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Abstract

This paper deals with the interactions between farmers who can choose between

two water supplies (groundwater or rainwater) which are interdependent and have

different productivities. Collecting rainwater reduces the amount of water that can

replenish the aquifer and allows farmers to avoid the pumping cost externality (but

increases the cost of pumping groundwater). We show that multiple equilibria can

exist. For a policy-maker, this immediately raises the equilibrium selection issue.

This problem is worsened by the fact that the number of equilibria increases with a

decrease in the recharge rate. In addition, comparative statics show that, depending

on the equilibrium, a policy intervention can have opposite effects. Finally, we show

that asymmetric equilibria can also exist, when one group of farmers chooses to

harvest rainwater to avoid the pumping cost externality and the other group chooses

to pump groundwater.
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1 Introduction

Water scarcity is expected to become an ever-increasing problem in the future and one of

the main issues under climate change (IPCC [8]). With the increase in the frequency of

extreme weather events, one of the key climate impacts is changing precipitation patterns,

which may challenge hydrological functioning, and disturb existing equilibria (IPCC [8]).

We can thus expect that the growing pressure on common resources will trigger further

competition among resource users, jeopardizing existing management arrangements (Os-

trom [15]). In this context, it is important to study both interactions among resource

users and physical interactions among water resources.

In this paper, we deal with the interactions between identical farmers who can choose

between two water supplies (groundwater or rainwater). First, groundwater and rainwater

have different productive properties: evaporation of rainwater may be greater than that

of groundwater and the consumptive use of groundwater may consequently be higher;

groundwater may be salty or contain toxic substances (e.g. chloride) leading to higher

consumptive use of rainwater. Second, groundwater and rainwater are interdependant

because the collection of rainwater reduces the amount of water that replenishes the

aquifer. An interesting property of this game is that the farmers who collect rainwater

escape the pumping cost externality but they generate a negative externality for the

farmers who pump groundwater: they reduce the amount of water that can replenish the

aquifer which, in turn, increases the pumping cost.

This paper builds on the literature on water resource economics (see for example Cum-

mings [3], Gisser and Sanchez [7], Koundouri [10], Moreaux and Reynaud [12],[13], Negri

[14], Roseta-Palma [18], Rubio and Casino [20]). In particular, our paper is linked to the

literature that considers water as a system of different water bodies. One strand of the

literature deals with optimal management of multiple groundwater resources (see Roumas-

set and Wada [19] or Zeitouni and Dinar [26]). Another strand studies the conjunctive

use of ground and surface water (see Burt [1], Chakravorty and Umetsu [2], Gemma and

Tsur [6], Knapp and Olson [9], Krulce, Roumasset and Wilon [11], Pongkijvorasin and

Roumasset [16], Stahn and Tomini [22], [23] or Tsur and Graham-Tomasi [24]). Roumas-

set and Wada [19] showed that optimal management of several independent groundwater

resources depends on their marginal opportunity cost: only the resource with the lowest
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marginal opportunity cost is used initially, whereas in the steady state, all resources are

used. However, in the present paper, we consider two interrelated resources. Zeitouni

and Dinar [26] studied the case of two interrelated aquifers : depending on the relative

height of the water tables, water will flow from one aquifer to the other. This could

lead to the contamination of the aquifer with the better water quality. Optimal water

management is then defined by the joint management of these interrelated resources, the

threat of contamination representing an additional externality that has to be taken into

account. In the present paper, we do not deal with two interelated aquifers but instead

the interaction between rainwater and groundwater resources. Rainwater and groundwa-

ter are physically linked because rainwater (partially) infiltrates the soil and replenishes

the aquifer. Stahn and Tomini ([22], [23]) also considered the joint use of groundwater

and rainwater and focused on the optimal management of these resources. They showed

that, in the long-run, the introduction of rainwater harvesting may lead to a greater de-

pletion of the groundwater aquifer. This result was obtained by extending the standard

groundwater model to include the connection between two water supplies. Especially, in

[22], the decrease in the water table first occurs because of the negative effect of rainwater

harvesting on the groundwater recharge rate and, second, because the efficiency of water

use depends on the relative rate of evapotranspiration in the storage reservoir and infil-

tration to the groundwater aquifer. In contrast to Stahn and Tomini ([22], [23]), we focus

on the strategic interactions between several farmers (see Dockner et al. [4], Rubio and

Casino [21], Negri [14]) and the problem of sharing a common resource.

In sum, we model the management of the interrelated groundwater-rainwater water

resource system, in the context of strategic interactions between homogeneous resource

users, i.e. farmers who share a common resource. We first assume that farmers make

consistent commitments (open-loop game). We then deal with the feedback game, in

which each farmer’s irrigation strategy is a function of the resource stock. We focus

on the role of the cost and productivity differential between the use of rainwater and

groundwater. Because resources are physically interlinked, we cannot simply compare

marginal extraction and user costs of separate use, as proposed by Pongkijvorasin and

Roumasset [16], but we compare all possible equilibria of joint or separate use of the

resource.
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We report three main results. First, we show that multiple equilibria can exist. For

a policy maker, this immediately raises the equilibrium selection issue. Second, we show

that this problem is worsened by the fact that the number of equilibria increases with an

increase in the scarcity of water (with a lower recharge rate). In addition, comparative

statics show that variations in one parameter of the model can have opposite effects

depending on the equilibrium concerned. Third, we show that asymmetric equilibria can

exist in our symmetric player dynamic game (see Vives [25] for conditions that determine

the non-existence of asymmetric equilibria in a static framework). For instance, one

group of farmers chooses to harvest rainwater to avoid the pumping cost externality while

the other group pumps groundwater. This specialization is due to the pumping cost

externality: pumping becomes more costly when the water-table is reduced by another

resource-user and some farmers consequently avoid this externality by choosing to harvest

rainwater instead of pumping groundwater.

In terms of policy implications, our results suggest that it may be difficult to define

a policy for a resource with low recharge rates, because many different equilibria can

co-exist. In addition, with varying parameter values, the fundamental parameters of each

equilibrium do not vary in the same sense.

The paper is organized as follows. In section 2, we present the model. In section 3, we

describe the necessary conditions required for the existence of symmetric and asymmetric

stationary Nash equilibria, emphasizing the interactions between the two water sources.

In section 4 we discuss the co-existence of both symmetric and asymmetric stationary

Nash equilibria (SNE), highlighting the role of water availability through the level of the

recharge rate. Finally, in section 5, we discuss our results and draw some conclusions.

