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Keywords: Many scientific fields : sociology, physics, "internet", biology. Biological networks : protein-protein interaction networks, regulatory networks, metabolic networks sociology, physics, "internet", biology. Biological networks : protein-protein interaction networks, regulatory networks, metabolic networks. Statistical aspects : -network inference, -statistical properties of given networks (degrees, diameter, clustering coefficient, modules, motifs etc.), -random graph models

Nature of the data :

-n individuals (n large), -but also n 2 couples.

Focus on exceptional motifs = motifs appearing more frequently than expected. [Milo et al. (02),Zhang et al. (05),Lacroix et al. (06), Lee et al. (07),Taylor et al. (07)] Topological motif : connected pattern of interconnection → an occurrence in the network is an isomorphic subgraph Ex : particular regulatory units like feed-forward loop or bi-fan motifs. Interpretation of over-represented topological motifs : they are thought to reflect functional units which combine to regulate the cellular behavior as a whole.

Coloured motif : multiset of node colours, e.g. {•, •, •} → an occurrence in the network is a connected subgraph with the appropriate node colours Interpretation of over-represented coloured motifs : they are thought to reflect groups of cooperative enzymes (reaction networks).

How to assess the exceptionality of a motif ?

Step 1 To count the observed number of occurrences N obs (m) of a given motif m (out of my scope)

Its significance is assessed with the p-value P{N(m) ≥ N obs (m)} (the probability to get as much occurrences at random)

Step 2 To choose an appropriate random graph model

Step 3 To get the distribution of the count N(m) under this model Analytical approaches :

The most popular random graph model is the Erdös-Rényi model (nodes are connected independently with proba p) Some theoretical works exist on Poisson and Gaussian approximations of topological motif count distribution (see [Janson et al. (00)] for an overview) BUT

• only for particular motifs ("balanced" property),

• the Erdös-Rényi model is not a good model for biological networks (e.g. it does not fit the degrees).

Simulated approaches :

Random networks are generated by edge swapping, (degrees are preserved)

Empirical distributions for motif counts are obtained leading either to p-values or to z-scores

BUT

• huge number of simulations required to estimate tiny p-values,

• z-scores are compared to N (0, 1) which is not always appropriate,

• edge swapping does not define a probabilistic random graph model.

To propose probabilistic random graph models

• adapted for biological networks,

• allowing probabilistic calculations,

• with efficient estimation procedures.

[Daudin, Picard, Robin ( 08 

Random graphs

A random graph G is defined by :

• a set V of fixed vertices with |V| = n, • a set of random edges X = {X ij , (i, j) ∈ V 2 } such that X ij = 1 if i and j are connected, 0 otherwise
• and a distribution on X ij .

Examples :

• the Erdös-Rényi model,

• the Stochastic Block Model (=mixture of ER models),

• the Expected Degree Distribution model. 

P(X ij = 1) = p Degrees are Poisson distributed K i := j =i X ij ∼ B(n -1, p) ≈ P((n -1)p)
Bad fit of Erdös-Rényi model on biological networks due to heterogeneous connection probabilities along the network.

Stochastic Block Model (or "Mixnet")

Vertices are spread into Q groups.

Conditionally to the group of vertices, edges are independent and

X ij | {i ∈ q, j ∈ ℓ} ∼ B(π q,ℓ )
π q,ℓ is the connection probability between groups q and ℓ.

Degrees are distributed according to a Poisson mixture

K i ∼ q α q B(n -1, π q ) with π q = ℓ α ℓ π q,ℓ
Introduced by [Nowicki and Snijers (2001)] Classical maximum likelihood procedures fail log-likelihood L(X) not calculable because of hidden groups (Z, Z i is the group of node i).

EM algorithm, classical to fit mixture models, cannot be used because P(Z | X) is not computable (all vertices are potentially connected, no local dependence).

Variational approach (iterative procedure)

maximization of L(X) -KL(P(Z | X), Q R (Z)) where Q R is the best approximation of P(Z | X) within a class of 'nice' distributions. ⇒ estimator of P(Z i = q|X).
analytical expressions for α q and π q,ℓ Choice of Q : heuristic penalized likelihood criterion inspired from BIC (ICL) 

Topological motifs

Let m be a motif of size k (connected graph with k vertices, k << n).

• m is defined by its adjacency matrix (also denoted by m) :

m uv = 1 iff nodes u ↔ v (m uv = 0 otherwise).
• Let R(m) be the set of non redundant permutations of m (so-called "versions").

• Ex : 3 versions of the V motif at a fixed position (i, j, k). The total count N(m) of motif m is then :

m m ′ m ′′ 2 4 0 1 1 1 0 0 1 0 0 3 5 2 4 0 1 0 1 0 1 0 1 0 3 
N(m) = α∈I k m ′ ∈R(m) Y α (m ′ )
Warning : N(m) = number of induced subgraphs ("m = G α "). 

