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Chapter 13
Eddy Covariance Measurements over
Grasslands

Georg Wohlfahrt, Katja Klumpp, and Jean-François Soussana

In this chapter we first provide a historic overview of – and outline some of
the peculiarities associated with – grassland eddy covariance flux measurements,
elaborate on the additional terms that need to be quantified when estimating the
grassland net ecosystem carbon balance and finally discuss some of the challenges
associated with upcoming nitrous oxide and methane flux measurements in managed
grasslands.

13.1 Historic Overview of Grassland Eddy Covariance Flux
Measurements

One of the first latent/sensible heat flux measurements by means of the eddy
covariance method were done in 1950 by Swinbank (1951) over a grassland. At
that time and during the following years, experimental evaluations of the eddy
covariance method were focused on understanding the turbulent properties of
surface layer and on mastering the technical challenges posed by the available
equipment. Technical advances in sonic anemometers and scalar sensors then led
to more routine applications of the eddy covariance method by the mid-1980s
when the scientific interest was already to determine the source/sink strength of
grassland ecosystems for latent/sensible heat and trace gases such as nitrogen
oxides, ozone and carbon dioxide (CO2) (Delany et al. 1986; Kim and Verma
1990; Verma et al. 1989; Zeller et al. 1989). These studies, however, were usually
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confined to a few months and it was not until 1996 when the first year-round
carbon dioxide and energy eddy covariance flux measurements over grasslands were
initiated (Meyers 2001; Suyker and Verma 2001). During those early years of the
FLUXNET project, the majority of sites were situated in forest ecosystems (only 3
out of 34 sites listed in Baldocchi et al. (2001) were non-forest ecosystems). This
changed dramatically at the beginning of the twenty-first century when two EU
projects dedicated to grassland ecosystems were initiated: CarboMont (Cernusca
et al. 2008) and GreenGrass (Soussana et al. 2007). At about the same time, eddy
covariance flux measurements were also started at several sites in the large grassland
areas of northern America (e.g. Flanagan et al. 2002; Hunt et al. 2004) and central
Asia (e.g. Kato et al. 2004; Li et al. 2005). By now, the relative number of grassland
flux towers within FLUXNET is approximately equal to the global percentage land
cover of grasslands (http://www.fluxdata.ornl.gov).

13.2 Peculiarities of Eddy Covariance Flux Measurements over
Grasslands

In the following we aim at complementing the previous chapters by identifying
and giving examples for issues specific to eddy covariance flux measurements over
grassland ecosystems.

A major difference between eddy covariance flux measurements over grasslands
as compared to forests, or more generally between tall and short canopies like
cropland and wetland, is that flux measurements over grasslands are made closer
to the ground surface. This entails the advantage of the storage flux usually being
small as compared to the eddy flux (see Eq. 1.24 in Sect. 1.4.2) and that any
error in the quantification of the storage flux will have comparably small numerical
consequences for the derived net ecosystem CO2 exchange (NEE). For example,
for a measurement height of 3 m and a typical averaging period of 30 min, a
uniform 1 ppm change in CO2 mole fraction translates to a storage flux of only
0.07 �mol CO2 m�2 s�1 (at 20ıC and a static air pressure of 101.3 kPa). At
the grassland study site Neustift (Austria; Wohlfahrt et al. 2008a) the long-term
storage flux (sign removed) amounts to 0.03 ˙ 0.04 �mol CO2 m�2 s�1, which
is more than two orders of magnitude smaller than the corresponding average
night-time (6 �mol CO2 m�2 s�1) and midday (�10 �mol CO2 m�2 s�1) NEE.
The lower measurement height at grassland sites, however, causes co-spectra to
shift to higher frequencies, as compared to forest sites (see also Sects. 1.5.4
and 4.1.3). This in turn has implications for flux loss due to low- and high-pass
filtering (Sect. 4.1.3.2) associated to a certain degree with any eddy covariance
system and the corrections required for eliminating this bias (Massman 2000).
As a consequence, frequency response corrections tend to be higher for grassland
as compared to forest sites (Fig. 13.1), in particular at high wind speeds and/or
with stable stratification when co-spectra are characterised by larger high-frequency
contents (Kaimal and Finnigan 1994). Differences between typical grassland and

