four parameters: $N_{T}, q_{1}=N_{1} / N_{2}, m_{1 \rightarrow 2}$ and $m_{1 \rightarrow 2}$
- Availlable mutation models : KAM/PIM, SMM, GSM, ISM
- Inference of 4-5 scaled parameters: $[p G S m], \theta=2 N_{T} \mu, q_{1}$, $M_{1}=2 N_{1} m_{1 \rightarrow 2}, M_{2}=2 N_{2} m_{2 \rightarrow 1}$

More Populations?

- Migraine should be able to consider up to four populations connected by migration, but only under PIM,
- but it has never been tested
- Main potential problem: high nber of parameters, e.g. 15 param for 4 populations

Demographic models implemented in Migraine: IBD

the general isolation by distance model

Dispersal is localized in space
$=2$ individuals are more likely to mate if they are geographically close to each other

Probability

geographic distance
the migration rate between sub-populations is function of the geographic distance through a dispersal distribution

Demographic models implemented in Migraine: IBD

2 models depending on individual spatial distribution in the landscape

Population with a demic structure each node of the lattice corresponds to a panmictic sub-population of size N individuals

"continuous" population
each node of the lattice is a single individual ($\mathrm{N}=1$)

Demographic models implemented in Migraine: IBD

2 models depending on individual spatial distribution in the landscape

2 (or more) demographic parameters :
N or D : sub-population size or density of individuals
$\sigma^{2}:$ mean squared parent-offspring dispersal distance : inverse of the "strength of IBD"

Demographic models implemented in Migraine: IBD

IBD models are quite general depending on how localized dispersal is :

Stepping stone	$>$	IBD	$>$
Island Model			
$\sigma^{2}=\boldsymbol{m}<1$	$1<\sigma^{2} \ll \infty$		$\boldsymbol{\sigma}^{2} \approx \infty$

Demographic models implemented in Migraine: IBD

Linear or planar isolation by distance (IBD) models (Eq.)

- Fully homogeneous model \rightarrow four parameters $(+\mu)$:
* d : nb of subpopulations
* N : sub pop size (nber of genes, $N_{T}=d N$)
* m : the emmigration rates from any subpopulation
* g : shape of the geometric dispersal distribution in the inference algorithmn
- Availlable mutation models: KAM/PIM
- Inference of 3 scaled parameters:

```
* \(\theta=2 N \mu\)
* \(M=2 N m\)
* \(g\)
+ one composite parameter \(N b=4 \pi D \sigma^{2}\)
```


Mutational \& demographic models: summary

Mutational models:

- KAM/PIM, SMM, GSM, ISM (and soon SNPs...)
- Migraine allows multimarker analyses e.g. SMM/GSM, ISM/GSM, ...

Demographic models:

- At equilibrium : OnePop, N(2-4)pop, IBD
- Disequilibrium models: OnePopVarSize, (and soon FounderFlush, IM between 2 pops,...)

Overview

(1) Introduction
(2) Algorithms used in Migraine
(3) Demographic \& mutational models

4 The Migraine software
(5) Demo

6 Simulation studies

- Inferences under Isolation By Distance
- Inferences of past changes in population sizes
(7) Future directions
(8) Conclusions

What's in the Migraine software?

C++ core IS computations

- Stratified random sampling of parameter points (Bounds provided by user)
- Estimation of the likelihood at each point using IS
- write R code

R (automated interaction between $\mathrm{C}++$ and R codes)

- Likelihood surface interpolation by Kriging
- Inference of MLEs and Cls
- (Nice) Plots of 1D and 2D Likelihood profiles
- Computation of a list of new points inside the convex 99.9\% envelope
- Computation of LRT-Pvalue (e.g. to test an hypothesis $=$ Nratio <1)
parts of R code written by $\mathrm{C}++$, others more constant parts compiled in a packge called "Rmigraine"

What's in the Migraine software?

C++ core IS computations

Point sampling, Llkelihood estimation, Write R code

R scripts (automated interaction between $\mathrm{C}++$ and R codes)
Likelihood surface interpolation, MLEs and Cls, Plots, next points
Migraine can automatically run iterative analysis by considering a sequence of ($\mathrm{C}++, \mathrm{R}$) computations.
This procedure allows to obtain better inferences by maximizing the number points in the good zone of the parameter space.