2 The Model

We consider a continuous time strategic interaction problem where a fixed number N ≥ 2

of farmers uses water as an input and can use rainwater and/or groundwater.
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2.1 Groundwater Dynamics

We consider a single-cell, unconfined and “bathtub” type aquifer with flat bottom and

perpendicular sides. In this aquifer, the water table increases because some part of rain

(net of rainwater harvesting) soaks into the soil and reaches the ground to replenish the

aquifer and it decreases because of farmers’ withdrawals. We denote R the quantity of

rain and ρ ∈ (0, 1) the infiltration rate. In line with the wider part of literature,1 the

natural recharge is exogenously determined (i.e. not stock dependent).2

Farmer i pumps a quantity of groundwater gi(t) in the aquifer at time t and therefore

the decline of the level of water table results from the total pumping :
∑N

i=1 gi(t). He

can also directly collect a quantity ri(t) from the recharge at the surface, before rainwater

seeps into the ground. Consequently, rainwater harvesting reduces the amount of water

that replenishes the aquifer by the total quantity of rainwater that resource users have

harvested, that is
∑N

i=1 ri(t). Thus, when the farmers collect rainwater, the quantity of

water that reaches the aquifer is ρ
(
R−

∑N

i=1 ri(t)
)
.

Combining these assumptions all together, we assume that the groundwater dynamics

is characterized by the following differential equation:

ḣ (t) = ρ

(
R−

N∑

i=1

ri(t)

)
−

N∑

i=1

gi(t), (1)

where h (t) is the level of the water table at time t.

This simple formulation allows us to account for the connection between the two water

supplies and emphasizes the hydrological aspect.

2.2 Net Farmers’ Benefits

Farmers use a combination of the two water supplies, gi(t) ≥ 0 and ri(t) ≥ 0 at period

t, for production.3 We assume that the two water supplies impact the output differ-

1See, among others, Gisser and Sanchez [7], Koundouri [10], Rubio and Casino [21].
2For simplification, we do not take into account the local percolation and discharge. When the

water table is near the ground surface, there is little opportunity for recharge and shallow aquifers are
recharged by local percolation of surface water and discharged by crops that use the water out of the
ground. However, large aquifers run deep and are highly dependent on rain and melting snow.

3As we focus on irrigation strategies, water is the only input considered.
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ently. Namely, the productivity of groundwater is denoted µ > 0 and the productivity of

rainwater is denoted θ > 0. We assume that the two water supplies are substitutes:

Wi (t) = µgi(t) + θri(t). (2)

The quantity of water, Wi(t), is the unique input and F (.) is an increasing and concave

production function. The price of one unit of output is normalized to 1, thus F (Wi (t))

represents farmer i’s contemporaneous benefit. The cost of extraction of groundwater,

C(., .), is a function of the level of the water table, h(t) ≥ 0, and of the quantity of

water pumped, gi(t).
4 This cost increases with the quantity of groundwater pumped and

decreases with the level of the water table:

Cg(h(t), gi(t)) ≥ 0, Ch(h(t), gi(t)) ≤ 0. (3)

We also assume that Ch(h, 0) = 0.

The cost of collection of rainwater, D (r(t)), (e.g the transport cost from the point

of the reservoir to the irrigation area) depends on the quantity collected and does not

depend on the level of the water table. This cost is increasing, D′ > 0. We make usual

assumptions on the convexity of the cost functions, Cgg(h(t), gi(t)) ≥ 0, D′′ (ri(t)) ≥ 0.

We also assume that the cross-derivative of the cost of groundwater extraction is negative,

Cgh(h(t), gi(t)) < 0, i.e. the marginal cost of groundwater extraction decreases when the

level of the water table increases.

We assume that it is practically impossible to collect all the recharge through rainwater

harvesting:

R >

N∑

i

ri(t). (4)

Farmer i’s net benefit at time t is then:

F (µgi(t) + θri(t))− C(h(t), gi(t))−D (ri(t)) . (5)

4As aforementioned, we consider a “bathtub” type aquifer, and then the cost is the same at each point
of the aquifer.
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The farmers behave non-cooperatively. They maximize the present value of their stream

of profits given the extraction path of others with a common discount rate δ. The ith

farmer faces the following dynamic optimization problem:5

max
{gi,ri}

∫ ∞

0

(F (W (t))− C(h(t), gi(t))−D (ri(t))) exp
−δt dt

w.r.t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ḣ = ρ
(
R−

∑N

i ri(t)
)
−
∑N

i gi(t)

gi(t) ≥ 0

ri(t) ≥ 0

h(t) ≥ 0

R >
∑N

i ri(t)

h(0) given and h(∞) free

(6)

3 Stationary Nash Equilibria

The farmers solve their dynamic problem simultaneously. We first focus on the open-loop

Stationary Nash equilibria (SNE). We then show how our main results are affected when

the farmers use feedback strategies (see Remark 1 at the end of the present section). We

can define the current-value Hamiltonian function of farmer i as follows:

Hi = F (Wi(t))− C(h(t), gi(t))−D (ri(t)) + pi

[
ρ

(
R−

N∑

i=1

ri(t)

)
−

N∑

i=1

gi(t)

]
, (7)

where pi(t) is the shadow price of groundwater for farmer i.

and the corresponding Lagrangian function:6

Li = Hi + λgigi(t) + λriri(t), (8)

where λgi and λri are the Lagrangian multipliers.

5We assume that this problem has a solution.
6We compare the various steady states in different situations where the aquifer is not depleted, h > 0.
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The first order conditions for a stationary Nash equilibria (SNE) are:

∂Li

∂gi
= µF ′ (Wi)− Cg(h, gi)− pi + λgi = 0, (9)

λgi ≥ 0, λgigi = 0, (10)

∂Li

∂ri
= θF ′ (Wi)−D′ (ri)− ρpi + λri = 0, (11)

λri ≥ 0, λriri = 0, (12)

ṗi = 0 = δpi −
∂Li

∂h
= δpi + Ch(h, gi), (13)

ḣ = 0 = ρR− ρ
N∑

i=1

ri −

N∑

i=1

gi, (14)

where Wi = µgi + θri.

Condition (9) states that the marginal benefit of one additional unit of groundwater

must be equal to the total marginal cost (that is the sum of costs, extraction or storage,

with the opportunity cost of removing one unit of water from the ground), if the farmers

indeed use groundwater. Condition (11) states that the marginal benefit of one additional

unit of rainwater must be equal to the total marginal cost (that is the sum of costs,

extraction or storage, with the opportunity cost of removing one unit of water from

the ground), if the farmers indeed use rainwater. Condition (13) characterizes the time

variation of shadow price of player i, pi that represents the effect that the depletion of

the water table in the current period has on future profits. It is positively affected by the

discount rate, the current price and the marginal effect of the water table depletion on

pumping cost. Conditions (10) and (12) are the complementary slackness conditions.

In the following, the marginal costs of groundwater and rainwater play an important

role in the optimal choice of the farmers. The marginal costs of groundwater and rainwater

are essentially different because the marginal cost of groundwater, Cg(h, g), depends on

the level of the water table h while the short run marginal cost of rainwater, D′ (r),

does not. In a SNE, the user cost of groundwater, pi = −1
δ
Ch(h, g), is the marginal

effect of a decrease in the water table weighted by the discount rate δ (see condition

(13)). It represents the increase in the future marginal costs of groundwater use due to

contemporaneous use of groundwater. The user cost of rainwater, ρpi, is a fraction of
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the user cost of groundwater, because the recharge rate of the aquifer from rainwater is

ρ < 1. It represents the increase in the future marginal costs of groundwater use due to

contemporaneous use of rainwater.

