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Abstract

We consider a problem of groundwater management in which a group of farmers over-
exploits a groundwater stock and causes excessive pollution. A Water Agency wishes to
regulate the farmer’s activity, in order to reach a minimum quantity and quality level but
it is subject to a budget constraint and cannot credibly commit to time-dependent optimal
policies. We construct a Stackelberg game to determine a set of constant policies that brings
the groundwater resource back to the desired state. We define a set of conditions for which
constant policies exist and compute the amount of these instruments in an example.

JEL classification: H23, Q15, Q25.

Key words: groundwater, quantity-quality management, Stackelberg game, constant poli-
cies

1 Introduction

The management of groundwater is a typical common-pool renewable resource problem where
several users have to share a same resource stock, with, however, one additional important fea-
ture, namely, the quality of the stock. Therefore, any attempt to regulate the use of water,
has to tackle the externalities related to both quantity and quality. In this paper, we consider
an endogenous pollution externality from agricultural production and discuss optimal quantity-
quality regulation by a water agency with restricted regulatory power.

A significant literature has so far analyzed the need for public intervention to regulate pri-
vate exploitation of groundwater. Using a simple quantity model with stock and pumping cost
externalities,! Gisser and Sanchez [5] argued that the difference between the competitive and the
optimal outcome is too small to justify policy intervention (see Koundouri [6] for a survey). How-
ever, the consideration of more complicated resource problems and other externalities has shown
that public intervention can be necessary, e.g., when several resources are linked to each other
(Zeitouni and Dinar [17]), when groundwater has a buffer value against surface water scarcity

*Corresponding author: katrin.erdlenbruch@irstea.fr
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"The stock externality arises because the extraction of each resource user is constrainted by the total ground-
water stock; the pumping cost externality arises because the cost of pumping groundwater depends on the level
of the groundwater table, see, e.g., Provencher and Burt [10].



(Provencher and Burt [10]?), or when quality is taken into account (Roseta-Palma [12]).

Concerning water quality, a focal point was the issue of saltwater intrusion in coastal aquifers
(see, e.g., Cummings [2|, Zeitouni and Dinar [17], Dinar and Xepapadeas [3], Tsur and Zemel
[13], Moreaux and Reynaud [9]). With the intensification of agricultural production, inland
resources are increasingly threatened by quality degradation, via nitrate infiltration. Because
groundwater resources are often used for drinking water, the issue is of importance also outside
the agricultural sector. For instance, quality is addressed by several European policies, such
as the Water Framework Directive (Directive 2000/60/EC), which fixes the objective of "good
water quality” in 2015, the Directive on the protection of groundwater against pollution and
deterioration (Directive 2006/118/EC) or the Nitrates Directive (Directive 91/676 /EEC), which
specifically tackles pollution from agricultural production.

A large literature exists on the issues of nitrate pollution and non-point source pollution re-
sulting from agricultural activity, including dynamic models (e.g., Yadav [16], Xepapadeas [14]).
Yet, as Koundouri [6] states, these models "generally avoid the relationship between contami-
nation and water-use decisions. The assessment of how much groundwater should be pumped
is absent from these models". The first work that brings together these aspects in a general
dynamic setting is Roseta-Palma ([11] and [12]). She considers the impact of contaminant dis-
charges on groundwater quality and in particular two special effects: the stock dilution effect
which describes the beneficial impact of water volume on water quality, and the contaminating
vector effect in which contaminants infiltrate more easily into the soil when carried with irriga-
tion water. Roseta-Palma shows that public regulation should address both quantity and quality
to be optimal. She also numerically confirms that policy intervention is justified even if gains
from quantity regulation are small, as in Gisser and Sanchez [5], because of the importance to
meet quality standards.

However, Roseta-Palma (2003) and most other articles consider dynamic taxation as the only
tool for policy intervention.? Although a dynamic tax has a conceptual appeal, it is quite unre-
alistic in many real-life contexts. Indeed, it requires that the regulator chooses an optimal policy
that changes continuously, depending on the individual actions taken. Roseta-Palma points at
some implementation problems but focuses on those linked to informational constraints on in-
dividual production and pollution functions. In this paper, we study the case where the water
regulator imposes constant policies over a reasonable time period, for example a year, which
corresponds to the length of a fiscal exercise.

We consider a group of irrigating farmers using the same groundwater resource. Fertilizer
used by the farmers leaches into the groundwater and causes nitrate pollution, mitigated by
the stock dilution effect and the natural decay rate of the contaminant. We assume that the
farmers are atomistic players who optimize their individual payoffs without taking into account
the impact of their decisions, i.e., water withdrawal and use of fertilizers, on the stock of water
and its quality. In order to insure a sustainable use of the resource, a water agency is in charge
of regulating the quantity and quality of the groundwater. Regulation takes the form of tax
(or subsidy) on water withdrawal and pollution (i.e., use of fertilizers). We shall consider and
contrast the results of the following three scenarios:

Laissez-faire scenario: As the name suggests, in this case the use of water is not regulated.
This scenario is seen as a benchmark.