How does the Migraine software work?

- One (or many) Genepop data files associated with a nexus files for DNA sequence data sets
- Parametrization of $\mathrm{C}++$ and R analysis using a text file or using the graphical interface (Soon)
- Run Migraine
- Outputs :
- Results text file (ML, CI, LR tests)
- Graphics in a ps / eps / pdf file

How does the Migraine software work?

most complex parameters have good default values and ... we provide a very detailed and comprehensive documentation with:

- Basic theory (IS + kriging)
- How to install Migraine ($\mathrm{C}++$ code and R package)
- Complete description by key words of all parameters
- description and interpretation of all outputs
- Simple examples to run (good to start with)

Moreover, the GUI will include a "What's this" button linked to all keyword description of the documentation

How does the Migraine software work?

GUI under construction (should be finished for July!)

Model | Geometry | Likelihood | CI-LRT | Interpolation | Graphics |


```
LowerBound =
SamplingScale =
SamplingSpace =''
Loci =
UpperBound = =
JobMax = 1
JobMin = 1

\section*{How does the Migraine software work?}

\section*{GUI under construction (should be finished for July!) \\ ```
Model Geometry | Likelihood | CI-LRT | Interpolation | Graphics |
```}


\section*{How does the GUI of Migraine look like?}

\section*{GUI under construction (should be finished for July!)}

Runs per point:
1000

Points number :

Write sequence
\(C\) Over, Append

C Over
\(\subset\) Append

Add point
Remove selected point
Test points :

LowerBound = SamplingScale \(=\) SamplingSpace \(=\), Loci = UpperBound = ,
JobMax = 1
\(\mathrm{Jomax}=1\)
\(\mathrm{JobMin}=1\)

\section*{Overview}
(1) Introduction
(2) Algorithms used in Migraine
(3) Demographic \& mutational models
(4) The Migraine software
(5) Demo

6 Simulation studies
- Inferences under Isolation By Distance
- Inferences of past changes in population sizes
(7) Future directions
(8) Conclusions
demo on two examples...

Lets look in details into two examples of concrete data analyses :

IBD and OnePopVarSize....

\section*{Overview}
(1) Introduction

2 Algorithms used in Migraine
(3) Demographic \& mutational models
(4) The Migraine software
(5) Demo

6 Simulation studies
- Inferences under Isolation By Distance
- Inferences of past changes in population sizes
(7) Future directions

8 Conclusions

\section*{Overview}
(1) Introduction

2 Algorithms used in Migraine
(3) Demographic \& mutational models
(4) The Migraine software

5 Demo
6 Simulation studies
- Inferences under Isolation By Distance
- Inferences of past changes in population sizes
(7) Future directions
(8) Conclusions

\section*{Isolation by distance: biological context}
- Localized dispersal
- Ecological studies of dispersal in non-model organisms
- Small data sets, \(\sim 10-20\) microsatellites, \(\sim 200-300\) individuals

\section*{Isolation by distance: Parameters}

Deme size \(N\), dispersal probability \(m\), mutation probability \(\mu\) distribution of dispersal distance: geometric decrease with distance, with scale parameter \(g\).

\section*{Isolation by distance: Parameters}

Deme size \(N\), dispersal probability \(m\), mutation probability \(\mu\) distribution of dispersal distance: geometric decrease with distance, with scale parameter \(g\).
special interest in the neighborhood size \(\propto D \sigma^{2}\) where \(D\) is population density and \(\sigma^{2}\) is second moment of dispersal distance (marginal 1D distribution in 2D model).

\section*{Isolation by distance: Parameters}

Deme size \(N\), dispersal probability \(m\), mutation probability \(\mu\) distribution of dispersal distance: geometric decrease with distance, with scale parameter \(g\).
special interest in the neighborhood size \(\propto D \sigma^{2}\) where \(D\) is population density and \(\sigma^{2}\) is second moment of dispersal distance (marginal 1D distribution in 2D model).