http://www.fluxdata.ornl.gov
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Fig. 13.1 Frequency response correction factors as a function of horizontal wind speed for
hypothetical forest (measurement height D 30 m, zero-plane displacement height D 14 m) and
grassland (measurement height D 3 m, zero-plane displacement height D 0.7 m) site for near-
neutral (� D 0) and stable (� D 1) conditions. Calculations have been performed for a 30 min
averaging period (no de-trending) and for the combination of a sonic anemometer (negligible
time response, path-length D 0.15 m) and an open-path instrument (response time D 0.1 s, path-
length D 0.15 m) separated laterally by 0.2 m and assumed a co-spectral reference model according
to Kaimal and Finnigan (1994)

forest frequency response correction factors diminish or even reverse at very low
wind speeds, when high-pass filtering associated with block averaging and any
detrending operations leads to a relatively larger flux loss for forests due to the
larger low-frequency content (Fig. 13.1).

A major challenge for conducting eddy covariance flux measurements in man-
aged grasslands is the fact that the footprint is often heterogeneous due to different
land uses present (e.g. a mix of grass- and croplands), different management
intensities (e.g. number of grazing animals, cutting frequency, fertiliser type
and quantity), temporal asynchrony in management activities (e.g. cutting events
occurring at different dates), as well as landscapes with complex topography. Under
these circumstances, a careful site selection, which takes the surface heterogeneity
into account, is required. As an alternative to the EC method, chamber-based
measurements may be suitable for monitoring NEE from short-plant ecosystems in
complex topography (Risch and Dougas 2005; Li et al. 2005; Schmitt et al. 2010).



336 G. Wohlfahrt et al.

Footprint models (see Chap. 8) may be used to determine, for any given
measurement height and atmospheric conditions, the likely extent of the source
area (Schmid 2002). An illustrative example is given in Fig. 13.2, which shows
the NEE at the study site Neustift (Austria) for a situation where the first 100 m of
the daytime source area had regrown after a cut 11 days earlier and were followed
further upwind by grass which had been cut 3 weeks before and thus did have more
time to regrow. The NEE in these two areas was measured concurrently by means
of transparent chambers (Wohlfahrt et al. 2005). The source area weighted chamber
flux (Fig. 13.2) corresponds nicely with the NEE measured by eddy covariance
(slope and y-intercept of a linear regression not significantly different from unity
and zero, respectively) confirming the validity of the footprint model by Hsieh
et al. (2000). During the morning hours, the young grass, which as compared to
the older grass exhibits a relatively modest net CO2 uptake, contributes most to
the flux measured by the eddy covariance tower (up to 95% of flux originates from
young grass). During the course of the day this contribution diminishes continuously
(down to 41%), however; because the NEE of the older grass diminishes as well,
measured and modelled CO2 fluxes change relatively little. This example is meant to
show the potential footprint analysis offers in analysing eddy covariance grassland
data in situations where management leads to heterogeneities in the footprint.
However, except for very simple situations (e.g. Marcolla and Cescatti 2005) and/or
if additional measurements are available as in the example shown in Fig. 13.2, it will
usually be difficult to partition fluxes based on footprint models. Rather footprint
models can be used for guiding site selection and tower setup for maximising
data capture from the grassland of interest and as a post-processing quality control
criterion (Novick et al. 2004) for excluding flux measurements contaminated by
heterogeneities in the footprint.

The low measurement height of grassland flux towers and associated relatively
small footprint offer the advantage of making grasslands study sites amenable to
manipulation at the field scale. Adopting treatment and control footprints, factorial
experiments can be designed which combine the strengths of the EC method, that is,
near-continuous spatially integrated flux monitoring, with the explanatory power of
causal analysis offered by classical ecological factorial experiments. With identical
equipment, land-use history and near-identical environmental conditions, systematic
uncertainties are minimised (Ammann et al. 2007), allowing accurate determination
of treatment effects. To date such experiments have been limited to changes in
management (Allard et al. 2007; Ammann et al. 2007); however, manipulations of
environmental factors (e.g. additional precipitation) seem possible as well, and we
in fact expect major new developments in this direction in the near future.