Let us define the full marginal cost of groundwater, MC. It is the sum of the short

run marginal cost, Cg(h, g), and the user cost of groundwater, pi = −
1
δ
Ch(h, g):

MC(h, g) ≡ Cg(h, g)−
1

δ
Ch(h, g), (15)

Similarly, we define the full marginal cost of rainwater, MD. It is the sum of the short

run marginal cost D′ (r) and the user cost of rainwater, ρpi = −ρ
1
δ
Ch(h, g):

MD (h, r, g) ≡ D′ (r)− ρ
1

δ
Ch(h, g). (16)

At the SNE, farmers may choose a different mix of groundwater and rainwater. In

particular, they can use groundwater or rainwater only but they can also use both water

sources simultaneously. However, because all farmers are identical, we can easily show

that if a group of farmers uses groundwater they pump the same amount of groundwater

and if they collect rainwater, they collect the same amount of rainwater.

In the following, we successively consider necessary conditions for the existence of

symmetric and asymmetric stationary Nash equilibria.

3.1 Symmetric Stationary Nash Equilibria

A symmetric SNE is a SNE where all the farmers choose the same mix of groundwater

and rainwater. Three situations may happen: (i) the farmers use rainwater only, (ii) the

farmers use groundwater only or (iii) the farmers use both water supplies.

In a symmetric SNE, for any two farmers i and j, we have gi = gj = g and ri = rj = r

(and then pi = p, λgi = λg and λri = λr). Consequently, the aggregate amount of

groundwater used is
∑N

i=1 gi = Ng and the total amount of rainwater used is
∑N

i=1 ri =

Nr.

In the following, we use superscripts RW , GW and c to denote the SNE values at

the (i) “rainwater harvesting SNE”, (ii) the “groundwater pumping SNE” and (iii) “the
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conjunctive use SNE”, respectively.

We first show that there is no SNE such that all the farmers use rainwater only and

then we turn to the characterization of the other symmetric SNE.

3.1.1 Farmers use rainwater only

Let us first consider the SNE where the farmers use rainwater only. This implies that the

slackness condition is : gRW = 0, λRW
r = 0 and λRW

g ≥ 0. Taking into account that at the

SNE we must have ḣRW = ṗRW = 0, from equation (13) it is straightforward that:

pRW = −
1

δ
Ch(h

RW , 0) = 0. (17)

Hence, when the farmers use rainwater only, their user cost is null. We now show the

following result:

Proposition 1 There is no SNE where the farmers use rainwater only.

Proof of Proposition 1: Using ḣRW = 0, condition (9) becomes NrRW = R and this is

contradictory with
∑
i

ri < R. �

The intuition of this result is simple: if the farmers use rainwater only, they harvest

all the recharge, which contradicts our assumption that this is not practically feasible (see

condition (4)).

3.1.2 Farmers use groundwater only

Let us now consider the SNE where all the farmers withdraw groundwater only. This

implies that rGW = 0 and, from the slackness condition (12), we have λGW
r ≥ 0 while the

slackness condition (10) leads to λGW
g = 0.

Taking into account that ḣGW = ṗGW = 0, equations (13) and (14) can be used to

find the characterization of the extraction rate and the shadow price in the SNE:

gGW =
ρR

N
(18)

pGW = −
1

δ
· Ch(h

GW , gGW ). (19)
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In the long-run, farmers use an identical share of the recharge of the aquifer, as we can

see in condition (18).

Substituting λGW
g = 0 and condition (19) into condition (9), we obtain an implicit

characterization of the SNE level of the water table, hGW :

µF ′
(
µgGW

)
= MC

(
hGW , gGW

)
. (20)

Substituting rGW = 0 and (19) into condition (11), we obtain the SNE value for the

Lagrangian multiplier,

λGW
r = MD(hGW , 0, gGW )− θF ′

(
µgGW

)
. (21)

Condition (21) and λGW
r ≥ 0 imply that the full marginal rainwater cost in the long-run

must be greater than the long-run marginal productivity or rainwater.

MD(hGW , 0, gGW ) ≥ θF ′
(
µgGW

)
(22)

Finally, combining (20) and (22), we obtain the following necessary condition for the

existence of a groundwater pumping SNE:

Proposition 2 If a groundwater pumping SNE exists, then the ratio of the marginal

productivities of the two water sources is higher than the ratio of the full marginal costs:

µ

θ
≥

MC
(
hGW , gGW

)

MD (hGW , 0, gGW )
.

Proof of Proposition 2: Combine conditions (20) and (22). �

Proposition 2 shows that when a groundwater pumping SNE exists, the relative pro-

ductivity of groundwater exceeds the relative full marginal cost of groundwater (compared

to rainwater). In contrast with Roumasset and Wada [19], the optimal extraction is not

only driven by extraction costs, but also by the difference of productivity (µ and θ).
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3.1.3 Farmers use rainwater and groundwater

Now, we focus on SNE in which each farmer uses both rainwater and groundwater. In

this case, the complementary slackness conditions (10) and (12) require that the two

Lagrangian multipliers are zero, λc
r = λc

g = 0.

Using ṗc = ḣc = 0, we deduce that the rainwater harvesting level and the shadow price

depend on the quantity of groundwater pumped:

pc =
gc

δ
, (23)

and,

rc =
ρR−Ngc

Nρ
. (24)

Then, substituting these expressions into conditions (9) and (11), we obtain the fol-

lowing system of equations:

{
µF ′ (W c) = MC (hc, gc) ,

θF ′ (W c) = MD (hc, rc, gc) ,
(25)

where W c = µgc + θrc.

These conditions enable us to characterize the conjunctive use SNE. The following

proposition provides a necessary condition:

Proposition 3 If a conjunctive SNE exists, then the ratio of the marginal productivities

is equal to the ratio of the full marginal costs:

µ

θ
=

MC (hc, gc)

MD (hc, rc, gc)
. (26)

Proof of Proposition 3: Combine the two conditions in (25). �

This condition means that farmers are indifferent between the two water sources. They

will use rainwater or groundwater indifferently.
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3.2 Asymmetric Stationary Nash Equilibria

To characterize the various possible types of asymmetric SNE, it is convenient to define

three different groups of farmers: (i) nG ≥ 0 farmers are fully specialized in groundwater

pumping (group G), (ii) nR ≥ 0 farmers are fully specialized in rainwater harvesting

(group R), and (ii) nB ≥ 0 farmers use both groundwater and rainwater (group B).7 We

use superscript a to denote the (asymmetric) SNE values.

We need to distinguish the first order conditions for these three groups of farmers.

