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Carbon Sequestration in Leaky Reservoirs

Leaks in storage. Empirical results

A first investigation has been given by Ha-Duong and Keith (2003) using an integral assessment numerical model (DIAM) to explore the role of discount rate and leakage when the discount rate is 4% they find that a leakage rate of 0.1% is nearly the same as prefect storage while a leakage rate of 0.5% renders storage unattractive. Van der Zwaan et Gerlagh (2008, 2009). using carbon sequestration and storage policies with leaky reservoirs does not permit to escape a big switch to renewable non polluting resource if a pollution ceiling of 450 ppmv has to be enforced. 

Main questions

Is it relevant to capture CO 2 which is going to be released eventually in the atmosphere? To what extent does the presence of leaks change optimal paths? simultaneity/sequentiality of phases w.r.t. capture, use of clean energy partial capture situations monotonicity of consumption, pollution paths The present presentation is devoted to the theoretical analysis of this question. 

The Physical Model

Flows of energy and pollution in our model
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Economic parameters

Optimization involves the following parameters and functions:

ρ discount factor
x nonrenewable resource consumption rate (dirty energy) y renewable resource consumption rate (clean energy) u(q) gross instantaneous surplus produced by the consumption rate q = x + y of useful energy The social planner problem

c x constant
The social planner faces the optimization problem:

max s,x,y ∞ 0 [u(x(t) + y (t)) -c s s(t) -c x x(t) -c y y (t)] e -ρt dt
given the controlled dynamics (1) and the constraints on state variables and controls: for all t, 

X (t) ≥ 0 y (t) ≥ 0 Z (t) ≤ Z ζx(t) ≥ s(t) ≥ 0 .

State dynamics absent any control

When there is no consumption of the polluting resource, the state evolves as:

Ż = -αZ + βS Ṡ = -βS .
Integration yields:

Z (t) = Z 0 e -α(t-t 0 ) -S 0 β α -β e -α(t-t 0 ) -e -β(t-t 0 ) S(t) = S 0 e -β(t-t 0 ) .
The trajectories are curves in the domain (S, Z ): 

Z = Z (S) = Z 0 S S 0 α/β - β α -β S 0 S S 0 α/β -S .

Lagrange multipliers

For the original problem: 

(ν X ) X (t) ≥ 0 (ν Z ) Z ≥ Z (t) (γ y ) y (t) ≥ 0 (γ sx ) ζx(t) ≥ s(t) (γ s ) s(t) ≥ 0 .

Lagrange multipliers

For the problem with explicit viability constraint:

(ν X ) X (t) ≥ 0 (ν Z ) Z (S(t)) ≥ Z (t) (γ y ) y (t) ≥ 0 (γ sx ) ζx(t) ≥ s(t) (γ s ) s(t) ≥ 0
where 

Z (S) = Z , 0 ≤ S ≤ S m Z M (S), S m ≤ S ≤ S M .

First-Order Conditions

The first order conditions are then the following. First, optimality of the control yields:

0 = -c s -λ Z + λ S + γ s -γ sx 0 = u (x + y ) -c x -λ X + ζλ Z + ζγ sx 0 = u (x + y ) -c y + γ y .

Dynamics of the costate variables

are λX = ρλ X -ν X λZ = (ρ + α)λ Z -ν Z λS = (ρ + β)λ S -βλ Z .
Transversality conditions: lim t→∞ {e -ρt λ X X , e -ρt λ Z Z , e -ρt λ S S} = 0 . 

Solution Strategy

We adopt the following strategy:

Depending on what constraints on states and control are bound, this defines "phases" characterized by specific consumption/capture functions command x, y , s and specific dynamics for state variables S, Z , X , and co-state variables λ X , λ S , λ Z .

Optimal trajectories are obtained by chaining such phases; depending on the parameters, phase configurations may be feasible or not.

Many configurations turn out to be feasible... =⇒ classification complete when X = +∞ =⇒ some characterizations for X < +∞ (not in this presentation) 

Theoretical tools

Mangasarian's suff. cond.

Theorem (Seierstad and Sydsaeter (1977), Theorems 6 and 10) Suppose (x * (t), u * (t)) is an admissible state/control pair. Suppose further that there exist functions γ(t) = (γ 1 (t), . . .) and λ(t) = (λ 1 (t), . . .), where λ(t) is continuous and λ(t) and γ(t) are piecewise continuous, such that the FOC are satisfied. Suppose H is concave in x, u and differentiable at (x * , u * ) for all t. Then (x * (t), u * (t)) is catching-up optimal for problem.

max u(•) ∞ 0 f 0 (x(t), u(t), t)dt
under constraints ẋ = f (x, u, t) and g j (x, u, t) ≥ 0, j = 1, . . . , s, provided that the g j are quasi-concave in x, u and differentiable at x * , u * . 