Likelihoods computed under the classical limit \(N \rightarrow \infty, \mu \rightarrow 0\) for given \(N \mu\); and likewise \(m \rightarrow 0\) for given \(N m\) ("diffusion limit")

\section*{Previous method: Rousset's regression (1997)}
\(F_{S T}\)-based method implemented in Genepop
The expected regression slope is \(4 \pi D \sigma^{2}\), thus a simple method to infer \(\mathrm{D} \mathrm{\sigma}^{2}\) is to compute the linear regression on the data and estimate the slope

\(\Rightarrow 1 /\) slope is an estimator of \(4 \pi D \sigma^{2}\)

\section*{Special interest in IBD models}

\section*{Testing inference methods}

Comparisons between genetic and demographic estimates

good agreement between genetic and demographic estimates \(\rightarrow\) quite realistic model for fine scale population genetics

\section*{Migrainevalidation procedure}
- Check ideal performance under ideal conditions
- Check robustness under non-ideal conditions (various mis-specifications)

\section*{Migrainevalidation procedure}
- Check ideal performance under ideal conditions

Ideal performance \(:=\) valid confidence intervals \(\Leftrightarrow\) uniform distribution of \(p\)-values of (profile) LR tests of true simulation parameters

\section*{IBD simulation design: ideal conditions}
- 40 gene copies at each of 10 loci in each of 8 demes (sometimes 10) demes (smallish sample size for ecological studies).
- o o o o o o o o -

○ - ○ ○ ○ ○ ○ ○ • ○
- ○ 0

○ ○ ○ ○ ○ ○ ○ ○ ○ ○
0 - 0
○ ○ ○ ○ ○ ○ ○ ○ ○ ○
- 0 -
\(\bigcirc \circ \circ \circ \circ \circ 0000\)
○ ○ ○ ○ ○ ○ ○ ○ ○ ○
○ ○ ○ ○ ○ ○ ○ ○ ○ ○
○ - ○ ○ ○ ○ ○ ○ - ○
- ○ ○ ○ ○ ○ ○ ○ ○ -

\section*{IBD simulation design: ideal conditions}
- 40 gene copies at each of 10 loci in each of 8 demes (sometimes 10) demes (smallish sample size for ecological studies).
- ○ ○ ○ ○ ○ ○ ○ o -

○ - ○ ○ ○ ○ ○ ○ • ○
- ○ 0
- ○ ○ ○ ○ ○ ○ ○ ○ ○
- - 0

○ ○ ○ ○ ○ ○ ○ ○ ○ ○
\(\circ \circ \circ 0000000\)
○ ○ ○ ○ ○ ○ ○ ○ ○ o
○ ○ ○ ○ ○ ○ ○ ○ ○ ○
○ - ○ ○ ○ ○ ○ ○ - ○
- ○ ○ ○ ○ ○ ○ ○ ○ -
- 200 simulated data sets

\section*{IBD simulation design: ideal conditions}
- 40 gene copies at each of 10 loci in each of 8 demes (sometimes 10) demes (smallish sample size for ecological studies).
\begin{tabular}{llllllllll}
\(\bullet\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bullet\) \\
0 & \(\bullet\) & 0 & 0 & 0 & 0 & 0 & 0 & \(\bullet\) & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \(\bullet\) & 0 & 0 & 0 & 0 & 0 & 0 & \(\bullet\) & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \(\bullet\)
\end{tabular}
- 200 simulated data sets
- 100 demes: each data set takes \(\approx 6\) CPU hours by PAC-likelihood, \(\sim 1\) CPU year by true likelihood (though easy to distribute over different CPUs)

\section*{Results under ideal conditions: validating the whole} inference process
ex: \(N: 40000 ; m: 0.00025 ; \mu: 10^{-6}\)

First result: very good LRT distributions \(\rightarrow\) validation of the method

\section*{Results under ideal conditions: validating the whole} inference process and finding limits...
\(N: 40000 \rightarrow 40 ; m: 0.00025 \rightarrow 0.25 ; \mu: 10^{-6} \rightarrow 10^{-3}\)

Something wrong ?

\section*{Results under ideal conditions: validating the whole} inference process and finding limits...
\(N: 40000 \rightarrow 40 ; m: 0.00025 \rightarrow 0.25 ; \mu: 10^{-6} \rightarrow 10^{-3}\)

Diffusion approximation \(\rightarrow\) bias in Nm estimation increases with m

Results under ideal conditions: validating the whole inference process and finding limits..