Formally, the optimal choice of a farmer who uses groundwater only, i.e. raG = 0 and gaG >

0, is characterized by the following necessary conditions (with the slackness condition,

λa
gG = 0):

µF ′(µgaG)− Cg(h
a, gaG)− paG = 0, (27)

θF ′(µgaG)−D′ (0)− ρpaG(t) + λa
rG = 0, (28)

ṗaG = 0 = δpaG + Ch(h
a, gaG), (29)

where paG denotes the shadow price of the farmers who use groundwater only.

A farmer who uses rainwater only, i.e. raR > 0 and gaR = 0, is characterized by the

following necessary conditions (with the slackness condition, λa
rR = 0):

µF ′(θraR)− Cg(h
a, 0)− paR + λa

gR = 0, (30)

θF ′(θraR)−D′ (raR)− ρpaR = 0, (31)

ṗaR = 0 = δpaR + Ch(h
a, 0), (32)

where paR is the shadow price for the farmers who use rainwater only.

The choice of a farmer who uses both rainwater and groundwater, i.e. raB > 0 and

gaB > 0, is characterized by the following necessary conditions (with the two slackness

7Asymmetric equilibria are such that at least two of these three groups have at least one member.
Otherwise the equilibrium would be a symmetric equilibrium.
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conditions, λa
rB = λa

gB = 0):

µF ′(θraB)− Cg(h
a, gaB)− paB = 0, (33)

θF ′(θraB)−D′ (raB)− ρpaB = 0, (34)

ṗaB = 0 = δpaB + Ch(h
a, gaB), (35)

where paB is the shadow price for the farmers who use both rainwater and groundwater.

Finally, the water table dynamics is affected by the resource use of all the farmers

(14):

ḣa = 0 = ρR− [nGg
a
G + nBg

a
B]− ρ [nRr

a
R + nBr

a
B] . (36)

First consider the group of farmers who use rainwater only, group R and remark that

pR = 0 because Cg(h(t), 0) = 0.

Proposition 4 In any asymmetric SNE, the shadow price for the farmers who use ground-

water only or both groundwater and rainwater is strictly positive, paG, p
a
B > 0 whereas the

equilibrium shadow price for the farmers who use rainwater only is null, paR = 0.

Proof of Proposition 4: The proof of this result is straightforward using Cg(h(t), 0) = 0,

Cgh < 0 and the necessary conditions. �

The farmers who use groundwater suffer from a negative externality generated by

groundwater and rainwater use, because the use of groundwater and rainwater decreases

the level of the water table, which in turn increases the groundwater pumping costs.

Differently, the user cost of the farmers of group R is null and then they do not care

about the level of the water table. They escape the externality because they harvest

rainwater instead of pumping groundwater.

Now, let us further analyse the necessary conditions for each group of farmer. Using

(31) and paR = 0, we find that the marginal benefit of rainwater must equal its marginal

cost:

θF ′(θraR) = D′ (raR) (37)

and using (30), paR = 0, and λa
gR ≥ 0, we find that the marginal cost of groundwater must
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be larger than its marginal benefit:

Cg(h
a, 0) ≥ µF ′(θraR) (38)

We use equations (37) and (38) and obtain a necessary condition for the choice of the

group who uses rainwater only. This condition is:

µ

θ
≤

Cg(h
a, 0)

D′ (raR)
. (39)

This condition states that the productivity ratio has to be smaller than the marginal cost

ratio. In fact, the choice of the farmers of group R is driven by short term effects only.

Indeed, because they do not use groundwater, they do not take into account any future

increase in groundwater pumping, and their shadow price is nil.

Now consider group G (the farmers who use groundwater only). Using equations (27)

and (29), we find that the marginal benefit of groundwater must be equal to the long

term marginal cost of groundwater:

µF ′(µgaG) = MC(ha, gaG), (40)

and using condition (28) and λa
rG ≥ 0, we find that the full marginal cost of rainwater

must be larger than the marginal benefit of rainwater:

MD(ha, 0, gaG) ≥ θF ′(µgaG) (41)

Further, combining equation (40) and (41) leads to the following necessary condition:

µ

θ
≥

MC(ha, gaG)

MD(ha, 0, gaG)
. (42)

This condition states that the relative marginal productivity of groundwater is larger

than its relative full marginal costs. This condition is similar to the condition for the

groundwater pumping SNE but the equilibrium values differ. Indeed, in the present case,

the level of the water table depends on the choice of the three groups of farmers (group G,

group R and group B) and they use different mix of groundwater and rainwater whereas
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the level of the water table depends on the choice of the unique group of farmer, group

G, at the groundwater pumping SNE.

Finally, considering the necessary conditions (33), (34) and (35) regarding the choice

of farmers in group B, we find the following necessary condition:

µ

θ
=

MC(ha, gaB)

MD(ha, raB, g
a
B)

. (43)

Thus, the farmers of group B must be indifferent between using rainwater or groundwater:

the relative productivity must be equal to the relative full marginal cost. This condition

is similar to the necessary condition for a conjunctive use SNE but the equilibrium values

differ.

The following proposition summarizes our results:

Proposition 5 If an asymmetric SNE exists, then we must have:

MC(ha, gaG)

MD (ha, 0, gaG)
≤
(I1)

µ

θ
=
(E)

MC(ha, gaB)

MD (ha, raB, g
a
B)

≤
(I2)

Cg(h
a, 0)

D′ (raR)
,

and at least two groups are non empty. The left-hand-side inequality (I1) is necessary only

if nG > 0, condition (E) is necessary only if nB > 0 and the right-hand side inequality

(I2) is necessary only if nR > 0.

Proof of Proposition 5: The proof lies in the reasoning above the Proposition. �

To provide more intuition on the possible existence of asymmetric equilibria, let us

consider the case where some farmers use rainwater only. We know that they face no user

cost and they do not take into account the depletion of the aquifer. In this context, an

asymmetric SNE exists only if some farmers still pump groundwater. The following result

provides a necessary condition:

Corollary 1: Assume that the marginal cost of rainwater is constant, D′ (r) = K. If

an asymmetric SNE such that the group of farmers using rainwater only is non empty

(nR > 0) exists, then:
µ

θ
≥

1

ρ
. (44)

Proof of Corollary 1: In the Appendix. �
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This result states that when some farmers use rainwater only, it is still optimal for

some other farmers to pump groundwater if the relative productivity ratio of groundwater

is larger than 1/ρ, that is the relative groundwater recharge rate of the aquifer.

3.3 Feedback strategies

Let us now describe how the main results of the present section are affected when the

farmers use feedback strategies. Assuming that the farmers use feedback strategies means

that they choose strategies, (gi, wi), that depend on the level of the water table, h. Each

farmer knows that the other farmers base their strategies on the level of the water table.

Consider the case of two farmers (denoted 1 and 2), the SNE groundwater and rainwater

use levels of farmer i are of the form gi = gi(h), ri = ri(h) and the Hamiltonean can be

written as:

Hi = F (Wi)− C(h, gi)−D (ri) + pi

[
ρ

(
R− ri −

∑

j 6=i

rj(h)

)
− (gi +

∑

j 6=i

gj(h)

]
.

