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Biotrophic plant parasites

» feed, grow and reproduce on their living host plant

» cause massive damage to staple food crops

» ubiquitous coexistence of related plant parasite species!

!Brasier, 1987
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Temporal heterogeneity in host availability

» Spatial host heterogeneity promotes evolutionary divergence?
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2Gudelj et al., 2004
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Biotrophic parasites’ life cycle: Potato Late Blight
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Biotrophic parasites’ life cycle:

During the season

» Secondary infection
phase: the parasite
spreads from host to host
through inoculum from
the current season

@© Cornell University

Potato Late Blight
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Biotrophic parasites’ life cycle: Potato Late Blight
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Introduction Modelling Analysis
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Model Basic Assumptions

(1) Different important time windows in such epidemic systems:

So a
” ” :_’

T )
kT host presence kT +1 host absence (k+1)T

(2) Fast primary infection.
This requires a mixed continous/discrete modelling framework
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Introduction Siolog Modelling Analysis

The ecological model in compact form?
With the continous part

S=-3.5:Sl, Susceptible/healthy hosts
I: = B:Sl; — al.. Infected /infectious hosts, r or m
Continuous @ Continuous @ Continuous
4" 5‘
Ty I Terr Ty

3Mailleret et al., 2011
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Introduction Siolog Modelling Analysis

The ecological model in compact form?
With the continous part
{ S=-3.5:Sl, Susceptible/healthy hosts

I: = B:Sl; — al.. Infected /infectious hosts, r or m

And the discrete part
{5((n+1)r+) = Spep(~ X Fil(n+1T)),
W+ )T = Solt—exp(=SiFi((n+ ) T))] x (s

with Fi((n+1)T) = me #(T=1 L (nT + 7).

Continuous © Continuous ® Continuous
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+
Ty Tk Thsa Tk+ 1

3Mailleret et al., 2011
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Evolutionary trade-off
Experimental evidence* of a negative relationship between

> within season transmission ability

> season-to-season survival ability
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Gosme et al., 2009, take-all of wheat

higher infection rate < lower season-to-season survival

To capture this, let = f(8), with ' >0.

*Abang et al. 2006, Carson 1998.
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Introduction Modelling Analysis

Evolutionary invasion analysis

Adaptive Dynamics, a framework to address phenotypical
evolution

» consider a resident population at ecological “equilibrium”,

» challenge it with a small mutant sub-population
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Introduction Siolog Modelling Analysis

Evolutionary invasion analysis

Adaptive Dynamics, a framework to address phenotypical
evolution

» consider a resident population at ecological “equilibrium”,

» challenge it with a small mutant sub-population

Assuming the resident is at a T-periodic equilibrium (52(-), 1°(+)),
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Invasion fitness

The mutant invasion criterion is define by the invasion fitness:

s(Br, Bm) = (Bm = Br)S°(B)T = (F(Bm) = F(BINT = 7)

» The small mutant can invade provided

s(Br, Bm) > 0.

We are interested in singular traits §* s.t.
Dys(8*,8%) =0.
The necessary condition for a branching point reads

Dops(8%,8%) = —f"(B*)(T —7) > 0.

Hamelin, Castel, Poggi, Andrivon, Mailleret



Evolutionary dynamics

mutant's transmission rate

evolutionary time

convex trade-off
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concave trade-off
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Ecological dynamics at the dimorphic evolutionary endpoint
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Conclusion

» (evolution can promote) ecological niche differentiation
through time partitioning®
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5from Montarry et al., 2007
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Thank you for your attention!

=

agropolis fondation

Supporting agricultural research
for sustainable development
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Annexes

Full model with two strains

P; = —AP;, Primary inoculum, type r or m
S=-%,0PS -3, 8iSI, Susceptible/healthy hosts
l;=0PS + BiSl; — al; . Infected /infectious hosts, r or m
Pi(T+) = P,'(T) + 7T/,'(T) y

S(rt) =0, Transition from growing season
li(tt)=0. to winter season. t = T.

P; = —piP; . Overwintering. t € (7, T).
Pi(T*) =P(T),

S(TH) =S, Beginning of a new cycle.
H(T+)=0. t=T.
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Annexes
Making primary infections fast
> Let 6 = A, § = O, with 0 < ¢ < 1°.
» The within-season model writes, in a slow-fast form,

EP,' = —0P;, Primary inoculum
eS=->,0P;S —> . ¢85Sl Susceptible/healthy plants
el; = 0P;S + ¢3;SI; — eal;. Infected/Infectious Plants

®Madden and van den Bosch (2002)



Annexes

Making primary infections fast

» Defining fast time t' = t/e,

» The within-season model writes, in a slow-fast form,

Pl = —P;, Primary inoculum
S'=->.0PS - >, 8:Sl;, Susceptible/healthy plants
I! = 0P;S + €0, Sl; — eal;. Infected/Infectious Plants

» And neglecting terms in O(¢)

P—0,
S— Soexp (=3 4Pi) ,

2
_ _\.9p. sFio
I 5 S [1— exp (=X 2Po)] (Zig%) .
where P g = P;i((n+1)T*) = ne #(T=7)[:(nT + 7).




Annexes

PIP robustess around the branching point with a respect to the trade-off
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Annexes

PIP robustess around the branching point with a respect to the season legth
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