(X i 1 ,j 1 , . . . , X i ℓ ,j ℓ ) = D(X i ′ 1 ,j ′ 1 , . . . , X i ′ ℓ ,j ′ ℓ )
(H2) Independence of disjoint occurrences we have [Picard,Daudin,Koskas,Schbath,Robin (08)]

EN(m) = n k |R(m)|µ(m).
where µ(m) := EY α (m) = P(m occurs at α) and

VarN(m) = k s=0 C(n, k, s) m ′ Ω s m ′′ µ(m ′ Ω s m ′′ ) -[EN(m)] 2 .
where m ′ Ω s m ′′ is a super-motif composed of the union of two overlapping occurrences of m ′ and m ′′ sharing s common vertices. 

(m) = EN 2 (m) -[EN(m)] 2 . We then calculate EN 2 (m) = E   α,β∈I k m ′ ,m ′′ ∈R(m) Y α (m ′ )Y β (m ′′ )   , = E   k s=0 |α∩β|=s m ′ ,m ′′ ∈R(m) Y α∪β (m ′ Ω s m ′′ )   = k s=0 C(n, k, s) m ′ Ω s m ′′ µ(m ′ Ω s m ′′ ),
where m ′ Ω s m ′′ is a super-motif composed of the union of two overlapping occurrences of m ′ and m ′′ sharing s common vertices. 

µ(m) = p e(m)
Mixture of ER model (Mixnet/SBM) with Q groups, proportions α 1 , . . . , α Q and connection probabilities π q,ℓ

µ(m) = Q c 1 =1 . . . Q c k =1 α c 1 . . . α c k 1≤u<v ≤k π muv cu,cv .
Exact distribution unknown. Several approximations exist in the literature under specific conditions (motif and model) :

• Poisson distribution [Bollobas (81), Barbour (82), Karónski and Ruci ński ( 83 • PPI network : 706 proteins and 1420 interactions (edges).

• Mixnet was fitted to the network → 4 groups of connectivity. Coloured motifs : Expected count

Motif

EN(m) = α∈I k EY α (m) = n k P(m occurs at α) = n k g(k, p) × k! c∈C s(c)! k i=1 f (m i ) :=γ(m)
where g(k, p) is the probability for an ER(p) graph of size k to be connected [Gilbert,59] :

g(k, p) = 1 - k -1 i=1 k -1 i -1 g(i, p)(1 -p) i(k -i) .
(g(1, p) = 1). Let us just compute EN 2 (m).

EN 2 (m) = 

α∈I k β∈I k E[Y α (m)Y β (m)].
Q m (α, β) = P(C(α) = C(β) = {m 1 , . . . , m k }). = m * ⊂m γ(m * )[γ(m -)] 2 s(m * )
color term :

Q m (α, β) = P(C(α) = C(β) = {m 1 , . . . , m k }). = m * ⊂m γ(m * )[γ(m -)] 2 s(m * )
connectedness term : 

K (α, β) = P(G(α) and G(β) are connected) =            g(k, p), if ℓ = k g 2 (k, p), if ℓ = 0 or 1.
Q m (α, β) = P(C(α) = C(β) = {m 1 , . . . , m k }). = m * ⊂m γ(m * )[γ(m -)] 2 s(m * )
connectedness term : Both parameters of the PA distribution can be derived from the first 2 moments of the count. 

K (α, β) = P(G(α) and G(β) are connected) =            g(k, p), if ℓ = k g 2 (k, p), if ℓ = 0
N gm = n g k -1 N gm , g = 1, 2
Box-Cox Transformation to make the counts "more" Gaussian :

N * gm = 2( N gm -1), g = 1, 2
Euclidian distance on z-scores :

d 2 (N * 1 , N * 2 ) = ||(Σ * 1 ) -1/2 (N * 1 -EN * 1 ) -(Σ * 2 ) -1/2 (N * 2 -EN * 2 )|| 2 2
where EN * g and the covariance matrix Σ * g = (Cov(N * g (m i ), N * g (m j ))) i,j can be calculated from EN g and the covariance matrix (Cov(N g (m i ), N g (m j ))) i,j (previous part).

Another approach

To model the vector N = (N 1 , N 2 , . . . , N M ) Need for a "multidimensional (compound) Poisson distribution with given covariance matrix" Our choice = the multivariate Poisson-log normal distribution from [Aitchison and Ho,89] : 

  edges : consecutiveness in the metabolic network Main characteristics : several thousands of nodes (n) sparsity (nb of edges = O(n) ) heterogeneous connexions nodes may be coloured (biological function, class of reaction, cellular localization etc.) Looking for local structures Breaking-down complex networks into functional modules or basic building blocks : [Shen-Orr et al. (02)] → network motifs : topological motifs and/or coloured motifs.

  Let α = (i 1 , . . . , i k ) ∈ I k be a possible position of m in G. G α denotes the subgraph (V i 1 , . . . , V i k ). Non strict occurrences :m occurs at position α ⇔ m ⊆ G α Random indicator of occurrence : Y α (m) Y α (m) = 1 I{m occurs at position α} = 1≤u,v ≤k X muv iuiv .