The first order conditions still write (9–14) except condition (13). This will affect the full

marginal costs as follows:

Remark 1 : When the farmers use feedback strategies and N = {1, 2}, the results of

Propositions 1 to 5 are unchanged if the full marginal costs of player i are (re)defined as

follows:

MC(h, gi) = Cg(h, gi)−
1

δ +
∂gj
∂h

+ ρ
∂rj
∂h

Chq(h, gi), (45)

and,

MD (h, ri, gi) = D′ (r)− ρ
1

δ +
∂gj
∂h

+ ρ
∂rj
∂h

Ch(h, g), (46)

with i 6= j and i = 1, 2.

As each farmer knows that the other farmers base their strategies on the level of the

water table, they take into account the induced change in the water use of the other

farmers. The only difference with the openloop case is the additional term,
∂gj
∂h

+ ρ
∂rj
∂h

,

that affect the full marginal costs.
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4 Anti-coordination and Coordination Problems

The negative externality generated by the use of groundwater and rainwater on the

groundwater users (through the decrease of the water table and the increase in the pump-

ing cost) raises the problem of the regulation of this economy. We do not want to discuss

the nature of the objective and the instruments of the regulator, but we want to address

some potential strong difficulties that a regulator may face in this context. We use an

example and show four results: (i) that several symmetric and asymmetric equilibria may

coexist (when the recharge is small), (iii) that these equilibria are stable, (iii) that the

level of the water table differs accros these equilibria, and (iv) that the equilibrium lev-

els of rainwater and groundwater use varies in opposite directions with respect to the

fundamentals of the model.

We assume the following functional forms. The production function is quadratic:

F (Wi(t)) = Wi(t)−
1

2
(Wi(t))

2 , (47)

and the two cost functions, the pumping cost and the rainwater harvesting cost, are

specified as follows:

C(h(t), gi(t)) = (c− h(t)) gi(t) with c > 0, (48)

D (ri(t)) = Kri(t) with K > 0. (49)

Note that the water table is supposed to be upper-bounded (in this example), that is if

the aquifer reaches its maximum height, c = h, groundwater pumping is no more costly.

To avoid unrealistic cases where the net benefit is always decreasing in the amount of

rainwater used, we assume that θ > K, i.e. the marginal contribution of rainwater in the

production process must be higher than its marginal cost.
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The first order conditions for farmer i (conditions 9–14) can be rewritten:

∂Li

∂gi
= µ− µWi − (c− h)− pi + λgi = 0, (50)

λgi ≥ 0, λgigi = 0, (51)

∂Li

∂ri
= θ − θWi −K − ρpi + λri = 0, (52)

λri ≥ 0, λriri = 0, (53)

ṗi = 0 = δpi −
∂Li

∂h
= δpi − gi, (54)

ḣ = 0 = ρR− ρ
N∑

i=1

ri −

N∑

i=1

gi, (55)

where Wi = µgi + θri.

In the following, we proceed as follows: we analyze the necessary conditions (50–55)

and distinguish the various types of SNE in our example. For each type of SNE, we can

translate the necessary conditions into intervals to which the recharge rate must belong

to. We can then use the conditions on the recharge rate to check whether two different

equilibria may coexist (we check whether the intervals overlap). Figure 1 summarizes the

findings discussed below about the existence of different equilibria when the recharge rate

varies.8 The graph on the left hand side summarizes the conditions under which multiple

equilibria may exist, including asymmetric equilibria. The graph on the right hand side

summarizes the conditions under which the SNE is unique.

To construct the graphs, we first derived the conditions for the existence of a ground-

water pumping SNE. We can show that this type of equilibria exists (see the Appendix)

only if the productivity of groundwater µ is sufficiently large and/or the productivity of

rainwater θ is sufficiently small (R > Nδ(θ−K)
ρ(µδθ+ρ)

≡ R1). We then derive the conditions for the

existence of a conjunctive use SNE. We show that farmers may use the two water sources

conjunctively only in two specific situations: when the recharge level is lower than in the

previous case (R < R1) and the relative productivity of groundwater is sufficiently low, as

shown on the right hand side of the graph of Figure 1; or when the recharge level is larger

(R1 < R) and the relative productivity of grounwater is high, as shown on the graph on

8Figure 1 represents the case where in which there are two (active) groups at the asymmetric SNE.
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Figure 1: Co-existence of various stationary Nash equilibria

the left hand side of Figure 1. We also show (in the Appendix) that when the relative

productivity of groundwater is low, the groundwater use and the conjunctive use SNE

cannot coexist (see the graph on the right hand side of Figure 1). This means that there

are no coordination problems in that situation. We then consider three types of asym-

metric SNE: equilibria in which the farmers fully specialize in the use of one of the two

resources (“Full specialization”, nG, nR > 0 and nB = 0); equilibria in which a group of

farmers use both groundwater and rainwater and one group of farmers uses groundwater

only (“GW+Conjunctive”, nG, nB > 0 and nR = 0); and equilibria in which one group

of farmers uses both sources and one group uses rainwater only (“RW+Conjunctive”,

nR, nB > 0 and nG = 0).9 We show that they can exist only if the recharge is sufficiently

low (R < R ≡ N(θ−K)
θ2

).10

The following proposition summarizes the main results derived through the example:

Proposition 6 Consider the example (equations 47–49): If a SNE exists

(a) If the recharge R is sufficiently large, the SNE is unique and it is the groundwater use

SNE.

(b) If µ

θ
< 1

ρ

(
1− 1

δ

(
ρ

θ

)2)
, the SNE is unique and symmetric.

9Another type of asymmetric equilibrium may also exist. For necessary conditions, see
“RW+GW+Conjunctive” in Appendix (Material for the example).

10The exact levels of the thresholds R2 and R3 are given in the Appendix (Material for the example).
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(c) If the recharge R is small and µ

θ
> 1

ρ

(
1− 1

δ

(
ρ

θ

)2)
, there are at least two symmetric

and one asymmetric SNE.

Hence, our results indicate that farmers choose heterogenous levels of rainwater and

groundwater in a SNE and that this arises for small recharge levels. Another implication

is that many SNE may coexist.

Coordination and anti-coordination problems are only determinant if identified equi-

libria are stable. We hence examine the types of SNE that may exist in the example.

Proposition 7 The SNE exist and are stable. The groundwater use SNE and the spe-

cialized asymmetric SNE are saddle points and the other SNE are degenerated (one of the

eigenvalues is null).

Proof of Proposition 7: In the Appendix. �

Hence, the coordination and anti-coordination problems we highlighted relate to stable

equilibria.

There exist numerical examples for which all possible SNE illustrated in figure 1 can co-

exist, which is illustrative of an (anti-)coordination problem (for instance, this is true for

the following set of numerical values: c = 50, δ = 0.02, K = 2.2, M = 1, µ = 27, N = 2,

R = 0.1, ρ = 0.2, θ = 2.7). We can compute the level of the aquifer, the groundwater

and rainwater used by each group of farmers and the corresponding shadow-prices for all

equilibria. In particular, we can analyze the levels of the stationary equilibrium water

table in the different cases. In this example, we can show that the SNE water table

level is lower and lower as more and more groups of farmers use rainwater rather than

groundwater. Namely, the level of the water table is higher at the groundwater pumping

SNE than at the “GW+conjunctive” SNE, which is higher than the water table level at

the “Full specialization” SNE, which is higher than the water table level at the conjunctive

use SNE, which is higher than the water table level at the “RW+conjunctive” SNE.

