

Seasonality and the evolutionary divergence of plant parasites

Frédéric Marie Hamelin, Magda M. Castel, Sylvain Poggi, Didier Andrivon,

Ludovic Mailleret

▶ To cite this version:

Frédéric Marie Hamelin, Magda M. Castel, Sylvain Poggi, Didier Andrivon, Ludovic Mailleret. Seasonality and the evolutionary divergence of plant parasites. 8th European Conference on Mathematical and Theoretical Biology, Jun 2011, Cracovie, Poland. hal-02804607

HAL Id: hal-02804607 https://hal.inrae.fr/hal-02804607v1

Submitted on 5 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

		Discussion

Seasonality and the evolutionary divergence of plant parasites

F. Hamelin*, **M. Castel**[∗], S. Poggi[∗], D. Andrivon[∗], L. Mailleret[‡]

* BiO3P, Agrocampus Ouest, UR1 & INRA, Rennes [#] URIH, INRA & BIOCORE, INRIA, Sophia Antipolis

8th European Conference on Mathematical and Theoretical Biology Kraków, 28 June - 2 July 2011

Introduction	Biology	Modelling			Discussion
••	0	00	000	00	00

Biotrophic plant parasites

- ▶ feed, grow and reproduce on their living host plant
- cause massive damage to staple food crops

ubiquitous coexistence of related plant parasite species¹

¹Brasier, 1987

Introduction	Biology	Modelling			Discussion
00	0	00	000	00	00

Temporal heterogeneity in host availability

Spatial host heterogeneity promotes evolutionary divergence²

► Can seasonality promote evolutionary divergence as well?

²Gudelj *et al.*, 2004

	Biology ●		PIPs 00	Discussion 00

Biotrophic parasites' life cycle: Potato Late Blight

C Cornell University

- During early spring
 - Primary infection phase: seedlings' infection by inoculum from previous seasons

Introduction	Biology Model	lling Analysis		Discussion
00 0	• • • • • • • • • • • • • • • • • • • •	000	00	00

Biotrophic parasites' life cycle: Potato Late Blight

During the season

 Secondary infection phase: the parasite spreads from host to host through inoculum from the current season

© Cornell University

diseased seedlings and leaves, zoospores are are dispersed to healthy leaves produced and relea from sporangia lesions and fungus develop on leaves zoospores infect leaves

sporangia, formed on

Biology ●		PIPs 00	Discussion 00

Biotrophic parasites' life cycle: Potato Late Blight

C Cornell University

Two **complementary** transmission routes:

- between season transmission
- within season contagion

		Modelling			Discussion
00	0	••	000	00	00

Model Basic Assumptions

(1) Different important time windows in such epidemic systems:

(2) Fast primary infection. This requires a mixed continous/discrete modelling framework

Biology	Modelling		Discussion
	00		

The ecological model in compact form³

With the continous part

$$\begin{cases} \dot{S} = -\sum_{i} \beta_{i} SI_{i}, & Susceptible/healthy hosts \\ \dot{I}_{i} = \beta_{i} SI_{i} - \alpha I_{i}. & Infected/infectious hosts, r or \end{cases}$$

And the **discrete part**

$$\begin{cases} S((n+1)T^+) = S_0 \exp(-\sum_i F_i((n+1)T))), \\ l_i((n+1)T^+) = S_0 [1 - \exp(-\sum_i F_i((n+1)T))] \times \left(\frac{F_i((n+1)T)}{\sum_i F_i((n+1)T)}\right), \end{cases}$$

with $F_i((n+1)T) = \pi e^{-\mu_i(T-\tau)} \frac{\theta}{\delta} I_i(nT+\tau).$

³Mailleret et al., 2011

m

Biology	Modelling		Discussion
	00		

The ecological model in compact form³

With the continous part

$$\begin{cases} \dot{S} = -\sum_{i} \beta_{i} SI_{i}, & Susceptible/healthy hosts \\ \dot{I}_{i} = \beta_{i} SI_{i} - \alpha I_{i}. & Infected/infectious hosts, r or methods \end{cases}$$