2d main result: Diffusion approximation strongly limits the consideration of "continuous populations" models with Migraine

2 models depending on individual spatial distribution in the landscape

2 (or more) demographic parameters :
\(N\) or \(D\) : sub-population size or density of individuals
\(\sigma^{2}\) : mean squared parent-offspring dispersal distance : inverse of the "strength of IBD"

\section*{Results under ideal conditions: another limit du to \(\mathrm{Nm}, \mathrm{g}\)} covariance

\section*{Results under ideal conditions: another limit du to \(\mathrm{Nm}, \mathrm{g}\)} covariance

3d main result: no information to infer Nm and \(g\) separately

\section*{A realistic setting}

\section*{A realistic setting}

Demographic estimate \(D_{\mathrm{e}} \sigma_{\mathrm{e}}^{2} \hat{=} 555\) ind (\(D_{\mathrm{e}} \hat{=} 0.003\) ind. \(\mathrm{m}^{-2}, \sigma_{\mathrm{e}} \hat{=} 125 \mathrm{~m}\))

Watts et al. Mol. Ecol. 2007

\section*{A realistic setting}

Demographic estimate \(D_{\mathrm{e}} \sigma_{\mathrm{e}}^{2} \hat{=} 555\) ind (\(D_{\mathrm{e}} \hat{=} 0.003\) ind. \(\mathrm{m}^{-2}, \sigma_{\mathrm{e}} \hat{=} 125 \mathrm{~m}\)) Genetic regression estimate \(D_{\mathrm{e}} \sigma_{\mathrm{e}}^{2} \hat{=} 753\) ind (Cl 319 - 3162).

Watts et al. Mol. Ecol. 2007

\section*{A realistic setting}

Demographic estimate \(D_{\mathrm{e}} \sigma_{\mathrm{e}}^{2} \hat{=} 555\) ind (\(D_{\mathrm{e}} \hat{=} 0.003\) ind. \(\mathrm{m}^{-2}, \sigma_{\mathrm{e}} \hat{=} 125 \mathrm{~m}\)) Genetic regression estimate \(D_{\mathrm{e}} \sigma_{\mathrm{e}}^{2} \hat{=} 753\) ind \((\mathrm{Cl} 319-3162)\). Genetic PAC-likelihood estimate \(D_{\mathrm{e}} \sigma_{\mathrm{e}}^{2} \hat{=} 1110\) ind (CI \(600-3125\))

\section*{Performance in messy/realistic conditions}
- Unknown mutation model
- Unknown dispersal distribution
- Cannot consider continuous populations (i.e. \(N=1\))

\section*{Performance in messy/realistic conditions}
- Unknown mutation model

Simulations of samples under SMM, analysis under KAM
- Unknown dispersal distribution

Simulation of samples under "Sichel" model (Chesson \& Lee, 2005)
Analysis under the geometric dispersal model
- Cannot consider continuous populations (i.e. \(\mathrm{N}=1\))

A binning step is incorporated

\section*{Performance in messy/realistic conditions}
- Unknown mutation model

Simulations of samples under SMM, analysis under KAM
- Unknown dispersal distribution

Simulation of samples under "Sichel" model (Chesson \& Lee, 2005) Analysis under the geometric dispersal model
- Cannot consider continuous populations (i.e. \(\mathrm{N}=1\))

A binning step is incorporated
\(\rightarrow\) Many things can go wrong, but neighborhood estimation is relatively robust

\section*{Performance in messy/realistic conditions}
- Simulations settings:
\(40 \times 40\) array, \(N=50, m=0.5, g=0.5, \mu=10^{-4}\) 200 individuals, 10 loci

\section*{Performance in messy/realistic conditions}
- Simulations settings:
\(40 \times 40\) array, \(N=50, m=0.5, g=0.5, \mu=10^{-4}\)
200 individuals, 10 loci
- Analysis settings: \(20 \times 20\) grid of bins, (few CPU days per sample)