For any regulator, the problem of coordination and anti-coordination could be less

crucial if policy interventions (that correspond to changing the parameter values of our

model) induce changes in the same direction, whatever the equilibrium considered. We

consider changes in the infiltration rate, ρ, and the recharge, R. Indeed, some policies

may favour plantations which in turn favour infiltration rates (increase ρ). Other policies
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may divert water from other uses to the agricultural sector (increase R). The following

proposition present our comparative statics results:

Proposition 8 At the groundwater use and at the full specialization asymmetric SNE, an

increase in the recharge R or in the infiltration rate ρ induces an increase in groundwater

pumping:

∂gGW

∂ρ
> 0,

∂gGW

∂R
> 0,

∂ga

∂ρ
> 0,

∂ga

∂R
> 0.

However, the signs of the comparative statics are opposite in the conjunctive use SNE. In

particular, if R < R, an increase in the recharge R or in the infiltration rate ρ induces a

decrease in groundwater pumping:

∂gc

∂ρ
< 0

∂gc

∂R
< 0.

Proof of Proposition 8: In the Appendix (Computations for Figure 1). �

The effect of policies that affect the infiltration rate, ρ, and the recharge, R on the level

of groundwater pumping may be difficult to anticipate in light of Proposition 8.11 Indeed,

if the regulator does not know at which equilibrium the economy is, he cannot anticipate

the effect of a policy. This result highlights a supplementary difficulty for regulating the

use of water.

5 Concluding Remarks

In this paper, we considered possible interactions between farmers who can choose between

two water supplies (groundwater or rainwater) which have different productive properties

and are interdependent. An interesting property of this game is that the farmers who

11We can also check the variations of the water-table level as a function of R and ρ. We can show that:
∂hGW

∂ρ
> 0 and ∂hGW

∂R
> 0. Likewise, ∂ha

∂ρ
> 0 and ∂ha

∂R
> 0. However the variation for the conjunctive use

water-table, hc, has undetermined signs.
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collect rainwater escape the pumping cost externality but generate a negative externality

for farmers who pump groundwater.

We obtained three interesting results. First, we show that multiple equilibria can co-

exist. For a policy maker, this immediately raises the equilibrium selection issue. This

problem is worsened by the second cornerstone of our study. The number of equilib-

ria increases as water becomes scarcer; in other words, with a lower recharge rate. In

the context of climate change and increased risk of drought, this model sheds light on

the difficulties we may face in terms of water uses and public policy. In addition, com-

parative statics show that a policy intervention can have opposite effects depending on

the equilibrium concerned. The last result of this study is the possible occurrence of

asymmetric equilibria in which agents split into different groups in the same way as in

anti-coordination games. In particular, it can happen that one group of farmers chooses

to harvest rainwater to avoid the pumping cost externality, while the other group still

uses groundwater because of better productivity (in spite of an increase in the marginal

pumping cost).

Obviously, a number of questions remain to be explored. For instance, we assume

that there is no irrigation return flow to the aquifer. It would be interesting to see what

happens when water not consumed by crops percolates to the aquifer and, as a result, may

modify (i.e. clean a brackish aquifer) the qualitative productive properties of groundwater.

It would also be interesting to see if the water table is higher in the open-loop strategy

than under the feedback rules, as shown by Negri [14], when agents can choose between

two water supplies. This would provide a new opportunity to discuss the externalities

involved in such a commons game.
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6 Appendix

6.1 Proofs

Proof of Corollary 1: Let RC be the cost ratio function:

RC (g) =
MC(ha, g)

MD (ha, r, g)
(56)

=
1

ρ

Cg (h
a, g)− 1

δ
· Ch (h

a, g)
1
ρ
K − 1

δ
· Ch (ha, g)

. (57)

Notice that RC ′ (g) ≤ 0 if and only if

(
−
1

δ
· Cgh

)(
1

ρ
K − Cg

)
+ Cgg ×

(
1

ρ
K −

1

δ
· Ch

)
≤ 0. (58)

The condition in Proposition 5 can be rewritten as follows:

RC (gaG) ≤
µ

θ
= RC (gaB) ≤ RC (0) . (59)

Assume that RC ′ ≥ 0 for all 0 ≤ g ≤ max {gaG, g
a
B}. Using (59), we have RC (max {gaG, g

a
B}) ≤ RC (0)

and then max {gaG, g
a
B} ≤ 0, i.e. nB = nG = 0. This is impossible in an asymmetric SNE. Hence, there

exists 0 ≤ g̃ ≤ max {gaG, g
a
B} such that RC ′ (g̃) < 0. Using (58) and Cgh < 0, we have:

1

ρ
K − Cg(h

a, g̃) ≤ 0. (60)

Using Cgg ≥ 0, we find
1

ρ
K ≤ Cg(h

a, gaG) and
1

ρ
K ≤ Cg(h

a, gaB). (61)

Since Ch < 0, we have
1

ρ
≤ RC (gaG) and

1

ρ
≤ RC (gaB) . (62)

Using (59), we conclude that µ
θ
≥ 1

ρ
.�

Proof of Proposition 7: As we are in a system of linear differential equations, local stability implies

global stability. In addition, proving stability, we confirm the existence of the different open loop SNE (see

Engwerda [5]). For open loop SNE the best stability behavior that we can expect is saddle point stability.
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Saddle point stability of a dynamic system means that there exists a saddle manifold of dimension equal

to the number of state variables, so that, if the initial conditions of the adjoint variables are appropriately

chosen, the solution of the canonical system starts from the stable manifold and converges to the SNE

(see Dockner et al. [4] page 256). We analyze the Jacobian matrix given by :

(
∂ḣ
∂h

∂ḣ
∂p

∂ṗ
∂h

∂ṗ
∂p

)
.

We consider each kind of equilibria successively:

First consider the groundwater use (symmetric) equilibria. Using the first order conditions we have

µ(1− µg)− c+ h− p = 0,

or,

g =
µ− c+ h− p

µ2
.

The dynamic system becomes

ṗ = δp− g and ḣ = ρR−Ng,

and the characteristic matrix is [
− N

µ2

N
µ2

− 1
µ2 δ + 1

µ2

]

The dynamic system is stable, it is a saddle point, because the determinant is negative (−Nδ/µ2 < 0).

Second, consider the (symmetric) conjunctive use equilibria. From the first order conditions, we have

µ(1− µg − θr)− c+ h− p = 0, µ(1− µg − θr)−K − ρp = 0,

and then,
p− h+ c

µ
=

K + ρp

θ
, (63)

and deriving w.r.t. t, we obtain
µρṗ

θ
+ ḣ− ṗ = 0. (64)

The dynamic system is then

ṗ = δp− g, ḣ = ρR− ρNr −Ng.