λ i (t + 1 ) -λ i (t - 1 ) ≥ k β k ∂g k ∂x i (x * (t - 1 ), u * (t * 1 ), t - 1 )
Theorem (Seierstad and Sydsaeter (1999), Theorem 11)

Suppose (x * (t), u * (t)) is an admissible state/control pair, that there exist vector functions γ(t) and λ(t), where λ(t) is piecewise continuous as above and λ(t) and γ(t) are piecewise continuous, such that the FOC are satisfied. Suppose H is concave in x, u. Then (x * (t), u * (t)) is catching-up optimal for the problem under constraints g j (x, u, t) ≥ 0, j = 1, . . . , s, provided that the g j are quasi-concave in x, u and C 2 , and f and f 0 are C 1 .

Bad luck: the function Z is not C 2 , and f 0 not always C 1 . Theoretical tools (ctd)

Not so bad luck: for a given value of parameters, either costate variables are continuous on every optimal trajectory or no optimal trajectory touches Z = Z M (S), except one.

=⇒ one of the two theorems covers the situation. 

Optimal Capture

Optimal capture obeys a sort of "bang-bang" principle.

Lemma

Consider a piece of optimal trajectory located in the interior of the domain, such that x(t) > 0. Then for every time instant t, either s(t) = 0, or s(t) = ζx(t).

Consider the function, issued from first-order conditions:

γ(t) := -c s -λ Z (t) + λ S (t) = γ sx (t) -γ s (t) .
Its sign determines the capture, when x(t) > 0: 

γ(t) > 0 =⇒ γ sx > 0, γ s = 0: s = ζx γ(t) < 0 =⇒ γ s > 0, γ sx = 0: s = 0 γ(t) = 0 =⇒ γ s = 0, γ sx = 0: s ∈ (0, x), only if Z = Z

Type of energy consumption

Consumption of non-renewable resource (x > 0) and renewable resource (y > 0) is exclusive in the interior.

Lemma

Consider a piece of optimal trajectory located in the interior of the domain. Then either x(t) > 0 or y (t) > 0 but not both. States or phases that can be terminal 

A trajectory perturbation argument

Reference:

Z (t) = Z , S(t) = S m , x(t) = x, s(t) = ζx. Modification: 1) On [0, ∆t], consumption is x(t) = x -∆x (constant) and capture s(t) = βS(t) -ζ∆x so that Z (t) = Z still holds.
Difference in profit between trajectories is

D 1 = (p -c x -ζc s )∆x∆t + o(∆x)∆t + o(∆t).
2) On [∆t, ∞), capture is restored to the nominal level ζx, and consumption is such that Z = Z . The difference is: 

D 2 = ∞ ∆t e -ρt [u(x) -u(x + β(S m -S)/ζ) + c x β(S m -S)/ζ]dt

A trajectory perturbation argument

Reference:

Z (t) = Z , S(t) = S m , x(t) = x, s(t) = ζx. Modification: 1) On [0, ∆t], consumption is x(t) = x -∆x (constant) and capture s(t) = βS(t) -ζ∆x so that Z (t) = Z still holds.
Difference in profit between trajectories is

D 1 = (p -c x -ζc s )∆x∆t + o(∆x)∆t + o(∆t).
2) On [∆t, ∞), capture is restored to the nominal level ζx, and consumption is such that Z = Z . The difference is: 

D 2 = ∞ ∆t e -ρt [u(x)-u(x+β∆ tx e -β(t-∆t) )+βc x ∆ tx e -β(t-∆t) ]dt

A trajectory perturbation argument

Reference:

Z (t) = Z , S(t) = S m , x(t) = x, s(t) = ζx. Modification: 1) On [0, ∆t], consumption is x(t) = x -∆x (constant) and capture s(t) = βS(t) -ζ∆x so that Z (t) = Z still holds.
Difference in profit between trajectories is

D 1 = (p -c x -ζc s )∆x∆t + o(∆x)∆t + o(∆t).
2) On [∆t, ∞), capture is restored to the nominal level ζx, and consumption is such that Z = Z . The difference is: 

D 2 = β ρ + β ∆t∆x(c x -p) + o(∆t

A trajectory perturbation argument

Reference:

Z (t) = Z , S(t) = S m , x(t) = x, s(t) = ζx. Modification: 1) On [0, ∆t], consumption is x(t) = x -∆x (constant) and capture s(t) = βS(t) -ζ∆x so that Z (t) = Z still holds.
Difference in profit between trajectories is

D 1 = (p -c x -ζc s )∆x∆t + o(∆x)∆t + o(∆t).
2) On [∆t, ∞), capture is restored to the nominal level ζx, and consumption is such that Z = Z . The difference is:

D 2 = β ρ + β ∆t∆x(c x -p) + o(∆t) .
If the reference trajectory is optimal, then D 1 + D 2 must be positive. Asymptotically when ∆t and ∆x tend to 0, this is: Cheap CSS (small c s )

c s ≤ ρ ρ + β p -c x ζ = ĉs .
Phase S terminal. Jump of λ Z at (S m , Z ). x = 0 in the interior. Small c s , evolution of adjoint variables Expensive CSS (large values of c s )

Q S Υ Z 0 0 S m S S M Z (I) (II) (II) (III) (IV) L U B A Z = Z ζx > s > 0 y = 0 Z = Z x = x, s = ζ x y = 0 Z < Z(S) s = ζx s = 0 y = 0 y = 0 y = ỹ x = 0, s = 0 y = ỹ x = 0, s = 0 Z < Z(S) Z = Z(S) Z < Z(S)
λS > 0 λS < 0 γ = 0 λS = 0 L B A (III) (IV) (I) (II) λZ cs + cx -p ζ cs + cx -cy ζ PS -cs β ρ Ω -cs ρ + β ρ λS cx -
S m 0 0 Z S M A P Z S Q S QP S B (III) (IV) (II) (I) L Z < Z s = 0 y = 0 Z < Z s = ζx y = 0 Z = Z s = 0 y = 0 x = 0, s = 0 Z = Z ζx > s > 0 y = 0 y = ỹ Z < Z(S)
Z < Z s = 0 y = 0 Z = Z s = 0 y = 0 x = 0, s = 0 y = ỹ Z = Z ζx > s > 0 y = 0 Z = Z x + y = ỹ s = 0 (III) (IV) (II) (I) S LR S QP R Q P Z Z 0 0 S m S M S A S RQ U Z = Z(S)
Phase Q disappears. Capture is so expensive in this case that s(t) = 0 at all times. The model is equivalent to one where capture is not possible at all. The limiting value for c s :

Sm 0 0 Z S M P Z S R S ỹ U A Z = Z s = 0 y = 0 x = 0, s = 0 Z = Z s = 0 x + y = ỹ y = ỹ S RP S LR Z = Z(Z) Z < Z(S) s = 0 y = 0
c = c y -c ζ + β ζ ∞ 0 e -(ρ+β)v c x -u (x - β ζ S
e y e -βv ) dv 

Conclusions and work to do

We can solve the optimal control problem and classify the different optimal solutions for all initial situation. Endogenous admissibility domain: not every possible configuration of atmospheric and sequestered stock is acceptable.

Results confirm that the presence of leakage does reduce the economic incentive of sequestration. Explicit (or almost explicit) formulas explaining the different optimal solution depending on cost of sequestration, rate of leakage and discount factor. Optimal consumption path are very different with respect to the benchmark situation (without leakage), in particular energy prices can be non monotonous and discontinuous.

Now that we have all the solutions we can try to exploit more the economic interpretations The influence of the leakage rate β

When β = 0, X = +∞, S is "free": λ S = 0. Three cases for c s . Note: ĉs = (pc x )/ζ. c s ≥ ĉs : no capture, x = x, S constant, Z = Z ; 0 ≤ c s < ĉs : x = q d (c x + ζc s ), capture s = xx, Z = Z ; c s < 0: full capture s = ζx, x = q d (c x + ζc s ), Z < Z .

When β > 0, the situation is not so clear-cut: c s ≥ ĉs : capture may be still optimal 0 ≤ c s < ĉs : no capture may be optimal at the ceiling, whereas capture may be optimal under the ceiling c s < 0: no capture may be optimal. 

  Taking into account constraints and transversality conditions, only three situations may occur when t → ∞. It depends on the following critical values for the unitary capture cost c s : s = y = 0, Z = Z , S → 0; only if c s > ĉs Phase Q: y = 0, Z = Z , S constant; only if c s = ĉs Phase S: y = 0, x = x, s = ζx, Z = Z , S = S m constant; only if c s < ĉs .

  But sometimes, continuity of λ(•) cannot be obtained! It is allowed that λ(t) is piecewise continuous, and ∃β k ≥ 0 s.t.:
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