And the discrete part

$$\begin{cases} S((n+1)T^+) = S_0 \exp(-\sum_i F_i((n+1)T))), \\ I_i((n+1)T^+) = S_0 [1 - \exp(-\sum_i F_i((n+1)T))] \times \left(\frac{F_i((n+1)T)}{\sum_i F_i((n+1)T)}\right), \end{cases}$$

with
$$F_i((n+1)T) = \pi e^{-\mu_i(T-\tau)} \frac{\theta}{\delta} I_i(nT+\tau).$$

³Mailleret et al., 2011

Biology	Modelling	Analysis	Discussion
		000	

Evolutionary trade-off

Experimental evidence⁴ of a negative relationship between

- within season transmission ability
- season-to-season survival ability

higher infection rate \Leftrightarrow lower season-to-season survival

To capture this, let $\mu = f(\beta)$, with f' > 0.

⁴Abang et al. 2006, Carson 1998.

	Biology	Modelling	Analysis		Discussion
00	0	00	000	00	00

Evolutionary invasion analysis

Adaptive Dynamics, a framework to address phenotypical evolution

- consider a resident population at ecological "equilibrium",
- challenge it with a small mutant sub-population

Assuming the resident is at a *T*-periodic equilibrium $(S_r^{\circ}(\cdot), I_r^{\circ}(\cdot))$,

let

$$\bar{S}_r = \frac{1}{\tau} \int_0^\tau S_r^\circ(t) \mathrm{d}t \,.$$

	Biology	Modelling	Analysis		Discussion
00	0	00	000	00	00

Evolutionary invasion analysis

Adaptive Dynamics, a framework to address phenotypical evolution

- consider a resident population at ecological "equilibrium",
- challenge it with a small mutant sub-population

Assuming the resident is at a *T*-periodic equilibrium $(S_r^{\circ}(\cdot), I_r^{\circ}(\cdot))$,

let

$$\bar{S}_r = \frac{1}{\tau} \int_0^\tau S_r^\circ(t) \mathrm{d}t \,.$$

Biology	Modelling	Analysis	Discussion
		000	

Invasion fitness

The mutant invasion criterion is define by the invasion fitness:

$$s(\beta_r,\beta_m) = (\beta_m - \beta_r)\bar{S}^{\circ}(\beta_r)\tau - (f(\beta_m) - f(\beta_r))(T - \tau)$$

• The small mutant can invade provided $s(\beta_r, \beta_m) > 0.$

$$D_2 s(\beta^\star, \beta^\star) = 0.$$

The necessary condition for a branching point reads

$$D_{22}s(\beta^*, \beta^*) = -f''(\beta^*)(T-\tau) > 0.$$

	Biology	Modelling		PIPs	Discussion
00	0	00	000	● 0	00

Evolutionary dynamics

	Biology	Modelling		PIPs	Discussion
00	0	00	000	00	00

Ecological dynamics at the dimorphic evolutionary endpoint

		PIPs 00	Discussion ●0

Conclusion

 (evolution can promote) ecological niche differentiation through time partitioning⁵

⁵from Montarry et al., 2007

Biology	Modelling		Discussion
			00

Thank you for your attention!

Supporting agricultural research for sustainable development

Hamelin, Castel, Poggi, Andrivon, Mailleret

		PIPs 00	Discussion 00
Annexes			

Full model with two strains

$$\begin{cases} \dot{P}_i = -\Delta P_i, & \text{Primary inoculum, type } r \text{ or } m \\ \dot{S} = -\sum_i \Theta P_i S - \sum_i \beta_i S I_i, & \text{Susceptible/healthy hosts} \\ \dot{I}_i = \Theta P_i S + \beta_i S I_i - \alpha I_i. & \text{Infected/infectious hosts, } r \text{ or } m \\ \hline{P_i(\tau^+) = P_i(\tau) + \pi I_i(\tau)}, & \\ S(\tau^+) = 0, & \text{Transition from growing season} \\ I_i(\tau^+) = 0. & \text{to winter season. } t = \tau. \\ \hline{\dot{P}_i = -\mu_i P_i}. & \text{Overwintering. } t \in (\tau, T). \\ \hline{P_i(T^+) = P_i(T)}, & \\ S(T^+) = S_0, & \text{Beginning of a new cycle.} \\ I_i(T^+) = 0. & t = T. \end{cases}$$