Replacing in (64) we obtain a new equation in h, p, g, r. Using this equation with µ(1−µg)−c+h−p = 0,
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we obtain g, r in function of h, p.

The characteristic matrix becomes

[
− ρN(θ−µδ)

µθ(µρN−µδ−Nθ+θ) −N(µδ−θ)(ρµ2δ−µδθ+ρ)
µθ(µρN−µδ−Nθ+θ)

− ρN
µ(µρN−µδ−Nθ+θ)

N(ρµ2δ−µδθ+ρ)
µ(µρN−µδ−Nθ+θ)

]

The determinant is 0 and this implies that the characteristic matrix has an eigenvalue that equals to

zero. We can deduce that this zero eigenvalue is due to equation (63), in which h and p are linearly

independent. Independently of the sign of the other eigenvalue, the only way to define initial conditions

for the adjoint variable is to remain in the SNE (if it exists). In other words the SNE is the only stable

manifold. The conjunctive use SNE is an equilibrium of our problem if we find an optimal trajectory

starting at h (0) that arrives at this manifold.

Third, consider the asymmetric equilibria such that nG ≥ 1 farmers use groundwater only and nR ≥ 1

farmers use rainwater only. The first order conditions give:

g =
µ− c+ h− p

µ2
, r =

θ −K

θ2
.

and the dynamic system becomes:

ṗ = δp− g, ḣ = ρR− ρnR

θ −K

θ2
− nG.

This system is stable (saddle point).

Fourth, consider the other types of asymmetric equilibria, i.e. asymmetric equilibria where some

farmers use both rainwater and groundwater. As in the symmetric conjunctive use equilibrium, the first

order conditions imply that h (t) and pB (t) for the group that uses both sources are proportional. Hence,

the conclusion is the same as in the (symmetric) conjunctive equilibrium.

6.2 Computations for Figure 1:

Let us consider the simple functional forms (for produciton 47 and costs 49) introduced above.

The groundwater use SNE:
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The SNE conditions (19), (20) and (21) for the groundwater use SNE are given by :

gGW =
ρR

N
, (65)

pGW =
ρR

δN
, (66)

hGW = c− µ+
ρR

N

(
1 + δµ2

δ

)
, (67)

λGW
r =

ρR

N

(
δθµ+ ρ

δ

)
− (θ −K) , (68)

Note that, ∂gGW

∂ρ
> 0, ∂gGW

∂R
> 0 and the positivity of the Lagrangian multiplier λGW

r ≥ 0 directly

implies R ≥ δN(θ−K)
ρ(µδθ+ρ) ≡ R1.

The conjunctive use SNE: The closed form solution to the conjunctive use SNE can be shown to result

in the following SNE values :

gc =

(
δρ

θµδρ− θ2δ + ρ2

)(
N(θ −K)− θ2R

N

)
, (69)

rc =
R

N
−

1

N

[
δ
(
N(θ −K)− θ2R

)

θµδρ− θ2δ + ρ2

]
, (70)

pc =
ρ
(
N(θ −K)− θ2R

)

N (θµδρ− θ2δ + ρ2)
, (71)

hc = c− µ+
µ

N

[
gc
(
ρµ− θ

ρ

)
+ θR

]
+

gc

δ
. (72)

It is straightforward that equation (69) implies two situations that ensure gc > 0, depending on

the value of R. In the first situation, the productivity of groundwater is sufficiently small (and/or the

productivity of rainwater is sufficiently large) and the recharge is sufficiently large, in the second situation

the productivity of groundwater is sufficiently large (and/or the productivity of rainwater is sufficiently

small) while the recharge is sufficiently small.

We have to check the various ranges allowing to have positive values in the long run for rainwater

collection, the shadow price and the water table, {wc
r; p

c;hc}, since all of them depend on the parameters

of µ and R. The positivity of gc implies two cases : either R < R ≡ N(θ−K)
θ2 and 0 < θ2δ−ρ2

δθ
< µ, or

R ≡ N(θ−K)
θ2 < R and 0 < µ < θ2δ−ρ2

δθ
(which also implies 0 < θ2δ − ρ2). The positivity of rc implies

two cases : either R1 ≡
Nδ(θ−K)
ρ(µδθ+ρ)

<R and 0 < θ2δ−ρ2

δθ
< µ, or R < R1 ≡

Nδ(θ−K)
ρ(µδθ+ρ) and 0 < µ < θ2δ−ρ2

δθ
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(which also implies 0 < θ2δ− ρ2). When
θ2δ−ρ2

δθ
<µ, we have R−R1 = µθδρ− θ2δ+ ρ2 > 0. Therefore,

in this case, R ∈ (R1;R). When µ < θ2δ−ρ2

δθ
, we observe that R−R1 = µθδρ− θ2δ + ρ2 < 0. Therefore,

in this case, R ∈ (R;R1).

Finally, if a conjunctive use SNE exists then either:

R1 < R < R and
1

ρ

(
1−

1

δ

(ρ
θ

)2)
<

µ

θ
, (73)

or,

R < R < R1 and
µ

θ
<

1

ρ

(
1−

1

δ

(ρ
θ

)2)
. (74)

Moreover it is easy to check that when R < R̄, ∂gc

∂ρ
< 0, ∂gGW

∂R
< 0. Let us now consider the different

types of asymmetric SNE characterization.

“Full specialization:”

Conditions (37), (38), (40), and the two Lagrangian multipliers can now be written as follows :

raR =
θ −K

θ2
, (75)

gaG =
ρ

nG

[
R− nR

(
θ −K

θ2

)]
, (76)

ha = c− µ+

(
1 + µ2δ

δ

)
ρ

nG

[
R− nR

θ −K

θ2

]
, (77)

λa
rG =

(ρ
δ
+ µθ

) ρ

nG

[
R− nR

θ −K

θ2

]
− (θ −K) , (78)

λa
gR = µ

θ −K

θ
−

(
1 + µ2δ

δ

)
ρ

nG

[
R− nR

θ −K

θ2

]
. (79)

As previously some supplementary necessary conditions have to be checked in order to ensure positive

values for the two Lagrangian multipliers λa
rG and λa

gR. The investigation of these conditions (provided

below) outlines that the asymmetric SNE requires that the natural recharge belongs to a critical interval

and the productivity of groundwater pumping is sufficiently high.

All the Lagrangian multipliers must be positive :

λa
rG =

(ρ
δ
+ µθ

) ρ

nG

[
R− nR

θ −K

θ2

]
− (θ −K) ≥ 0, (80)

λa
gR = µ

θ −K

θ
−

(
1 + µ2δ

δ

)
ρ

nG

[
R− nR

θ −K

θ2

]
≥ 0. (81)
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Condition (81) implies that R < θ−K
θ2

[
N − nG + µθnGδ

ρ(1+µ2δ)

]
≡ R3 and condition (80) implies that R >

θ−K
θ2

[
N − nG + θ2δnG

ρ(ρ+µδθ)

]
≡ R2. We can easely check that R3 − R1 = nGδρθ(µρ − θ) ≥ 0 because

µρ − θ ≥ 0. Finally if a specialized asymmetric SNE exists then we have R2 < R < R3. Note that

∂ga

G

∂ρ
> 0,

∂ga

G

∂R
> 0.

