Principle i i i X b a Y ε + + = .
Fitting this equation consist in estimating parameters a and b. Usually, we use the least squared method which consist in finding parameters a and b that minimized the sum of squared errors :

The model is written as following: The covariance between a and b is not null (meaning that parameters of a given equation are nonindependent) An unbiased estimation of this covariance is given by :

model
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The standard deviation of a and b is given by :
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And their confidence interval by : ----------------------------------------------------------------------------- 
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Linear regression:

Analysis of variance



Linear Models

Can we do a linear regression ?

 Y X  Linear Models Y X  Ln Y Ln X  Y'=Ln Y X'=Ln X ?
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Linear Models

Can we do a linear regression ?

 Y X   Y'=Ln Y X'= X ? Ln Y X Linear Models Y X   X'=X Y'=ln(Y/(1-Y)) ? ln(Y/(1-Y)) X
Can we do a linear regression ?



Linear Models

Why transforming the data ?

  Power equation : ) exp(ε b X a Y = ε + + = ) ln( ln ' X b a Y  Exponential model : ) exp( ε + = X b a Y ε + + = X b a Y ' ln
 It is always interesting to get a linear relationship because the solution is explicit  And sometimes it permits also to stabilize the variance But, this is not always possible and it may not correspond to the data set…. So try and see !

The following equations are linear or can be transformed to get a linear equation ?

  ε + = X b Y  ε X b Y =  ) exp(ε X b Y =  ε + = 2 X b Y  ) exp(ε b X Y =  ε + = b X Y  ε + + = 2 X c X b Y      Yes but two highly correlated variables  ) ln( ln ln ln ln ε ε + + = = X b X b Y  ) ln( ln ε + = b X Y

Non -Linear Models

Non-Linear regression: Principle



For linear models, the solution is explicit because the derivative of the model toward each parameter is independent from the paramameters of the equation.

For non-linear models, it is not the case: the derivatives depend on the parameters. The resolution of the system is too much difficult. It is then necessary to use alternative methods.
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Non -Linear Models

To fit a non-linear model, it is necessary to proceed by iterations.

When the least square method is used, at each step (i.e. each estimation of a new set of parameters) the sum of squared errors is calculated. If the procedure is efficient, this SSE decrease at each step. At the end of the process, if this decrease is negligible, then it is said that the model converged.

The most used iterative procedure is the Gauss-Newton one. But a lot of other procedures are available. When there are problems in fitting a model, it is recommended to test several methods (ex: fractionnal iteration, Marquardt) 

Heteroscedasticity

How to deal with heteroscedasticity ?

 Y X ε ε avec . + + = X b a Y ∼ ) , 0 ( X N σ Transformation of the variables, X Y Y / ' = X X / 1 ' = X / ' ε ε =
to get the following linear model : 

' ' ' ' avec ε ε + + = b X a Y ∼ ) , 0 ( σ N This is

Heteroscedasticity

How to deal with heteroscedasticity ?  First option: a rough and simple method that can be used if there are enough data

z i i X w 2 1 ∝  step 1 = split the variable X into k classes centered on X k
Step 2 = calculate the variance

2 k σ of Y within each k classes Step 3 = linear regression of k σ log to logX k
The slope of this regression is z which is often rounded to 1 or 2

Heteroscedasticity

How to deal with heteroscedasticity ?

 z i i X w 2 1 ∝ 
Step 1 = fitting the weighted model by fixing z to a given value (often 0 at the beginning)

Step 2 = calculate the Furnival index (FI)

The optimum value for z corresponds to the minimum of the Furnival Index 
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Fit by maximum likelihood instead of least squared methods

Model for the mean

Model for the variance

Model Choice

For nested models: F test using the sum of squares errors (SSE) of the two models 

ε + + = D b a Y Nested in ε + + + = H D c D b a Y 2 ε + + = H D b a Y 2 Nested in ε + + + = H D c D b a Y 2 ε + + = D b a Y Non nested in ε + + = H D c a Y 2 If



  Example of normally distributed errors, to be verified with statistical tests(ex D'agostino et al, 1990) and quantile plots How to assess the goodness of fit (for linear and non-linear models)

  equivalent to performing a weighted linear regression:HeteroscedasticityHow to deal with heteroscedasticity ?



  >F tab , then model 1 is more suitable than model 2 F tab (p1-p2,n-p1)For non nested models: AIC, BIC using the maximum likelihood estimates If the number of parameters is the same between model 1 and model 2, then use the sum of square errors (SSE), the lowest SSE is the best 

  the number of parameters is different between model 1 and model 2, then Check if these two models are nested or not:

Importance of the initial values given to the parameters Non -Linear Models

  

						
	Dependent variable is Y				
	Source	Sum-of-Squares	df Mean-Square
	Regression	1.79138E+04	3 5971.269443
	Residual	6.711670	20	0.335583
	Total	1.79205E+04	23		
	Mean corrected 3284.344348	22		
	Raw R-square (1-Residual/Total)	=	0.999625
	Mean corrected R-square (1-Residual/Corrected) =	0.997956
	R(observed vs predicted) square	=	0.997965
							Wald Confidence Interval
	Parameter	Estimate	A.S.E.	Param/ASE	Lower < 95%> Upper
	B1	40.269815	0.584758	68.865757	39.050031	41.489600
	B2	0.029815	0.001760	16.941467	0.026144	0.033486
	B3	1.454754	0.078017	18.646595	1.292013	1.617495
	Asymptotic Correlation Matrix of Parameters
		B1	B2		B3	
	B1	1.000000				
	B2	-0.910171	1.000000			
	B3	-0.756906	0.939698		1.000000	

It is strongly recommended to test several sets of initial values

Goodness of fit

Age effect was significant for most of the compartments, we then get a set of equations that can be used whatever the stand age (within the range of the calibration data set 11 to 135 months) Finally ready to simulate !