Regulation with budget constraint: In this scenario, the water agency is endowed with

2Reducing groundwater stocks then generates the so-called risk-externality, see Provencher and Burt 1993 [10].
3 As argued by Provencher and Burt [10], permit allocation does solve neither the risk externality nor the cost
externality.



a budget at the start of the planning horizon and must balance its book at the end of the fiscal
exercise.

Regulation with no budget constraint: In this scenario, the water agency does not
dispose of a budget and its problem is simply to find the optimal tax or subsidy of water with-
drawal and feryilizer use. This allows us to better understand the results including the budget
constraint.

In all scenarios, we retain a mode of play & la Stackelberg where the role of leader is assumed
by the water agency and the farmers are the followers. As the considered planning horizon is
short (a fiscal year), we suppose that the water agency seeks constant tax or subsidy policies.
We believe that constant policies are more realistic, from an implementability point of view, than
time-varying ones. Indeed, it would be peculiar to require that the water agency produces a
new tax rate at each instant of time throughout the duration of a fiscal exercise.

Therefore, we construct an open-loop dynamic Stackelberg game to model farmers’ optimal
decisions in the face of these constant incentive policies.*

We find that, under given conditions, there is indeed a set of constant optimal policies which
fulfills all the constraints the Water Agency has to respect. In our simple example, the optimal
policy-mix consists in an input-tax on water withdrawals and and input subsidy on fertilizer use.

The paper is structured as follows. In section 2 we present the problem, a simplified agro-
economic model including a groundwater resource. In section 3, we present the Stackelberg
game and characterize its solution. In section 4 we consider two examples and compute the
optimal taxation policy in this context. Finally, in the last section, we conclude and give some
perspectives for future research.

2 The Model

2.1 The Farmers

Consider a group of N farmers growing a single agricultural product and located above a same
groundwater resource. Time ¢ is continuous and the planning period given by the interval [0, T7].
The agricultural production y; (t), of farmer ¢ = 1,...N, at time ¢t € [0,7], depends on two
inputs, namely, the quantity of fertilizer spread on cultivated land, f;(t), and the volume of
irrigation water, w;(t), that each farmer pumps in the groundwater resource. We assume that
the production function y;(w;(t), fi(t)) is increasing in both inputs, but at decreasing returns to
scale, that is,

Iy >0, Jyi >0, 8y <0, &y <0, 8y >0. (1)
8102' 8fl 811)12 8f22 8w18f1
The positive sign of the last derivative means that irrigation water and fertilizers are comple-
mentary inputs.
Soil fertilization and water pumping are costly. The fertilization cost cy(-), which includes
the purchasing cost of fertilizers and their land application, depends on the quantity of fertilizer
used. We assume that this cost is convex and increasing, i.e.,

8Cf
>
af, ="

The cost of pumping and distributing water ¢, () depends on the volume withdrawn, and on
the depth of the aquifer, denoted D (¢). We assume that ¢, (+) is jointly convex in its arguments

826f
—2 > 0. 2
o =" ?

“For a general feedback Stackelberg model see for example Xepapadeas 1995 [15] ).



and satisfies the following assumptions:

Ocy 5%y Ocy 5% cy 5% cy
>0, —5 20, =520, — >0,
ow; — aw% B oD 0D?

9w,0D = 3)
The first derivative states that the cost of pumping water is increasing in the input w;. The
second derivative implies that the marginal cost of pumping is increasing. This can be justified
by the fact that the consumption of energy increases non-linearly in the volume of pumped water.
The sign of the third derivative captures the idea that the larger D (meaning that water must be
lifted a longer distance to surface), the higher the cost of pumping water. Increasing marginal
returns are assumed through % > 0. Finally, the non negativeness of the last derivative means
that the marginal cost of pumping water might be increasing in D.

The farmers are price-takers and the price p; of the agricultural product is constant through-
out the short duration of the planning horizon. Indeed, the period considered is defined as a
season or a fiscal year. Further, the farmers are subject to public policies of the water agency,
namely, they pay a tax 7 on the use of polluting fertilizer, and a tax ¢ on individual water
withdrawals. Consequently, the i’s agent profit reads as follows:

T
= /0 (piyi(wi(t), fi(t)) — cw(D(t), wi(t)) — cp(fi(t)) — T fi(t) — w;(t)) dt. (4)
We make the following two remarks:

1. There is no conceptual difficulty in extending the model to an oligopolistic setting where
the farmers compete with an homogenous product & la Cournot. Actually, we can also
consider a differentiated product (e.g., organic and regular), where the price does not only
depend on the quantity put on the market, but also on the quality of irrigation water and
the quantity of fertilizer used in farmig. Obviously, the more sophisticated the model, the
more complex the computation of the equilibrium policies.

2. Given the short-term planning horizon, we do not discount farmer ¢’s profit. Including a
discount factor does not pose any particular difficulty.

2.2 The Dynamics

The depth of the aquifer depends on withdrawals by farmers and on natural recharge. Denote
by 7(t) the mean recharge rate of the groundwater stock. The evolution of D is described by
the differential equation

D(t)=g (Z wi(ﬂﬁ@)) , D(0)=Do given, (5)

where Dy is a measurement of the initial water distance, with

dg 99
D >0, o < 0.