  )]• Gaussian distribution[Barbour et al. (87)] • Compound Poisson distribution [Stark (01)] Simulation study Model = mixnet with 2 groups, n = 200, etc. For expectedly frequent motifs : ), Poisson (-) and Geometric-Poisson (-) ), Poisson (-) and Geometric-Poisson (-) Sophie Schbath (INRA -MIG) Statistics for biological networks Orsay, 23 juin 2011

  occurs at α and β) =K (α,β)×Qm(α,β).whereK (α, β) = P(G(α) and G(β) are connected) Q m (α, β) = P(C(α) = C(β) = {m 1 , . . . , m k }).

  with S. Robin and L. Benaroya) Motif-based distance Normalization by the size of the graphs : Since EN(m) = n k P(m occurs at α), we define :

  N m ∼ P(e λm ) Λ ∼ N (µ, Σ) (µ, Σ) can be explicitly derived from the expectation and covariance matrix of N. Distance = euclidian distance between Λ 1 and Λ 2 Λ is estimated by E(Λ | N) Limitations : Σ may be not positive No analytical expression for E(Λ | N) (Monte Carlo)

  )]. A mixture model for random graphs. Statis. Comput.

	Part 2
	Mixture model for random graphs
	(Stochastic Block model)

[Birmelé (07)]. A scale-free graph model based on bipartite graphs. Disc. Appl. Math. [Mariadassou, Robin, Vacher (10)]. Uncovering structure in valued graphs : a variational approach. Ann. Appl. Statist. [Latouche, Birmele, Ambroise (10)] Overlapping Stochastic Block Models with Application to the French Political Blogosphere. Annals of Applied Statistics [Daudin, Pierre, Vacher (10).] Model for Heterogeneous Random Networks Using Continuous Latent Variables and an Application to a Tree-Fungus Network. Biometrics [Latouche, Birmele, Ambroise (11)] Variational Bayesian Inference and Complexity Control for Stochastic Block Models. Statistical Modelling [Gazal, Daudin, Robin (11)]. Accuracy of variational estimates for random graph mixture models. J. Comput. Comput. Simul. Sophie Schbath (INRA -MIG) Statistics for biological networks Orsay, 23 juin 2011

  N obs E mixnet N σ mixnet (N) P(GP ≤ N obs ) P(GP ≥ N obs )

	14113 75 98697 112490 1058 3535 79 0 Sophie Schbath (INRA -MIG) Assessing the significance of 13602 2659 66.9 20.4 94578 27039 93741 27257 516.6 208.7 2897 1120 34.8 20.0 0.17 0.45 8.5 10 -1 Statistics for biological networks Orsay, 23 juin 2011 Part 3 4.06 -1 3.31 -1 4.12 -1 2.34 -1 1.33 -2 2.63 -1 3.11 -2 coloured motif frequencies
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• mean and variance of the count in a wide class of random graph models, • relevant distribution to approximate the count distribution.[Matias, Schbath, Birmelé, Daudin and Robin (06)] Network motifs : mean and variance for the count, REVSTAT. 4 31-51.[Picard,Daudin, Schbath and Robin (08)] Assessing the exceptionality of network motifs, J. Comput. Biol.[Schbath, Lacroix and Sagot (09)] Assessing the exceptionality of coloured motifs in networks, EURASIP Sophie Schbath (INRA -MIG) Statistics for biological networks Orsay, 23 juin 2011
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Compound Poisson distribution

Distribution of Z i=1 T i when Z ∼ P(λ) and T i 's iid.

Particularly adapted for the count of clumping events : Z is the number of clumps and T i is the size of the i-th clump.

All network motifs are overlapping : they occur in clumps. We proposed to use a Geometric-Poisson(λ, a) distribution, i.e. when T i ≈ G(1a)

• analogy with sequence motifs [S. (95)],

• (λ, a) can be calculated according to EN(m) and VarN(m) :

Indicator of occurrence at position α : Y α (m) The motif count distribution is then approximated by a Geometric-Poisson distribution.

-→ approximate p-value P(N(m) ≥ N obs (m)).

Sophie Schbath (INRA -MIG) Statistics for biological networks Orsay, 23 juin 2011 color term :

Aim

Let G 1 and G 2 be two coloured graphs of size n 1 and n 2 (typically reaction networks from 2 different species).

Each graph is caracterized by the count vector of M given motifs of size k : N g = (N g1 , N g2 , . . . , N gM ), for g = 1, 2.

Questions :

Do they share common exceptional motifs ?

Have both graphs similar k-motif compositions ?

Whose motifs are the most discriminant ?

Idea : to define a motif-based distance taking care of the deviations from the models, the dependence between motif counts. 

Sequential distance

Consider all single motif sets (dim(N * 1 )=dim(N * 2 )=1), and take

Consider all motif pairs ( m 1 , m j ) with m j = m 1 , and take

and so on