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Introduction

A work guided by data

Estimation of key parameters of the epidemic dynamics

Often low frequency time series

Often aggregated and incomplete datasets.

Objective

Provide estimators with good properties for the di�usion model approximating
the epidemic dynamics
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Outline

1 Classical SIR epidemic models

2 Parametric inference for discretely observed di�usion processes

3 Back to the epidemics and simulations results
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Notations and model assumptions

Notations

N : population size ; m : initial infectives
λ : transmission rate ; γ : recovery rate (=1/mean holding time in infective
state)
R0 = λ/γ : basic reproduction number (=mean number of secondary infections
generated by an infective in an entirely susceptible population)

S(t), I (t) : numbers of susceptibles, infectives ; s(t) = S(t)
N
, i(t) = I (t)

N
:

proportion of susceptibles, infectives

Assumptions

Homogenous mixing in closed population

Discrete observations of S and I on a �xed interval [0,T ], with sampling
interval ∆ (T = n∆) (acceptable assumption as a �rst attempt)

S I R
λI/N ɣ
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Markov pure jump model and Inference

Let Xt = (St , It) and X0 = (N −m,m).

Transitions

(S , I )
λ
N SI

−→ (S − 1, I + 1) and (S , I )
γI−→ (S , I − 1)

Exponential holding times

Observations

All jumps are observed

Maximum Likelihood Estimators (MLE) and asymptotic normality (Andersson
and Britton 2000)

λ̂MLE = N
N −m − S(T )∫ T
0
S(t)I (t)dt

, γ̂MLE =
N − S(T )− I (T )∫ T

0
I (t)dt

√
N

((
λ̂MLE − λ0
γ̂MLE − γ0

))
−→
N→∞

N
(
0,

(
var(λ0) 0

0 var(γ0)

))
with var(λ0),var(γ0) being explicit
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ODE model and Inference (as a �rst approximation)

Let xλ,γ(t) = (s(t), i(t)) and (s(0), i(0)) = (1− m
N
, m
N

).

Classical ODE system (for N large)

ds

dt
= −λsi and di

dt
= λsi − γi ,

Observations

Discrete observations Xtk
= xλ,γ(tk) + εk at times tk = k∆ (k = 0, ..., n), with

εk ∼
iid
N2 (0,Σ)

Least Square Estimator (LSE) and asymptotic normality

LSE(λ, γ) = 1
n

n∑
k=0

(Xtk
− xλ,γ(tk))2, (λ̂LSE , γ̂LSE ) = argmin

(λ,γ)∈Θ

LSE(λ, γ)

√
n

((
λ̂LSE − λ0
γ̂LSE − γ0

))
−→
n→∞

N (0,Σ)
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Di�usion approximation model

Let Xt = (st , it), (s0, i0) = (1− m
N
, m
N

) and B1,B2, two independent Brownians
motions.

Stochastic Di�erential Equation

dst = −λst itdt + 1√
N

√
λst itdB1(t)

dit = (λst it − γit)dt − 1√
N

√
λst itdB1(t) + 1√

N

√
γitdB2(t)

Remarks

Classical approximation : before passing to the limit (N →∞) in the
normalized system of the Markov jump process

MLE untractable when the path is discretely observed

Framework

Multidimensionnal di�usion processes

Small noise ∼ 1√
N

in large population

Parameters (λ, γ) both in drift and di�usion coe�cients
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General di�usion model and existing results

Let X ε
t be the unique strong solution of the SDE

dX ε
t = b(α,X ε

t )dt + εσ(β,X ε
t )dBt , X0 = x0 ∈ Rp

We observe X ε
t at times tk = k∆ on a �xed interval [0,T ] (T = n∆)

σ(β, x) ∈ Mp(R), b(α, x) ∈ Rp,Σ(β, x) = σ(β, x) tσ(β, x) invertible.

Existing estimation results for high-frequency data (Gloter and Sorensen
(2009))

Under the condition ∃ρ > 0, 1
εnρ

bounded, for a class of contrast processes,
associated Minimum Contrast Estimators (MCEs) are consistent and(

ε−1(α̂ε,n − α0)√
n(β̂ε,n − β0)

)
−→

n→∞,ε→0
N

(
0,

(
I−1b (α0, β0) 0

0 I−1σ (α0, β0)

))
with I−1b (α0, β0) explicit and optimal (= asymptotic variance for continuous
observations on [0,T ]).

For epidemics : ε−1 =
√
N

8/20 Romain GUY1,2 with C. Laredo1,2 and E. Vergu2 Inference for epidemic data using di�usion processes



Classical SIR epidemic models
Parametric inference for discretely observed di�usion processes

Back to the epidemics and simulations results

Main idea of our inference approach (extension of Genon-Catalot(90))

Use of Taylor's stochastic expansion formula (Azencott (82))

X
ε
t = xα(t) + εgα,β(t) + ε2Rεα,β(t)

where xα(t) is the deterministic solution dxα(t)
dt

= b(α, xα(t)), x(0) = x0 ∈ Rp,

dgα,β(t) =
∂b

∂x
(α, xα(t))gα,β(t)dt + σ(β, xα(t))dBt , gα,β(0) = 0Rp

and Rεα,β satis�es
sup

t∈[0,T ]

{‖εRεα,β(t)‖} −→
P,ε→0

0.