The quality of the groundwater deteriorates with the quantity of fertilizer used by each farmer.
Further, the larger the volume of the stock of water, the higher the dilution (mitigation) capacity,
and the better the quality. As there is a monotone relationship between the volume of water
and the depth of the aquifer, we can model the evolution of quality as function of D and of the
water withdrawals. More specifically, the evolution of water quality is modeled by the following
differential equation:

Q<t>=h<zfi<t>,0<t>), Q) =Qu given. (6
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where Qg is a measurement of the initial water quality, with

oh oh
8fi<0’ = < 0.

oD

We do not make for the moment any additional assumption on h, but simply note that this
function is not necessarily linear.

Remark: For now, our modeling of the water quality evolution does not account for any
abatement activity that the farmers and/or the water agency may undertake to improve the
quality of water. Indeed, it is technically possible to influence that quality by, e.g., favouring the
use of plants containing nitrogen-fixing symbiotic bacteria. This is the concept of green manure:
for instance, white mustard (Sinapis alba), vetches ( Vicia), phacelia or rapeseed ( Brassica napus)
are able to fix nitrogen in the field. They are set up after the main harvest, in automn and
destroyed in winter. In some European countries, farmers were eligible to a damage payment for
the introduction of these nitrogen fixing plants.’

2.3 The Water Agency

Whereas the definition of an objective function for a farmer is easy, the task of doing so for the
water agency is not that straightforward. Ideally, one would like to define a welfare function to
assess the value to society of any particular governmental policy. However, writing down such
a function is a highly complex problem from a theoretical, as well as from a practical point of
view. In this paper, we adopt a pragmatic approach and assume that the water agency uses its
public policy to approach as close as possible pre-determined levels of quality and quantity of
water at time 7. These levels correspond to a quality norm and a minimum amount of water,
which should be preserved for future periods:

Qu(T) = Qp, (7)
Dy(T) = Dy, (8)

More precisely, the water agency wishes to minimize the distance between current and desired
quality and quantity levels, that is,

0 = [a(Q(T) — Qv)* + (1 = a)(D(T) — Dy)?] , (9)

where a and (1 —«) are positive weights that measure the importance of the quality and quantity
goal, respectively. Such objective seems to be in line with the philosophy of public-policy makers
who would like to see a clear statement of what a government program is aimed at.

To achieve its goals, the water agency can levy (constant) taxes on fertilizer and water use.
The agency is endowed with some financial resources at the initial instant of time, and is required
to balance its books at the end of the planning horizon. The equilibrium-budget constraint at
T reads as follows:

T
0= bo+ / P30+ 6D o), (10)

where by is the available budget at time 0. The above budget equation is an isoperimetric
constraint that can be rewritten in the form of a state equation as follows:

Y(t)z[TZfi(t)+¢Zwi(t)] with Y(0)=by and Y(T)=0, (11)

where Y'(t) represents the funds available at time ¢ € [0, 7.
We make the following clarification remarks:

’In France for example, the Indemmité compensatoire de couverture des sols (Code de l'environnement

LII1.1.3.3) amounted to 60 euros/ha in 2003.



1. The tax rates 7 and ¢ do not vary with time and/or the state of the system (quality of
the growndwater and depth of the aquifer) during the planning interval [0,7]. Although
state or time dependent tax rates may be conceptually attractive, they are difficult to
implement in reality. Indeed, it will be very difficult for public agencies to explain a policy
that continuously changes over time, and farmers will hardly accept such a mechanism. We
believe that our assumption simply reflects actual practice where tax rates (as well as other
public service prices) are set constant by governmental agencies for the whole duration of
the fiscal exercise, typically a year. Such constant tax and subsidy policies were used by
Krawczyk and Zaccour [7] in a dynamic game where a local government aims at controlling
pollution emissions by decentralized agents.

2. We do not impose any sign on the instruments 7 and ¢. If optimization leads to negative
values, then subsidies should be set up rather than taxes. The sign of 7 and ¢ will of course
depend on the objective of the water agency.

3. We assumed that the water agency must balance its budget at 7. If the agency is allowed
to realize a surplus, then the budget constraint, equation (10) becomes an inequality, i.e.,

T
0 < bo _/0 Y50+ 0 wilt)d.

To keep it simple, we shall consider the case where the budget constraint is binding and, as
stated in the introduction, we shall contrast the results of this scenario to the case where
there is no budget constraints and the one with no regulation.

3 A Stackelberg Game

In the previous section, we defined a finite-horizon differential game, with N + 1 players (N
farmers and a regulator). The model involves three state variables, namely, the quantity D and
quality @ of water and the water agency’s budget, Y. The control variables of a farmer are the
water withdrawal w; and the quantity of fertilizer f;. The water agency chooses the tax rates 7
and ¢, which can assume any sign.

