Immobilization mechanisms of heavy metals in contaminated soils with biochar amendments
Frédéric Rees, Marie-Odile Simonnot, Jean-Louis Morel

To cite this version:
Frédéric Rees, Marie-Odile Simonnot, Jean-Louis Morel. Immobilization mechanisms of heavy metals in contaminated soils with biochar amendments. 4th International Congress EUROSOIL 2012, Jul 2012, Bari, Italy. 2012. hal-02803642

HAL Id: hal-02803642
https://hal.inrae.fr/hal-02803642
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
INTRODUCTION

Biochar* has emerged as a promising soil improver and carbon sink but its effects on trace elements in soils are still poorly known.

Recent studies[1][2][3] suggest different interaction mechanisms depending on element, biochar nature and environment. We confront here sorption studies with contaminated soil extraction to:

- Determine the main mechanisms involved in biochar effects on each metal
- Predict the long-term evolution of biochar influence on soil metal availability

* (valid product from biomass pyrolysis used as soil amendment)

MATERIALS & METHODS

Biochar: produced by Carbon Terra at ~450°C from woody biomass, sieved <2mm, untreated. High pH and buffering capacity, low CEC.

1) Sorption kinetics (Cd)

![Fig.1: Increase of adsorbed Cd quantity Q with time for two biochar particles sizes, modelled by Eqn 1: $Q(\text{mg/L}) = K_e C_0 a_0$](image)

- Slow reaction (equilibrium time > 1 day)
- Kinetics depend on particle size: Cd diffusion within biochar pores
- pH: rapid increase for 10 min after pH drop at pH 5 but no decrease within a week

⇒ Possible kinetic limitation by metal diffusion
⇒ Different sorption processes or reactions can successively occur, including K_e exchange

2) Sorption / desorption isotherms (Cd, Zn, Pb)

![Fig.2: Biochar sorption isotherms fitted by Freundlich model](image)

- Cd, Zn: identical behavior
- Pb: much greater sorption
- Isotherms hysteresis: at least partial sorption irreversibility (10 to 20% for Cd and Zn but less than 3% for Pb)
- pH and carbonates decrease with increasing sorbed Pb
- Phosphates decrease with increasing sorbed Cd and Pb
- No evolution of Na, K_e or Mg with increasing sorbed metal

⇒ Identical and partially reversible sorption for Zn and Cd, with possible surface complexation or precipitation
⇒ High and irreversible sorption of Pb, likely involving precipitation with carbonates or phosphates

3) Soil extraction (Cd, Zn, Pb)

![Fig.3: Relative metal availability (%) with biochar amendments compared to non-amended soils (100%)](image)

- Biochar effects linked with pH rise on acid soils
- Specific sorption still occurs for alkaline soil e.g. for Cd even without pH changes

RESULTS & DISCUSSION

![Table 1: Modification of soil available (compared to total) metal quantity (mg/gsoil) with 10% biochar amendments](image)

<table>
<thead>
<tr>
<th>Soil</th>
<th>Cd</th>
<th>Zn</th>
<th>Pb</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 0%</td>
<td>3.93 (17.4)</td>
<td>609 (1310)</td>
<td>1.20 (1170)</td>
<td>5.71</td>
</tr>
<tr>
<td>A 10%</td>
<td>< 2.02</td>
<td>< 246</td>
<td>< 0.309</td>
<td>7.19</td>
</tr>
<tr>
<td>B 0%</td>
<td>0.158 (184)</td>
<td>3.08 (1749)</td>
<td>0.68 (1189)</td>
<td>7.63</td>
</tr>
<tr>
<td>B 10%</td>
<td>< 0.125</td>
<td>< 27.7</td>
<td>< 0.066</td>
<td>7.76</td>
</tr>
</tbody>
</table>

Soils: contaminated (Cd, Zn, Pb) by smelters activity, with A: acid sandy-clayey loamy soil, B: limed silty-loamy-sandy soil

CONCLUSIONS

- Soil alkalisation can control biochar effects on metals but long-term influence is uncertain (surface complexation, e.g. with biochar aging?)
- Delay of effects can occur due to diffusion in small pores; irreversible sorption prevents rapid desorption risks if soil chemistry changes

PERSPECTIVES

- Soil biota and plants responses to biochar need also to be considered in order to predict long-term biochar effects on metal mobility and availability
- Column experiments will provide further information on sorption dynamics and on the importance of biochar labile fraction