Another issue with, in particular managed, grasslands is their rapid growth or
regrowth after grazing/cutting, which is reflected in rapid changes of the NEE
and energy fluxes (Hammerle et al. 2008; Wohlfahrt et al. 2008a). Imputation of
inevitable gaps in EC time series (Falge et al. 2001), a standardised step in the
processing of FLUXNET data (see also Chap. 6), needs to take these rapid changes
into account (Ammann et al. 2007). Thereby a compromise between the length of
the time window, which should be a short as possible in order to capture the dynamic
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Fig. 13.2 Example illustrating the effect of a bimodal CO2 sink strength distribution in the
footprint of an eddy covariance tower on the measured net ecosystem CO2 exchange (NEEEC).
The area immediately upwind of the tower (Plot 1) had been cut 11 days before measurements and
was followed further upwind by an area (Plot 2) which had been cut 3 weeks before. NEE on these
two plots (NEEcham P1, NEEcham P2) was measured by means of transparent chambers as described
in Wohlfahrt et al. (2005). Based on the footprint model by Hsieh et al. (2000) the expected NEE
at the EC tower (NEEmod) was then calculated as the source-area weighted average of the NEEs
measured by chambers. Unpublished data by Wohlfahrt G. and Drösler M. from the study site
Neustift (Austria)

behaviour, and the number of data upon which gap-filling is based, which should be
as large as possible for statistical significance, has to be achieved (see Sect. 6.3.2.1
for further details).

13.3 Estimating Grassland Carbon Sequestration from Flux
Measurements

An alternative to the direct measurement of carbon (C) stock changes in grasslands
(Conant et al. 2001) is to measure the net balance of C fluxes (i.e. net ecosystem
carbon balance, NECB; Chapin et al. 2006) exchanged at the system boundaries.
Using this approach changes in C stocks can be detected within 1 year. In contrast,
direct measurements of stock changes by soil coring require several years or even
several decades to detect significant effects given the high variability amongst
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samples (Arrouays et al. 2003). The main drawback of flux measurements, however,
is that several C fluxes may need to be quantified (Soussana et al. 2010): (1) gaseous
C exchange with the atmosphere, (2) particulate organic C fluxes, (3) dissolved C
flux in waters and lateral transport of soil C through erosion (see also Sect. 13.4).
The NECB (gC m�2 year�1) is the mass balance of all these fluxes (Eq. 13.1). It
should be noted that NBP (Net Biome Productivity) is another term frequently used
when scaling up NECB from plot to regional scale (e.g. Schulze et al. 2009).

NBP D NECB D NEP C FCH4�C C FVOC C Ffire C Fmanure

C Fharvest C Fanimal�products C Fleach C Ferosion (13.1)

Adopting a sign convention where a positive C flux indicates a gain by the
ecosystem and a negative flux a loss to the atmosphere, the following groups of
fluxes (units of gC m�2 year�1) can be distinguished: fluxes which constitute a
clear gain by the ecosystem, such as C imports through manure (Fmanure), and
negative fluxes such as carbon exports through harvesting (Fharvest), animal products
(Fanimal-products), erosion (Ferosion), leaching (Fleach; organic and/or inorganic carbon)
and fire emissions (Ffire). Both positive and negative fluxes have been reported for
the net ecosystem CO2 uptake (NEP, see Sect. 9.2), CH4 (FCH4-C) and volatile
organic compound (FVOC) exchange (Soussana et al. 2007; Wohlfahrt et al. 2008a;
Ruuskanen et al. 2011).

Depending on the system studied and its management, some of these fluxes can
be neglected for NECB calculation. For instance, fire emissions by grasslands are
very low in temperate regions like Europe (i.e., below 1 gC m�2 year�1 over 1997–
2004), whilst they reach 10 and 100 gC m�2 year�1 in Mediterranean and in tropical
grasslands, respectively (Van der Werf et al. 2006). Erosion (Ferosion) is also rather
insignificant in permanent grasslands (e.g. in Europe), but can be increased by tillage
in the case of sown grasslands. The global map of Ferosion created by Van Oost et al.
(2007) indicates that grassland C erosion rates are usually below 5 gC m�2 year�1,
even in dry tropical grasslands (Van Oost et al. 2007). VOC emissions by grassland
systems are increased in the short term by cutting (Ruuskanen et al. 2011) and tend
to be higher with legumes than with grass species (Davison et al. 2008). However,
VOC fluxes from grasslands, even if some VOC compounds include several C
atoms, are usually at least 1 order of magnitude smaller and can usually be neglected
in terms of carbon exchange. Therefore, for temperate managed grasslands, Eq. 13.1
can be simplified as (Allard et al. 2007)