The game is played a la Stackelberg. The water agency takes the leader’s role and announces
its strategy before the farmers make their decisions. Given the leader’s announcement of the tax
policy (7, ¢), the farmers, acting as followers, play a Nash game and choose w; and f;. We suppose
that the farmers employ open-loop strategies, that is, at the initial instant of time, each player
decides upon a strategy which depends only on time. It is well known that open-loop Stackelberg
equilibria are in general time inconsistent.® This means that given the opportunity to revise his
strategy at an intermediate instant of time, the leader would like to choose another strategy
than the one he selected at the initial instant of time. Therefore, an open-loop Stackelberg
equilibrium only makes sense if the leader can credibly precommit to his strategy. In the present
game it seems plausible to assume precommitment on the part of the water agency: in practice
a tax scheme is determined and announced from the outset and when the regulator’s decision is
irrevocable, the announcement will be credible.

3.1 The Followers’ Reaction Functions

To solve for Stackelberg equilibrium, we first determine the reaction functions of the followers
and next solve the (optimal-control) problem of the leader. Each farmer chooses the levels
of inputs, w;(t) and f;(¢), that maximize profits, given by equation (4). Note that the water

5See, e.g., Martin-Herran et al. (2005) and Buratto and Zaccour (2009) for examples where open-loop Stack-
elberg equilibria are time consistent.



quality does not appear in the payoff function of a farmer, and hence it is irrelevant for this

agent. Further, we suppose that the budget constraint and the evolution of the water distance

are private information detained by the water agency, i.e., the farmers do not observe these state

equations. We shall omit from now on the time argument when no ambiguity may arise.
Assuming an interior solution, the first-order equilibrium conditions are:

OH; _ Oyi(wi, fi)  Ocw(D,w;)

Owi - ! awi awi B ¢ e (12)
0H; Oyi(wi, fi /
of; Pi ’ ((;1}1 ) cp(fi) =7 =0. (13)

Equations (12)-(13) are the usual optimality conditions stating that, at the optimum, marginal
revenue from production equal marginal costs. In equation (12), marginal revenues are due to
the use of one additional unit of water. Marginal costs are given by marginal costs of pumping
and distributing irrigation water and by the taxes paid per unit of water pumped In equation
(13), marginal revenues due to the use of one additional unit of fertilizer are equal to marginal
cost of buying fertilizers and the tax paid per unit of fertilizer.

Using (12)-(13), we can express w; and f; as functions of the state variable, D and the
instruments of the water agency. Denote by f; (D, 7, ¢) and w; (D, 7, $) these reaction functions.

3.2 The Leader’s Problem

The leader solves an optimal-control problem which is not standard because the water agency
is looking for a constant tax policy throughout the planning horizon. The water agency choses
this policy so as to minimize the distance between observed and desired quantity and quality
levels at the end of the planning horizon, T', taking into account the followers reactions and the
evolution of all the state variables (see equation (10).

Substituting for f; (D, T,¢)and w; (D, 1, ¢) in the water agency’s budget, quantity and quality
equations leads to

.

—
~

N—
|

TZﬁ (D,7,¢) + ¢Zwi (D,7,¢), Y(0)=by, Y(T)=0, (14)
D =g (Z w; (D, 7, ¢) ,7') ., D(0) = Dy, (15)
Q (t) = h <Z fl (DvT’ ¢) 7D(t)> ’ QZ(O) = QO given' (16)

The leader’s Hamiltonian reads as follows:

Hy (D (), 1" (1), Q (), n? (8),Y (t), 1" (t),7,9) = u” (Zwl S Ai(t),7,9), )

h (Zﬁ (D, \i, 7, 0) ,D(t>) +u () (TZﬁ (D, X, 7, ¢) + ¢sz~ (D, \i, T, <z>>> :

where the pP (), u? (t) and p" (t) are adjoint variables appended to the state variables D (t) , Q (t)
and Y (¢).

Assuming an interior solution, along with the four state equations in (15)-(16), the first-order



optimality conditions are as follows:’

i = O P (1) =201 - a)(D(T) - D), a7)
p@ = S O T) = 2(Q() - Q) (18)
H
P _%YL, (19)
T
O 4 _ 0, (20)
0 87’
T
O aah;Ldt = 0. (21)

Recall that the optimality conditions in (20) and (21) take the form of an integral because
of our restriction of the leader’s tax policies to constant ones. Further, as the values of state
variable Y (t) are given at 0 and T, the adjoint variable p¥ is free. Finally, we note that the
leader’s optimality conditions include 8 equations and same number of unknowns.

4 Tllustration

We illustrate in this section the type of insight that can be obtained using our model. To keep
things as simple as possible, we assume that the n farmers are identical. Given our settings of
price-taking farmers located on the same growndwater, this assumption is not severe.