Let Φα be the invertible matrix solution of dΦα
dt

(t, t0) = ∂b
∂x

(α, xα(t))Φα(t, t0),
with Φα(t0, t0) = Ip.

Properties of gα,β

gα,β is a Gaussian process for which we can obtain the analytic expression.

gα,β(tk) = Φα(tk , tk−1)gα,β(tk−1) +
√

∆Zα,βk

Zα,βk are independent N
(
0,Sα,βk

)
variables.
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Main idea of our inference approach (extension of Genon-Catalot(90))

Contrast process derived from (Zα,βk )k -likelihood

U∆,ε (α, β) = ε2
n∑

k=1

log
[
det
(
S
α,β
k

)]
+ 1

∆

n∑
k=1

t
Nk(α)(Sα,βk )−1Nk(α)

with Nk(α) = Xtk
− xα(tk)− Φα(tk , tk−1)

[
Xtk−1

− xα(tk−1)
]
.

(α̂ε,∆, β̂ε,∆) = argmin
(α,β)∈Θ

U∆,ε (α, β)
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Results for low frequency data (∆ and n �xed)

No asymptotic results for β̂ε,∆

β known

We only consider α̂ε,∆(β0) = argmin
α∈Θa

U∆,ε (α, β0) and then

ε−1 (α̂ε,∆(β0)− α0) −→
ε→0
N (0, I−1∆ (α0, β0)), with I∆(α0, β0) −→

∆→0
Ib(α0, β0)

β unknown

We modify the contrast process in a �conditional least square� contrast

Ũε,∆
(
α, (Xtk

)k∈{1,..,n}
)

=
1

∆

n∑
k=1

t
Nk(α)Nk(α).

Then α̂ε = argmin
α∈Θa

Ũε,∆ (α)

satis�es ε−1 (α̂ε − α0) −→
ε→0
N (0, Ĩ−1∆ (α0, β0)).

For epidemics : α = (λ, γ) = β ⇒ Special case, results for known β hold if we
replace each β occurence with α.
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Results for high frequency data (∆ → 0)

Contrast process

Using ‖Sα0,β0k − Σ(β0,Xtk−1
)‖ −→

ε,∆→0
0, we consider :

U∆,ε(α, β)) = ε2
n∑

k=1

log
[
det
(

Σ(β,Xtk−1
)
)]

+ 1
∆

n∑
k=1

t
Nk(α)Σ−1(β,Xtk−1

)Nk(α)

Asymptotic Normality

Under the condition ε2n −→
ε,∆→0

0

(
ε−1( ˆαε,∆ − α0)√
n( ˆβε,∆ − β0)

)
−→

n→∞,ε→0
N

(
0,

(
I−1b (α0, β0) 0

0 I−1σ (α0, β0)

))
.
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Simulation study (using Matlab)

Algorithm

1 Exact simulation of an epidemic with Markov pure jump process (Gillespie
algorithm with choice of N,m, λ, γ)

2 Calculation of λ̂MLE , γ̂MLE (observation of the whole path of the process)

3 Discrete observations on a �xed interval

4 Estimation phase for LSE , Gloter and Sorensen (2009) contrast, our MCE
for α = β, and for unknown β (conditionnaly least square contrast).
Numerical optimisation using fminsearch.

Results

Mean of the point estimation on 1000 runs, theoretical con�dence intervals for
MCEs, empirical con�dence interval for LSE, for each scenario and for each of
the four estimators (+ MLE as a reference)

Simulated values

N ∈ [1000; 10000], ∆ ∈ [T/10; 1;T/100], γ = 1/3, R0 ∈ [1.2; 2]
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Example of trajectories : proportion of infectives over time (N = 1000,
R0 = 2)

Figure: Trajectories of the three processes for N=1000 R0 = 2, γ = 1/3, T = 40 and
1% of initial infectives
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Simulation results for N = 1000, R0 = 2, γ = 1/3, T = 40 and
n = 10, 40, 100

Notations

green arrows = best ponctual estimator for one scenario
For each scenario, and each parameter in order : LSE, GS09(α), MCE(α = β),
MCE(β unknown)
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Simulation results for N = 10000, R0 = 2, γ = 1/3, T = 40 and
n = 10, 40, 100
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Another Case : R0 = 1.2

Figure: Trajectories of the three processes for N = 1000, R0 = 1.2, γ = 1/3, T = 65
and 1% of initial infectives
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Simulation results for N = 1000, 10000, T = 65 and n = 10, 65, 100

N=1000

N=10000
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Limits and perspectives

To be re�ned

1 Limits of the SIR model : acceptable as a �rst attempt, possible to be
re�ned to integrate more realistic assumptions (e.g. increase the state
space dimension)

2 Idealized statistical framework : here the two system coordinates (st , it) are
assumed observed (instead of a function of it , a more realistic assumption)

Next directions (work in progress)

1 Complexify the model : no di�culty if the new system is still an
autonomous system, regardless to its size

2 Modify the statistical framework : observe integrated di�usion
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Thank you for your attention !
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