NECB D NEP C FCH4�C C Fmanure C Fharvest C Fanimal�products C Fleach (13.2)

Since eddy flux covariance measurements use a free air technique, as op-
posed to enclosures, there is no disturbance of the measured area, which can
be freely accessed by herbivores. CO2 belched by ruminants during grazing
(digestive C metabolic CO2), which can be measured by the SF6 method (Pinares-
Patiño et al. 2007), is thus included in NEP measurements. It has no direct effect on
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the atmospheric CO2 concentration, because it is ‘short-cycling’ carbon, which has
been fixed by plants earlier.

Quite often not all components of the NECB budget are measured. For example,
DOC/DIC losses as well as C exports in milk and meat products are sometimes
neglected. Siemens and Janssens (2003) have estimated at the European scale the
average DOC/DIC loss at 11 ˙ 8 gC m�2 year�1. This flux tends to be highly
variable depending on soil (pH, carbonate) and climate (rainfall, temperature)
factors and it could reach higher values in wet tropical grasslands, especially on
calcareous substrate. Assuming a value at the upper range of this estimate, would
reduce the grassland NBP by 20%. In contrast, the role of organic C exports is
relatively small with meat production systems (e.g. 1.6% of NBP, Allard et al. 2007)
but can be higher with intensive dairy production systems.

13.4 Additional Measurements

Calculation of the NECB (Eq. 13.2) requires several additional carbon fluxes in
addition to the CO2 and CH4 fluxes, treated in Sects. 13.2 and 13.5, respectively, to
be quantified. In a cutting regime, a large part of the primary production is exported
from the plot (as hay or silage), and may be compensated by organic C imports
through cattle slurry and liquid manure. To determine a complete C budget requires
quantification of the amount of harvested dry-matter and organic fertiliser as well
as the corresponding C content (gC m�2 year�1). Under grazing, up to 60% of the
above-ground dry-matter production is ingested by domestic herbivores (Lemaire
and Chapman 1996), whereas a large part of the ingested C is emitted as CO2 and
CH4 shortly after intake. The magnitude of these fluxes largely depends on quality
of ingested biomass and number, weight and type of animals (i.e., sheep, heifers,
dairy cows, etc.). For example, with the SF6 dual tracer technique (e.g. Pinares-
Patiño et al. 2007), methane emission comprised between 0.33 and 0.45 g CH4

kg�1 LW day�1 for heifers and bulls and reached 0.68–0.97 g CH4 kg�1 LW day�1

for lactating cows (Soussana et al. 2007). Quantity and quality of herbage biomass
offered to animals can be determined by grazing exclusion cages. To closely follow
the vegetation dynamics, cages should be moved and cut at least on a monthly basis.
Detailed analyses of the harvested biomass offers further insights into the fraction of
senescent plant material and plant functional groups (i.e., grass, forbs and legumes).
The potential herbage production of the pasture, which is closely related to gross
primary productivity, can be estimated, by measuring the monthly biomass regrowth
(g DM m�2 day�1).

The non-digestible C (25–40%) of the intake is usually returned to pastures/hay
meadows in excreta (mainly as faeces) and urine for fertilisation. Manure, urine and
mineral fertiliser in turn are known to stimulate N2O emissions, their magnitude de-
pending on soil humidity conditions at the time of application. Detailed knowledge
of stocking rate (mean number of livestock units per unit area), weight and growth
of livestock, grazing period, as well as date of fertilisation and meteorological
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soil conditions (i.e., soil water content, soil temperature) are thus helpful for
understanding and interpreting eddy covariance data (see also Sect. 13.5).

Because particular managed grasslands exhibit a very dynamic canopy growth,
knowledge of the amount of above-ground biomass is crucial for interpreting flux
measurements (Hammerle et al. 2008; Wohlfahrt et al. 2008b). The amount of
above-ground biomass or the leaf area index (LAI) should thus be determined
at least episodically, for example, using destructive harvesting and leaf area
determination. Indirect measurements of LAI, by inverting models of within-canopy
radiative transfer (Wohlfahrt et al. 2001), or measurements of proxies for above-
ground biomass and LAI, for example, canopy height, can be done in an automated
fashion using line PAR (Wohlfahrt et al. 2010) and snow height (Jonas et al.
2008) sensors, respectively, and can be combined with direct measurements to yield
quantitative high-resolution time series information about vegetation development
(Wohlfahrt et al. 2008a).