4.1 Production functions and dynamics

We adopt the following production function:
Lo 1 2
yi = Aw; fi + Bw; + Ef; — Kgfi — g Muwi + G,

where A, B, E, K, M and G are non-negative parameters. Some restrictions on these parameters
will be required to satisfy the conditions in (1), namely:

y; %y;
= Afi+B— Muw; >0, =-M <0,
8’(01' f + v 0 aw? 0
0%y; Ay; %y
A =Aw; + E - Kf; >0, = —K <0.
ow;0f; ST T =

The revenue function of farmer ¢ is given by py;. Using the above derivatives, it is easy to
verify that for the revenue function to be concave, it is necessary to have the determinant of the
Hessian matrix non-negative, i.e.,

p? A% — p KM <0. (22)

In some of the following examples, we will use the simplifying assumption A = 0. In that
case, the determinant of the Hessian matrix is negative, i.e.,

—p?KM <0. (23)
The fertilizer aquisition cost is given by

ce(fi) = Lfi,

TAs there is no particular need for it, we do not write these conditions in full. We will detail them in the
example




where L is a positive parameter. The irrigation cost is specified as

cw(w;) = (Z + CD)w;,
where Z and C are positive parameters. The term Zw; represents the cost of distributing water,
and C'Dw; is the water-pumping cost that depends on the distance between the topsoil and the

watertable. Clearly, the above cost functions satisfy the requirements in (3) and (2).

The dynamics of the depth and quality of the growndwater are modeled as follows:

D = Zwi—r, D(O):Do,
i

o = (-oxs)p. aw-a

where § is a non-negative parameter.Note that quality is non-increasing, for all ¢.

4.2 Analytical results without complementarity

Suppose first there is no cross-effect between inputs, i.e. A = 0.

4.2.1 Optimal input and policy choice

Given our functional specifications, farmer ¢’s Hamiltonian now reads:
Lo 1 2
Hi =p Bwi +Efz‘ — inz — iMwi +G — (Z—FCD)U)Z' — sz —Tfi — (b’wi.

Assuming an interior solution, the first-order equilibrium conditions of farmer i,7 = 1,..., N,
are given by:

OH; i pB—CD—7—¢

= i\T, = ) 24
o~ v wr - (24)
OH; _pE-L-7

Note that the solution is fully symmetric, i.e. w; (1,¢) = @ (1,¢) and f; (1,¢) = f (1, ¢), for all
i=1,...N.

Proposition 1 Farmers auto-requlate their water use when the water distance increases. Fur-
ther, farmers use less water (fertilizer) when the water (fertilizer) input is tazed.

Proof. From equations (24) and (25), it is obvious that:

O of

ap =~ % ap="

ow oW l of
5 = o,a¢ <0, <Oa¢*0'

The larger the water distance, which is synonymous to a higher pumping cost, the lower the
farmer’s water use. The higher the water (fertilizer) tax, the lower the optimal irrigation (fertil-
izer) use.[]



After substituting for w (7, ¢) and f(T, ) in the state equations D, Q and Y, we obtain the
following Hamiltonian for the leader:
Hp, = pPN@; —r)—pQSNfiD + u¥ [TN]?Z- —|—N¢7I)i}
pB—-CD -7 —¢
pM

pE—L—1
pK

= N(uD —|—MY¢) [ } +N (—quD—i—uyr) [ } —rNuP,
where pP (t), u® (t) and pY (t) are adjoint variables appended to the state variables D (t),Q (1)
and Y (t). The first-order optimality conditions and the solution procedure are given in the

Appendix (A.1.1). Solving, we get:

D(t,6) = e‘ptDo+@(¢)<1—e—f’t), (26)
Qt.6.1) = QoA /D (27)
Y(t6m) = byt (E — L= )M+ (0B~ Z - 0)oK]t—op [ Dlsids, (29

where

0(p) = [N(pB_Z]VE'QS)_TpM]’ A<T)_5N(pb;I—{L—T)7 P—Z\i

and
/D DO_D()+@(¢)7§.

We also have to consider the special conditions as we can see in the Appendix, equations (40)
and (41) . We therefore end up with a system of 3 equations (47)-(49) for the three unknowns
7,¢ and ¥ which we can solve. We can then insert the results in the system dynamics and the
reaction functions of the followers.

Proposition 2 The use of optimal input taxes leads to a better water quality over time. The
use of the optimal water tar decreases the water-table distance over time, i.e. leads to a greater
groundwater volume.

Proof. Proof in the Appendix, (A.1.2). O

4.2.2 No budget constraint case

If we assume away the budget constraint, the first-order optimality conditions of the leader
become:

D _ Q _ Dy o1 _
P = g EOW® 4 uCOM (L7 = pB)], u”(T) = 2(1 = a)(D(T) — Dy129)
T
MLy — o —5u@ / Ddt = 0, (30)
0 87’
T oHy B D
; Wdt = O(:)/ dt = (31)

with D, Q and MQ as before, see Appendix, equations (34), (38) and (39).
Solving the differential equations of quantity and quality yields, as before,

D(t,¢) = e "D(0)+6(¢)(1 e "),

Qt,67) = Qo—Alr) W(l—eﬂwew

10



Proposition 3 Without budget constraint, the desired quantity and quality level will be reached.
Proof. If we assume D(t) > 0 for all ¢, then condtion (30) implies
pe =0 = Q(T) = Qs

Substituting for Q(7T") = @Qp in (29) and solving leads to

2(D(T) — Dy)(1 — a)ept‘

Dy
p(t) = T

Now, condition (31) implies
u? =0 < D(T) = D,.