\section*{Performance in messy/realistic conditions}
- Simulations settings:
\(40 \times 40\) array, \(N=50, m=0.5, g=0.5, \mu=10^{-4}\)
200 individuals, 10 loci
- Analysis settings: \(20 \times 20\) grid of bins, (few CPU days per sample)

ratio of RMSE: 0.62

\section*{Performance in messy/realistic conditions}
- Complex effects of binning on \(N m\) and \(g\) estimation

Bad: depend on the number of samples per bin \(\rightarrow\) difficult to infer dispersal rates and shape
- Expected \(>50 \%\) negative bias of \(N \mu\) estimates under the SMM (no bias under correctly specified mutation model)
- Neighborhood estimation is more robust
- Gains in efficiency relative to the spatial regression method: ratios of RMSE from 0.27 to 0.62

\section*{ML inferences under isolation by distance: summary}
- Likelihood inferences perform in an ideal way in (restrictive) ideal conditions
- Likelihood estimation still prohibitively long in large networks of populations. PAC-likelihood more feasible.
- Additional imperfections (Likelihood and PAC-likelihood) due to the diffusion approximation when \(m\) is large. \(N \mu\) and \(N m\) inferences most affected.
- In practice, the parameter easiest to estimate is the neighborhood size \(N b=4 \pi D \sigma^{2}\).

\section*{Overview}
(1) Introduction
(2) Algorithms used in Migraine
(3) Demographic \& mutational models
(4) The Migraine software

5 Demo
(6) Simulation studies
- Inferences under Isolation By Distance
- Inferences of past changes in population sizes
(7) Future directions
(8) Conclusions

\section*{The model}

A single population undergoing an exponential contraction

\section*{The bottleneck model (OnePopVarSize)}

Demographic model
- Single isolated panmictic population
- Population size started to change
\(T\) generations in the past, exponentially until present \(=\) sampling time

Biological vs. scaled parameters
- Population sizes : \(N\) genes (\(\left.\theta_{\text {act }}=2 N \mu\right)\), \(N_{\text {anc }}\) genes \(\left(\theta_{a n c}=2 N_{a n c} \mu\right)\)
- Time (change duration) : \(T\) generations (\(D=T / 2 N\))

\section*{The bottleneck model (OnePopVarSize)}

\section*{Demographic model}
- Single isolated panmictic population
- Population size started to change \(T\) generations in the past, exponentially until present

Mutational model
- Allelic data (microsatellites)
- simple model : SMM
- mutation rate : \(\mu=10^{-3}\)

8 repeats
TG|TG|TG|TG|TG|TG|TG|TG

7 repeats

9 repeats

\section*{The bottleneck model (OnePopVarSize)}

Demographic model
- Single isolated panmictic population
- Population size started to change \(T\) generations in the past, exponentially until present

Mutational model
- Allelic data (microsatellites)
- simple model : SMM
- mutation rate : \(\mu=10^{-3}\)

Other available method for such model : MsVar (M. Beaumont)
- Coalescent-based
- MCMC algorithm
- Bayesian implementation

\section*{The bottleneck model (OnePopVarSize)}

Demographic model
- Single isolated panmictic population
- Population size started to change \(T\) generations in the past, exponentially until present

Mutational model
- Allelic data (microsatellites)
- simple model : SMM
- mutation rate : \(\mu=10^{-3}\)

Genetic sample (small)
- 100 gene copies sampled
- 10 loci genotyped

\section*{The bottleneck model (OnePopVarSize)}

\section*{Demographic model}
- Single isolated panmictic population
- Population size started to change \(T\) generations in the past, exponentially until present

Mutational model
- Allelic data (microsatellites)
- simple model : SMM
- mutation rate : \(\mu=10^{-3}\)

\section*{outputs for OnePopVarSize for a single data set analysis}

\section*{most importantly : 1D and 2D Likelihood ratio profiles}

\section*{Results summary :}
*** Confidence intervals ***

95\%-coverage confidence interval for twoNmu : [0.441 -- 1.573] 95\%-coverage confidence interval for D : [\(0.857-2.502\)] 95\%-coverage confidence interval for twoNancmu : [36.76 -- 295.6] 95\%-coverage confidence interval for Nratio : [0.00329-- 0.0268]
*** Point estimates
\begin{tabular}{rrrr}
twoNmu & T & D & twoNancmu \\
0.937 & 0 & 1.48 & 94.67
\end{tabular}