13.5 Other Greenhouse Gases

During the past two decades, a large body of literature has been accumulated
on grassland carbon cycling based on eddy covariance flux measurements (e.g.
Gilmanov et al. 2007, 2010; Soussana et al. 2007, 2010; Wohlfahrt et al. 2008b). In
the near future, we anticipate that these CO2 flux measurements will be increasingly
accompanied by flux measurements of the other two important greenhouse gases
originating from grasslands, that is, methane (CH4) and nitrous oxide (N2O), whose
emissions may easily offset any carbon gains due to the larger warming potential
(Soussana et al. 2007, 2010). However, due to a combination of source complexity
(i.e., spatial and temporal variation), limitations in equipment and methodology,
measurements of CH4 and N2O fluxes are accompanied by significant uncertainties.
N2O emissions in soils usually occur in ‘hot spots’ associated with urine spots and
particles of residues and fertiliser (Flechard et al. 2007). Nitrous oxide emissions
from grasslands tend to occur in short-lived bursts following the application of
fertilisers (Leahy et al. 2004). Temporal and spatial variations contribute large
sources of uncertainty in N2O fluxes at the field and annual scales (Flechard et al.
2005). Methane emissions by cattle show temporal and spatial variations, depending
upon stocking rate and the quantity and quality of feed consumed (Pinares-Patiño
et al. 2007) (see also Sect. 13.4). Additionally, a large variability results from
animal behaviour, as animals do not behave at random. Grazing and ruminating is
separated in time and space. The area of interest (i.e., paddock) is in most cases
larger than measured footprint, which may make it necessary to track animals
(e.g. using webcams or laser systems). Moreover, ruminating will create plumes
of CH4 that may appear as spikes in the concentration time series, but are in
fact ‘natural phenomena’ which may be unintentionally removed by automated
despiking algorithms (Vickers and Mahrt 1997).
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Instrumentation for CH4 and N2O EC measurements, have to satisfy four criteria:
(Nelson et al. 2002): (1) continuity, that is, the system should be able to operate
unattended on a continuous basis; (2) the analyser response time should be on the
order of 0.1 s to capture also the smallest eddies (Monteith and Unsworth 1990);
however, sample interval may be much longer as long as the system time response
is short enough (see Sect. 10.2.3); (3) a minimal drift should occur during a period
of atmospheric stationarity (i.e., 30 min); and (4) a precision of 4 and 0.3 ppb
for CH4 and N2O, given an average ambient concentration of 1,800 and 320 ppb.
Instruments that meet those requirements for CH4 and N2O EC measurements
are now becoming available. A limited number of closed-path EC measurements
have been published using lead salt tunable diode laser (TDL) spectrometers (e.g.
Smith et al. 1994; Wienhold et al. 1994; Laville et al. 1999; Hargreaves et al.
2001; Werle and Kormann 2001), quantum cascade (QC) lasers for (CH4 and N2O;
Kroon et al. 2007; Neftel et al. 2007; Eugster et al. 2007), off-axis integrated cavity
output spectroscopy (CH4; Hendriks et al. 2008; Smeets et al. 2009) and as of
this writing even open-path CH4 analysers are becoming commercially available.
In those studies, CH4 and N2O fluxes are measured over time periods ranging
from 1 week to several years, yielding averaged emission rates with their standard
deviations. The standard deviation, however, is mainly an indication of the temporal
variability and does not represent the uncertainty associated with the mean flux
(Kroon et al. 2009). Based on 30 min EC fluxes, the relative uncertainty is mainly
attributed to relatively small EC fluxes and one-point sampling. On average this
term contributes to more than 90% to the total uncertainty. The other 10% comprise
the uncertainty in correction algorithms for systematic errors (e.g. inadequate
footprint, non-stationarity, advection, storage, low– and high-pass filtering, etc.;
see also previous chapters). Nevertheless, because the EC method integrates over
a large spatial area and provides near-continuous data, EC flux measurements can
contribute to more accurate estimates of the net ecosystem exchange of N2O and
CH4 than estimates based on chamber measurements only.
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