“GW+Conjunctive:” Consider the asymmetric equilibria such that a subset of nG ≥ 1 farmers use

groundwater to irrigate while nB ≥ 1 farmers use a combination of both irrigation strategies (and

nR = 0). Conditions (37), (38), (40) are now as follows :

λa
rG =

θ(µρ− θ)
[
µρθδR−Nδ(θ −K) + ρ2R

]

nB [µ2δ(µρθδ − δθ2 + ρ2) + ρ2] +Nθδ(µρ− θ)
, (82)

raB =

(

µ2δ + 1
)

θ(µρ− θ)
λa
rG, (83)

gaB = δ
ρ
(

µ2δ + 1
) [

nB(θ −K)−Rθ2
]

+ nGθδµ(θ −K)

nB [µ2δ(µρθδ − δθ2 + ρ2) + ρ2] +Nθδ(µρ− θ)
, (84)

gaG = δ
nB(θ −K) [ρ+ δµ(ρµ− θ)] + θρR(µρ− θ)

nB [µ2δ(µρθδ − δθ2 + ρ2) + ρ2] +Nθδ(µρ− θ)
. (85)

Positivity of the Lagrangian multiplier λa
rG ≥ 0 and raB > 0 imply that µρ− θ > 0, which directly implies

that the denominator nB

[

µ2δ(µρθδ − δθ2 + ρ2) + ρ2
]

+ Nθδ(µρ − θ) > 0. Moreover, the positivity of

this multiplier implies R > R1. Positivity of gaB implies that R < R3.

We can easily check that R3 −R1 =
(

θ−K
θ2

)

(

Nδθ(ρµ−θ)+nB(µ2θδ2(µρ−θ)+ρ2(1+δµ2))
ρ2(µθδ+ρ)(µ2δ+1)

)

> 0. Finally, the

necessary conditions for this kind of asymmetric SNE are µ ≥ θ
ρ
and R1 < R < R3.

“RW+Conjunctive:” Now consider the asymmetric equilibria such that a group of nR ≥ 1 farmers uses

rainwater only and a group of nB ≥ 1 farmers uses a combination of both irrigation strategies (and

nG = 0). Conditions (37), (38), (40) become :

λa
gR =

ρ
[

N(θ −K)−Rθ2
]

(µρ− θ)

θnR(δµθρ− θ2δ + ρ2)
, (86)

raR =
θ −K

θ2
, (87)

gaB =
δρ

(

N(θ −K)−Rθ2
)

nR (δµθρ− θ2δ + ρ2)
= λa

gR

δθ

µρ− θ
, (88)

raB =
ρ
[

θ2R− nB(θ −K)
]

(θδµ+ ρ)− θ2δnR(θ −K)

θ2nR (δµθρ− θ2δ + ρ2)
. (89)
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Positivity of the Lagrangian multiplier λa
gR ≥ 0 implies with gaB > 0 that µρ− θ > 0, which implies that

δµθρ − θ2δ + ρ2 > 0. Condition (86) and λa
gR ≥ 0 implies R > R. Positivity of rainwater use, raB > 0,

implies that R2 < R. We then verify that R > R2 ⇔ ρθδµ+ ρ2 > θ2δ. Finally, the necessary conditions

for the existence of this kind of asymmetric equilibria are µ ≥ θ
ρ
and R > R > R2.

“RW+GW+Conjunctive:”

Finally, consider the SNE such that nR ≥ 1 farmers use rainwater only, nG ≥ 1 farmers use ground-

water only and nB ≥ 1 use both rainwater and groundwater.

λa
rG =

(ρµ− θ)

θ

(

(θ −K)
(

−Nθ2δ − nR(ρµδθ + ρ2 − δθ2)
)

+ ρθ2R(θδµ+ ρ)

nB(θδµ+ ρ)(ρ+ ρµ2δ − θδµ) + (nB + nG)θδ(ρµ− θ)

)

, (90)

gaG =
δ

θ

(

(θ −K)
[

θ (nB + nR) (ρ+ µδ(µρ− θ))− µnR

(

δµθρ− θ2δ + ρ2
)]

+ ρRθ2(µρ− θ)

nB(θδµ+ ρ)(ρ+ ρµ2δ − θδµ) + (nB + nG)θδ(ρµ− θ)

)

,(91)

λa
gR =

(µρ− θ)

θ

(

ρ
(

N(θ −K)−Rθ2
)

(µ2δ + 1)− nG(θ −K)
[

ρ+ µ2ρδ − θδµ
]

nB(θδµ+ ρ)(ρ+ ρµ2δ − θδµ) + (nB + nG)θδ(ρµ− θ)

)

, (92)

raR =
θ −K

θ2
, (93)

gaB =
δθ

ρµ− θ
λa
gR, (94)

raB =
(1 + µ2δ)

θ(ρµ− θ)
λa
rG. (95)

Condition λa
rG ≥ 0 with gaB > 0 imply that µρ− θ > 0. Condition λa

rG ≥ 0 implies that

R ≥

(

θ −K

θ2

)[

Nθ2δ(µρ− θ) + nR(µρ− θ)(δθ(µρ− θ) + ρ2)

ρ(µρ− θ)(µθδ + ρ)

]

≡ R4, (96)

and condition λa4∗
g ≥ 0 implies

R ≤

(

θ −K

θ2

)[

N −
nG(ρ+ µ2ρδ − θδµ)

ρ(µ2θ + 1)

]

≡ R5. (97)

The positivity of gaG > 0 implies

R >

(

θ −K

θ2

)[

−θ(nB + nR)(ρ+ µ2δρ− µδθ) + µnR(δµθρ− θ2δ + ρ2)

ρ(µρ− θ)

]

≡ R6. (98)
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We easily check that R5−R4 = (nB + nG)(1+ µ2δ)(δµθρ− θ2δ+ ρ2)− nG(θδµ+ ρ)(ρ+ ρµ2δ− θδµ)

which is the positive denominator. Similarly for R4 −R6 > 0. Therefore R5 > R4 > R6.

Finally, the necessary conditions for this kind of asymmetric SNE are µ > θ
ρ
and R4 < R < R5.

To construct the graphs of Figure 1,we also use the following result: if µ > θ
ρ
we can check that

R−R3 =
M(θ −K)

θ2

(

ρ+ µδ(µρ− θ)

ρ(1 + µ2δ)

)

> 0, (99)

and,

R2 −R1 =
(N −M)(θ −K)

θ2

(

ρ2 + δθ(µρ− θ)

ρ(ρ+ µδθ)

)

> 0. (100)
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