\section*{OnePopVarSize : Bias, MSE, LRT on simulated data}

\section*{Same analyses as for IBD :}

\section*{(usually)GOOD}

\section*{OnePopVarSize : Bias, MSE, LRT on simulated data}

Same analyses as for IBD : (+ bottleneck detection rate)

\section*{(usually)GOOD}

\section*{OnePopVarSize : Bias, MSE, LRT on simulated data}

\section*{Same analyses as for IBD : (+ bottleneck detection rate)}

(usually)GOOD

\section*{OnePopVarSize : Bias, MSE, LRT on simulated data}

\section*{Same analyses as for IBD : (+ bottleneck detection rate)}

(usually)GOOD

Extremely recent and strong 10 Generations, \(D=0.025\)
\[
N_{\text {ratio }}=0.001\left(\theta_{\text {anc }}=400.0\right)
\]

Rel. bias, rel. RMSE
4.74, 6.44
(very rarely) BAD

\section*{OnePopVarSize : influence of the timing of the population} size change

BDR : Bottleneck Detection Rate (POWER)

Expected performances for very recent to very ancient change
- T varies from 10 to 3000 generations (\(D=T / 2 N\) from 0.025 to 7.5)

Results
- Very good bottleneck detection rate
- Precise parameter inference, at least for some parameters
- Strong dependance on the scenarios (as expected)

\section*{OnePopVarSize : influence of the timing of the population} size change

BDR : Bottleneck Detection Rate (POWER)

Expected performances for very recent to very ancient change
- T varies from 10 to 3000 generations (\(D=T / 2 N\) from 0.025 to 7.5)

Some comparison with MsVar
- Similar performances for "good" scenarios
- Better bottleneck detection rate for "non-optimal" scenarios

\section*{OnePopVarSize : influence of the timing of the population} size change

\section*{OnePopVarSize : influence of the timing of the population} size change

Expected performances for very recent to very ancient change
- T varies from 10 to 3000 generations (\(D=T / 2 N\) from 0.025 to 7.5)

Comparison with MsVar is not easy
- Frequentist vs. bayesian approaches
- very long computation times for MCMC

\section*{OnePopVarSize : influence of the strength of the population size change}

BDR : Bottleneck Detection Rate (POWER)

- Very good bottleneck detection rate for \(N_{\text {ratio }} \geqslant 10\)
- Precise parameter inference when bottlenecks are detected
- better for stronger bottlenecks

\section*{OnePopVarSize : mis-specification of mutation processes}

Microsatellite markers show complex mutation processes
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{8 repeats
\[
\text { TG } \mathrm{TG}|\mathrm{TG}| \mathrm{TG}|\mathrm{TG}| \mathrm{TG}|\mathrm{TG}| \mathrm{TG}
\]} \\
\hline \\
\hline TG
\[
+T
\] \\
\hline 7 repeats 9 repeats \\
\hline
\end{tabular}

\section*{OnePopVarSize : mis-specification of mutation processes}

Microsatellite markers show complex mutation processes
8 repeats
TG|TG|TG|TG|TG|TG|TG|TG
7 repeats 9 repeats
- Mutations do not fit SMM, indels of more than one repeat often occur

7 repeats 9 repeats
- Better mutation model \(=\) Generalized Stepwise Model (GSM) indels of \(X\) (geometric) repeats commonly found value in "natura" : \(p G S M \approx 0.22\)

\section*{OnePopVarSize : mis-specification of mutation processes}

Microsatellite markers show complex mutation processes
\begin{tabular}{l}
8 repeats \\
\hline TG \(\mid\) TG \(\mid\) TG \(\mid\) TG \(\mid\) TG \(\mid\) TG \(\mid\) TG \(\mid T G\) \\
\hline
\end{tabular}
- Mutations do not fit SMM, indels of more than one repeat often occur

- Better mutation model \(=\) GSM indels of \(X\) (geometric) repeats commonly found value in "natura" : \(p G S M \approx 0.22\)
- Problem : Analyses under the SMM of data simulated under a GSM in a stable population often show signs of bottleneck (\(57 \%\) of false detection with \(p G S M=0.22\))