O
The taxes ¢* and 7* that verify D(T) = Dy, and Q(T') = @} are then given by
e—pTDO — Dy r
o (0 D)o - Z4pB
¢ ( 1—erl p> e
Qp — Qo pK
* _pE — [ — b 0P
Ter V. ON’
where

Dy — Dy N e "Dy — Dy

V= 1—e*T

T <0,

see Appendix, (A.1.3). The signs of ¢* and 7* cannot be ascertained unambiguously as they
depend on the values of the parameters.
Finally, supposing that Qp < Qg and Dy > Dy, optimal levels of inputs are given by:

1 Dy — D
x = —pt b 0
w(t)" = N (r+pe <1—ePT>> > 0,
* Qb - QO
—— >0
f VON
and the optimal evolution of water quantity and water quality is given by:
* — e_pTDO - Db _
D(t;¢7) = e Do——— 7 (1—e"),
D0 — O(¢*
Qo7 = Qo A2 () eprys
where .
o Qp— Qo o € Dy— Dy
A(T)—T, @(GZ))——W

Remark 1 If the requlator aims at an end-of-period quantity that is equal to initial-date quantity,
1.e., Do = Dy, then the solution becomes

o = o (mr)ed].

* Qb_QO
= pE— L4 b= %0 1

T p * Doron P

.o T v Qo—@
wh= 520 =g o0

* * QO_Qb
D* = D 0 = Qp — 20T by

0, Q() QO DOT
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We can now compute the budget corresponding to these policies, i.e.,

V() = (QU_Q”> [pE—L—i—QO prK]—i—r[pB—(Do—i—;)C—Z}

DoTé DoT6N
[ Qo=@ _ Qo — @ B "\ A~
Y (T) = (DOT5 ) [pE L+ DT&NpK]JrT[pB <Do+p>0 Z}Tano

Remark 2 If the requlator aims at an end-of-period quality that is equal to initial-date quality,
i.e., Qo = Qp, then we have the special case where f* = 0.

4.2.3 No regulation case

In the absence of any regulation, the equilibrium conditions for the farmers in (24)-(25) yield the
following water withdrawal and fertilizer levels:

pB—CD—Z

pE — L

f o= K (33)

Consequently, the quantity and quality trjectories are given by
D@t)* = e ”D0)+0(1—e",
Dy—0
o = -2 Da- e ser,
p

where
o — N (pB — Z) —rpM
N NC ’
A = N@E-L) ,=NC
pK pM

4.3 Analytical results with complementarity

Suppose now a cross-effect between inputs, i.e. A # 0.

4.3.1 Optimal input and policy choice

Given our functional specifications, farmer i’s Hamiltonian now reads:
Lo 1 2
Hi=p | Awifi+ Bwi + Efi — JKfi — gMwi +G | — (Z +CD)w; — Lfi = 7fi — dw.

The corresponding reaction functions now depend on the water distance, D(t) and on both input
taxes:

A(L+7—-pE)+ K(CD+ Z —pB + ¢)

'Lbi (7—7¢) = p(A2—KM) )
N B M(L+T—pE)+A(C’D+Z+¢ pB)

Note that ‘9“’1 < 0 and 8f’ < 0as pA? —pKM < 0 and C > 0. In addition, we have %”“g; <0,
20 <0 and afl <0, %& <0.
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Proposition 4 Farmers auto-requlate both their water use and their fertilizer use when the
water distance increases. Further, farmers use less water (fertilizer) input when either water or
fertilizer inputs are tazed.

Proof. See Appendix(A.2.1) O

Proposition 5 The use of optimal input tazes leads to both better water quality and a smaller
water distance, whatever the type of input tazes used, a water tax or a fertilizer tax.

Proof. See Appendix(A.2.2) O

4.3.2 No budget constraint case

Proposition 6 Without budget constraint the desired quantity and quality level will again be
reached.

Proof. See appendix (A.2.3). O

Remark 3 The impact of the complementarity parameter A on the optimal input choice and on
optimal water quantity and quality 1s ambiguous.

4.4 Some numerical examples

We can finally give some numerical examples. Remember that we have a short time horizon of
one fiscal year and hence T' = 1. Consider a case where A = 1. Next suppose that ten farmers
exploit the same groundwater resource. Parameter values are given by:

A=1,B=4,C=1,E=4,G=1,K=2,L=01,M =2,

N =10,p = 100,r = 0.7, Z = 0.1,5 = 0.01,

and
Dy =10,D, =20,Q9 =12,Qp = 2,Yy = 2500, = 0.5.

Note that the impact of fertilizer and water inputs on production is symetric, i.e. B =F =4
and K = M = 2. Likewise, the Water Agency attaches the same importance to quantity and
quality management, o = 0.5. In addition, the distance between the initial and the desired
water quantity and quality levels is equal: Dy — Dg = Qg — Qp = 10. Figure 1 depicts the
optimal evolution of the water-table distance and the water quality. In the laisser-faire case
(dashed lines), both the water table distance and the water quality are depleted beyond the
desired levels. When optimal tax policies are implemented (solid lines), the quantity and quality
degradations are tempered. We have:

¢ = 520.84, 7 = —232.27,
and after policy intervention:
D(T) = 21.26,Q(T) = 6.10, w(T) = 1.16, f(T) = 3.74.

