Influence of ultrasound treatment on the stability of β-carotene

Introduction: The aim of this work was to study the influence of ultrasound treatment on the stability of β-carotene.

Material & Methods: Experiments were performed using a thermostated reactor equipped with a stirrer and an ultrasound probe.

Preliminary tests: β-Carotene concentration decreases significantly in all three solvents under air and argon atmosphere. Highest degradation was found in aqueous medium under air.

Experimental design: Air and water were chosen as experimental conditions to perform a Central Composite Design (CCD) face-centered, in which three parameters were studied: ultrasound power, temperature, and sonication time.

Results:

Most influential variables are ultrasound power and time. Degradation decreases when temperature increases, due to more effectiveness of ultrasound at low temperature.

Conclusion:

Ultrasound treatment in aqueous medium under air atmosphere induces large degradation of β-carotene. This effect could be due to high energy of ultrasound against water and against β-carotene by cavitation phenomenon. Sonicated water produces Reactive Oxygen Species (ROS) like hydroxyl radical, and pH decreases due to oxygenated nitrogen species like nitric acid. Ultrasound treatment in food processing must be used carefully, controlling ultrasound power and if possible using neutral atmosphere.