Rel. bias, rel. RMSE
\(-0.154,3.59\)

\section*{OnePopVarSize : mis-specification of mutation processes}

Solution : bottleneck model includes GSM (work with P. Pudlo)
- One more parameter (pGSM) \(\Rightarrow 4\) param. to infer
- Longer runs are needed because of larger param. space

\section*{OnePopVarSize : mis-specification of mutation processes}

Solution : bottleneck model includes GSM (work with P. Pudlo)
- One more parameter (pGSM)
- Longer runs are needed
results: inferences under a GSM
- pGSM infered with limited precision
- Other parameters well inferred
- Not much loss of precision with GSM vs. SMM

Rel. bias, rel. RMSE
Rel. bias, rel. RMSE
0.1620 .661
0.216.1.33

\section*{OnePopVarSize : mis-specification of mutation processes}

Solution : bottleneck model includes GSM (work with P. Pudlo)
- One more parameter (pGSM)
- Longer runs are needed results : inferences under a GSM
- pGSM infered with limited precision
- Other parameters well inferred
- Not much loss of precision with GSM vs. SMM

- GSM itself too simple: persistent mis-specification of mutational model
- Either robust model or need to consider other type of data, such as SNPs

\section*{OnePopVarSize : conclusions and perspectives}
- Very efficient for bottleneck detections
- Accurate inferences for most demographic scenarios
- Relatively robust to fine scale population structure (i.e. local IBD)
- Much faster and more accurate than the MCMC equivalent (MsVar) But :
- Not robutst to mutational processes
- Not robust to large scale population structure (e.g. island structure)
- Inaccurate for very strong demographic disequilibrium situations what remains to do :
- Distinguishing between immigration and pop. size variation
- Adapting IS for disequilibrium models (not an easy task...)

\section*{Overview}
(1) Introduction

2 Algorithms used in Migraine
(3) Demographic \& mutational models
(4) The Migraine software
(5) Demo
- Simulation studies
- Inferences under Isolation By Distance
- Inferences of past changes in population sizes
(7) Future directions
(8) Conclusions

\section*{Perspectives}

Mutational models being currently implemented :
- Short DNA sequences (ISM)
- SNPs

\section*{Perspectives}

Mutational models being currently implemented :
- Short DNA sequences (ISM)
- SNPs

Demographic models which we plan to implement "shortly":
- Founder-Flush
(first tests are running, see Poster 15)
the founder-flush model (FF)

\section*{Perspectives}

Mutational models being currently implemented :
- Short DNA sequences (ISM)
- SNPs

Demographic models which we plan to implement "shortly":
- Founder-Flush
- Pure divergence 2-4 populations (with C. Beeravolu)
- Isolation with Migration 2-3 populations (with C. Beeravolu)
- Island population structure with past size variations
- IBD in two habitats (ecological barrier)(with A. Coulon)
- IBD with a geographic barrier (with A. Coulon)

\section*{Overview}
(1) Introduction
(2) Algorithms used in Migraine
(3) Demographic \& mutational models
(4) The Migraine software
(5) Demo
- Simulation studies
- Inferences under Isolation By Distance
- Inferences of past changes in population sizes
(7) Future directions
(8) Conclusions

\section*{MIGRAINE general conclusions}

\section*{Very encouraging results}
- Relatively easy to use (iterative analyses, no need for fine tuning)
- Reasonnable computation times (3h to 3 days for a classical data set), except for large IBD and strong disequilibrium
- Easy to paralellise
- Competitive compared to "MCMC-coalescent-based" approaches
some limits
- Strong bias on \(N \mu\) for very strong disequilibrium situations
- Limited number of parameters
...more and more models will be added, be patient...

\section*{MIGRAINE general conclusions}

\section*{Very encouraging results}
- Relatively easy to use (iterative analyses, no need for fine tuning)
- Reasonnable computation times (3h to 3 days for a classical data set), except for large IBD and strong disequilibrium
- Easy to paralellise
- Competitive compared to "MCMC-coalescent-based" approaches
some limits
- Strong bias on \(N \mu\) for very strong disequilibrium situations
- Limited number of parameters
...more and more models will be added, be patient...
Thank you for your attention```

