Digital soil mapping of soil classes at $1: 50,000$ scale in the Franche-Comté region, France

Sébastien Lehmann, Micheline Eimberck, Manuel Pascal Martin, Dominique

D. Arrouays

- To cite this version:

Sébastien Lehmann, Micheline Eimberck, Manuel Pascal Martin, Dominique D. Arrouays. Digital soil mapping of soil classes at $1: 50,000$ scale in the Franche-Comté region, France. European Geosciences Union General Assembly 2013, Apr 2013, Vienne, Austria. 2013. hal-02805102

HAL Id: hal-02805102
 https://hal.inrae.fr/hal-02805102

Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DIGITAL S OIL MAPPING
OF SOIL Classes at 1:50,000 sCale
In the Franche-COMTE REGION, France

1 - Objectives
The aim of this work is to produce a predicted soil classes map ta scale of $1: 50,000$, validated by point data in the area of detail here led to mapping a surface of which only $1 / 4$ was previously mapped. 2348 point data scattered over the whol rate and validate the mode.

$$
\begin{aligned}
& \text { Fig.1- Location of the study area, training and validation area used with point and polygon } \\
& \text { dalat }
\end{aligned}
$$

2 - Data

The derivatives from the ASTER DEM (Fig.2) were averaged
using focal mean circular windows of 8 varying sizes (radius using focal mean circular windows of 8 varying sizes (radius
from 30 to 1800 m). We have also used categorical data such as land use and geology rasterized to the same resolution.

3 - Methods

First, we produced a predictive map from point data. Half of these points were used to calibrate a model using boosted regression trees. The remaining were used for validation. We tested 8 iterations
(Fig. 3) of increasing the existing soil units as calibration and validation data.

4 - Results

A - Global perfomances of predictiontise evolution of the global classification The relative contribution of covariates predictors was depending on the size of the smoothing calculated from the data used to fit the model with the
window (focal mean function) applied to the
point data. Considering all soil classes, the most point data. Considering all soil classes, the most
influent variables are the geology and the aspect. Both $\begin{aligned} & \text { topraphic } \\ & \text { correlation. The growth }\end{aligned}$ accounting for more than 90%. Some terrain attributes window impacts positively the G and the K . with a small focal mean radius were of little Many tests have been produced with the importance, usually accounting for less than 50% in same dataset adding at each iteration the prediction, regardless of soil class. However, $\begin{aligned} & \text { predictors with a larger smoothing radius } \\ & \text { elevation (mne), curvature (curv) and slope (pente) } \\ & \text { from } 3 \text { to } 60 \text { pixels. We had to stop after } 8\end{aligned}$ elevation (mne), curvature (curv) and slope (pente)
with a large focal mean radius (60 pixels) have a
 iterations (Fig. 3) because the calculating $\stackrel{l}{\infty}$

4 - Results

B - Comparison of the two approaches

1 - We have produced two prediction maps. The Fig 6a was obtained with point data as training dataset and
Fig. 7a with the existing soil map as training dataset. For the point training dataset, we can observe (Fig.
6 b) that the probability levels of the prediction are well 6b) that the probability levels of the prediction are we
distributed on the map. This can bextain distributed on the map. This can be explained by the
relative homogeneous spatial distribution of the point dataset over the studv area

2- The soil classes obtained by using the existing map (Fig-7a) shows a pedictive probabilty with decreasing as the distance to the training area increases (Fig. 7b). The confusion matrix calculated for the internal validation (Tab. 1) shows that the model fi was good and that most of the soil classes are well

Tab. 1 - Accuracy y fthe mial
validation with the point dala

3 - in the case of the external validation, when th training and validation surfaces belong to independen datasets, as shown in red and green in Fig. 1, the
confusion matrix (Tab. 2) gives lower results that stay around 46% accuracy. This quite important difference between internal and external validation could be explained by MART modeling which tends to be when using an existing map as training dataset.

5 - Conclusion

The aim of this work was to make use of DSM tools to assist a soil surveyor to complete a soil map of which $11 / 4$ was previously conventionally mapped. We extrapolated soil observations using covariate predictors such as geology, terrain attributes, landuse etc. by using boosted regression trees. Our approach helps saving time of investigation. However it must be considered as a help for the surveyor and can not replace his knowledge of the soil landscape. The time saved with those tools, in comparison to classical soil maping approaches, is estimated to be about $70-80$ days for 36,000 ha.

Pascuier and
Sacha Desbourdes for the DTP.