The optimal policy consists in taxing water inputs and subsidizing fertilizer inputs. This is not
surprising for two reasons: first, the budget constraint leads to a tax-subsidy policy mix (as long
as bg > 0). Second, water withdrawals have an impact on water quantity and on water quality
(through the dilution effect) while fertilizer use only has an impact on water quality. In this
symetric example, it is thus more interesting to tax water and to subsidize fertilizer. Note that
optimal input use is smaller than before when optimal policies are in place.
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Figure 1: Optimal evolution of water-table distance, D(t), and water quality, Q(t), with policy
(solid line) and without policy (dashed line).

Next, look at the impact of « on the optimal policy, as shown in figure 2. When a = 1, the
Water Agency does not attach any importance on the water-table distance. All effort goes into
the regulation of water quality. The optimal policy is such that the quality requirement is met,
but the water distance is degraded. The smaller o, the greater the importance that it attached
on the level of the water-table and the flatter the evolution of the water-table distance.

We can also test the impact of the desired levels of the water-table and the water quality on
the optimal policy. We compare the following cases: Dy varying from 12 to 26 while Qg —Qp = 10
and @y varying from 4 to 18 while Dj, — DO = 10. Results® are shown in figure 3.

The greater the constraint (for @y big and Dj small), the higher the water-input tax, ¢, and
the lower the fertilizer-input subsidy, 7 (remember the budget constraint, which implies that
Y (T) = 0). This in turn means lower gains for farmers (for binding constraints). Likewise, the
greater the constraints, the smaller the final water-table distance, the greater the final water
quality and the smaller final water and fertilizer input. Overall, we can see that the sensitivity
of the results is greater for Dy than for @Jp. This is again due to the dilution effect.

Finally, note that we can also generate a case in which the water input is subsidized and
the fertilizer input is taxed. When the constraint on the water-table is not strong (for example
Dy, = 36 instead of Dy = 20) compared to the quality constraint (for example @, = 10 instead
of Qp = 2) and the water productivity small (for example B = 0.1 instead of B = 4). This is
shown in figure 4. Now we have:

¢ = —309.04, 7 = 265.18,
and considering some parameter values at final time with policy intervention:

D(T) = 33.59,Q(T) = 7.88,w(T) = 2.35, f(T) = 1.85.

8Note that changes in D; are built on the baseline-case, with Dy = 10. For changes in Q, we considered an
initial quality level of Qo = 22 in order to be able to cover the same range of variation for @ and Dy.
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Figure 2: Optimal evolution of water-table distance and water quality fora =1, = 0.7, = 0.3.
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Figure 3: Variation of optimal policy as a function of desired levels of water quality, Qp (blue)
and water quantity, Dy (red).
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Figure 4: Optimal evolution of water-table distance, D(t), and water quality, Q(t), where the
water-input is subsidized and fertilizer input taxed.

15



5 Some concluding remarks and perspectives

We have constructed a model of groundwater management in which a group of farmers overex-
ploits a groundwater stock and causes excessive pollution, by using too much irrigation water
and fertilizer. We have shown that there exists a set of constant policies which the regulator can
impose, in order to bring the water resource close to a given quantity and quality level. To find
the optimal policy-mix, we have constructed a linear-state open-loop Stackelberg game, which
is equivalent to a feedback Stackelberg game. We have shown that, in addition to the usual
first order conditions, we need some special conditions to account for the realism that the Water
Agency can only impose constant policies.

In further work, it would be interesting i) to compare the constant policy solution to a solution
where policies are time-dependent and ii) to compare our solution to a social optimal solution
where the leader optimizes joint welfare but implements constant policies.
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A  Appendix

A.1 Case A=0

A.1.1 First-order optimality conditions and solutions with budget constraint

D = i — 7, D(0) = Dy, (34)
pP = pg&[KC@ + 1Y ¢) + uRM (L + 7 — pE)] , P (T) = 2(1 — )(D(T) — D{B5)
Y () = <Mgw)WE—L—ﬂﬂw+@B—CD—Z—@¢Kme:mmmmza(%)
Y = 0= p¥(t) = constant = p¥, (37)
@ = HPEEIZIE g0)- g, (39)
A9 = 0, u?(T) =22(Q(T) - Q) = u? (t) = 22(Q(T) — Qy), (39)
T aHL T v Q
8Tdt::0¢5/<m (L+27 —pE) — u®6D} dt =0, (40)
0 0
T oH, T _
i a—¢dt = 0@/0 {1 (CD+ Z +2¢ —pB) + P} dt = 0. (41)
Denote by
~ [N@B—-Z~-¢)—rpM
0 - | s ,
_ ON(pE—-L-—7) __NC
A(r) = VK >0, p_p—M>0.
Solving, we get:

D(t,¢) = e P Dy+0(¢)(1—e), (42)
Qt.om) = Q=) [ Do) = Qo) [P o +@<<z>>t] L (43)
Y(6m) = b (0B — L= )M+ (0B — 2~ 6)oK]t— op [ DG (14)

T
0 = 4 (L+2r—pE)T +20(Q(T) - Qb)afo D(s)ds. (45)
YC T
0 = lo[a—fﬂﬂ%+m@@T+fﬂ—m}uz+w—mﬁﬁT+/;Pﬁmw
0
where
/ D(s DO_ ()—l—@((b)t,
and
Q —L-r1

WPt r) = Crert — EWOMWPE =L =7) v o oo DT 6 ) = 2(1— ) (D(T, 6, 7) —

N (pB—CD — 7 — ¢)

NCK
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Note that @ (T) involves a multiplicative term 7¢ through the product of A(7) and ©(¢). There-
fore, after substitution for @ (") in equations (45) and (46) above, we end up with two equations
of the form

0 = ao+amp’ +aord + asté® + asd + ast + asd’, (47)

= co+ap’ +oam e+ cadp’ +esTd + e + o7, (48)

where ag, ..., ag, and cq, . .., ¢y are constants. The budget constraint at 7" in equation (44) reads
as follows:

Y (T,¢,7) =0=do+ di7 + dor* + d3¢ + ds¢?, (49)

where dy,...,ds are constants. We have all the information to solve a system of 3 equations

(47)-(49) for the three unknowns 7, ¢ and Y.

A.1.2 Proof of 92 <0, 52 >0, 52 >0

Proof. First of all, we have:

aD(t,9), _

sign(

Next, remember ,
Q.67 = Qu=oN [ slopar

We thus have:

Q bd o, B -0D
= 6N/0 a(b[f(s) 5N/ [ 50 +f ¢]d >0
as
of oD
a—éfOD()>0f>O%<O
Likewise:
0D
—= —5N/ 37’ )]ds——(SN/ [ 57 D(s)—i—fg ds >0
as
%<0,D(s)>0,f>0,%—?=0.
O

A.1.3 Case A =0 without budget constraint
We have V < 0 for all Dy, > Dy and T > 0. In fact
V(Db = Do) = —DyT <0,

ov. 1—e T —pT
D, p(1—er)

<0 VT.

V' is decreasing with D and hence always negative. Note that V' < 0 implies that f* > 0, as

Qp < Qo-
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A2 Case A#0
A.2.1 Proof of g—f: < 0, g—f < 0, g—g < 0,% <0,
Solving D = N — r, we get:
D(t) = e Do + O(7, ¢)(1 — ™),

where

_ —NKC
P~ p(A2 — MK)
AL+7-pE)+ K(Z—pB+¢) 1

>0,

O(r,¢) = — %0 s
We therefore have:
oD A .
5 = —K—C[l—ept}<0,
D 1
88@5 = 76 [1*€_pti| <0,
and:
of 1 oD 1 ot
% = oot Coa) =yt <0
of 1 [ 0D 3 1 A?
or T p(AZ-MEK) _‘AC&‘M]—‘M%‘MKO
0 1 ' oD 1
_— = —_ | — — _ e — _ _Pt
d¢ p(A? — MK) | " Kc&b} p(A2—MK)K[ <0
ow 1 [ oD 1
—_— = _—_ | — — —_— e — — —Pt
o oAz =ik | A Kcaf} oAz A e <0
as
Az —w)

A.2.2 Proofof%—g <0, ‘(?Tf<(), % >0’% >0

Proof. Remember from proof (A.2.1) that

oD A
2 [l
o xo e <o
oD 1
= — 1Pt .
99 c [ e ] <0
The proof follows the same reasoning as in proof (A.1.2). We have:
oQ
— >0
96~
as
of ;0D
== D —-— .
a¢<0’ (S)>0’f>0’8¢<0
and 90
ar 7"
as
of ;. 0D
— D — .
8T<0’ (S)>O’f>0’6r<0
O
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A.2.3 Case A>0 witouth budget constraint. Proof of D(T) = Db and Q(T) = Qb

Proof. We now have: .
Hp = ,LLDN(UN)Z' —r) —uQéfiD

T 8HL T
d = 0« / [WPNA - pRsMD]dt =0, (50)
o 07 0
T T
iy ge / (WP NEK — %5 AD] dt = 0. (51)
o 09 0

From (50) and (51), we have:

T SM 5A s (T
D QY _ D QY —_ e Q 2 —_
/O [u HEN } [u u NKD}dt ():>N/O p®D [A* — MK] = 0.

As D > 0 and [A?2 — MK] # 0, we have: u? =0 < Q(T) = Qb.
In addition, we have:

o= ML _ oo 0ACD - G0MpE—-L-7)+ApE-CD-Z-9)
oD p(A? — MK) p(A? — MK)
with:
pP(T) =201 —a)(D(T) — Dy) and p® =0.
Hence: NKC
p___ YA%Y D Dy _ B _

Therefore: u” =0 = D(T) = Dy,. O
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