			PIPs oo	Discussion 00
Annexes				
Maling princes in	afastions fast			

Making primary infections fast

4

- Let $\delta = \varepsilon \Delta$, $\theta = \varepsilon \Theta$, with $0 < \varepsilon \ll 1^6$.
- > The within-season model writes, in a slow-fast form,

$$\begin{cases} \varepsilon \dot{P}_{i} = -\delta \mathbf{P}_{i}, \\ \varepsilon \dot{S} = -\sum_{i} \theta \mathbf{P}_{i} \mathbf{S} - \sum_{i} \varepsilon \beta_{i} S I_{i}, \\ \varepsilon \dot{I}_{i} = \theta \mathbf{P}_{i} \mathbf{S} + \varepsilon \beta_{i} S I_{i} - \varepsilon \alpha I_{i}. \end{cases}$$

Primary inoculum Susceptible/healthy plants Infected/Infectious Plants

• And **neglecting terms** in $O(\varepsilon)$

$$\left\{ \begin{array}{l} P \to 0 \,, \\ S \to S_0 \exp\left(-\sum_i \frac{\theta}{\delta} P_{i,0}\right) \,, \\ I \to S_0 \left[1 - \exp\left(-\sum_i \frac{\theta}{\delta} P_{i,0}\right)\right] \left(\frac{\frac{\theta}{\delta} P_{i,0}}{\sum_i \frac{\theta}{\delta} P_{i,0}}\right) \end{array} \right.$$

<u>where $P_{i,0} = P_i((n+1)T^+) = \pi e^{-\mu_i(T-\tau)}I_i(nT+\tau)$.</u>

⁶Madden and van den Bosch (2002)

		PIPs oo	Discussion 00
Annexes			

Making primary infections fast

- Defining fast time $t' = t/\varepsilon$,
- > The within-season model writes, in a slow-fast form,

$$\begin{cases} \dot{P}'_{i} = -\delta \mathbf{P}_{i}, \\ \dot{S}' = -\sum_{i} \theta \mathbf{P}_{i} \mathbf{S} - \sum_{i} \varepsilon \beta_{i} S I_{i}, \\ \dot{I}'_{i} = \theta \mathbf{P}_{i} \mathbf{S} + \varepsilon \beta_{i} S I_{i} - \varepsilon \alpha I_{i}. \end{cases}$$

Primary inoculum Susceptible/healthy plants Infected/Infectious Plants

• And **neglecting terms** in $O(\varepsilon)$

$$\begin{cases} P \to 0, \\ S \to S_0 \exp\left(-\sum_i \frac{\theta}{\delta} P_{i,0}\right), \\ I \to S_0 \left[1 - \exp\left(-\sum_i \frac{\theta}{\delta} P_{i,0}\right)\right] \left(\frac{\frac{\theta}{\delta} P_{i,0}}{\sum_i \frac{\theta}{\delta} P_{i,0}}\right). \end{cases}$$

where
$$P_{i,0} = P_i((n+1)T^+) = \pi e^{-\mu_i(T-\tau)} I_i(nT+\tau).$$

	Biology	Modelling			Discussion
00	0	00	000	00	00

Annexes

PIP robustess around the branching point with a respect to the trade-off

	Biology	Modelling			Discussion
00	0	00	000	00	00

Annexes

PIP robustess around the branching point with a respect to the season legth

