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Bayesian calibration of computer models.

Residual variablity Specic inputs are supposed to allow the model to predict the value of a real process in a specic condition.

However, if that condition is repeated, the process may not take the same value.

⇒ Variations of the process even when the condition is fully specied. This is residual variability.

Two sources of uncertainty are combined here :

Irreductible

The process is inherently unpredictable and stochastic. The output of a computer code given any particular conguration of inputs is in practice not known until we actually run it with those inputs.

Since it may not be practical to run the code to observe the output for every input conguration of interest, uncertainty about code output needs to be acknowledged. Let f (•) be a function mapping an input x ∈ X into an output y = f (x).

The input space X can be arbitrary but is typically a subset of R q for some q ∈ N . ⇒ We can write x as a vector x = (x1, x2, . . . , xq ). 

Mean function m(•), where m(x) = E {f (x)} Covariance function c (•, •) where c (x, x') = cov {f (x), f (x')}
(x) = E {f (x)} Covariance function c (•, •) where c (x, x') = cov {f (x), f (x')} f (•) ∼ N {m(•), c (•, •)} ⇔ f (•)
m(•) m(•) = h(•) T β h(•) = (h1(•), h2(•), . . . , hp (•))
T is a vector of p known functions over X . β = (β1, β2, . . . , βp) is a vector of p unknown coecients. 

m(•) m(•) = h(•) T β h(•) = (h1(•), h2(•), . . . , hp (•))
T is a vector of p known functions over X . β = (β1, β2, . . . , βp) is a vector of p unknown coecients. The modelling of c (•, •) is a crucial step. Indeed, it is the correlation between f (x) and f (x') that allow to express : A view that f (x) and f (x') should be similar if x and x' are suciently close in X A belief in smoothness of f (•) 

c(•, •) c (•, •) = σ 2 r (x -x')
r (•) r (x -x') = exp  - q X j=1 ω j (x j -x j ) 2 ff
Other possible formulations :

Replaces (x j -x j ) 2 by |x j -x j | α α have a specied value α is another hyperparameter

α j can be dierent in each dimension Set r (d) = exp(-d T Ωd)
where Ω is an unknown symmetric positive denite matrix (in above equation has the form Ω = diag (ω 1 , . . . , ωq)) 

Calibration inputs

The unknown context-specic inputs we wish to learn about.

They are supposed to take xed but unknown values θ = (θ1, . . . , θq2).

For all the observations that will be used for calibration. For all the instances of the true process that we wish to use the calibrated model to predict.

Variable inputs.

All other model input whose value might change when using the calibrated model.

They are assumed to have known values for each of the observations that will be used for calibration. ζ(x) be the true value of the real process when variable inputs takes values x z = (z1, . . . , zn ) be the calibration data, where z i is an observation of ζ(x i ) for known variable inputs x i , but subject to error. y = (y1, . . . , y T N ) the output from N runs of the computer code where y j = η(x * j , t j ) ζ(x) be the true value of the real process when variable inputs takes values x z = (z1, . . . , zn ) be the calibration data, where z i is an observation of ζ(x i ) for known variable inputs x i , but subject to error. y = (y1, . . . , y T N ) the output from N runs of the computer code where y j = η(x * j , t j ) 

z i = ζ(x i ) + e i = ρ η(x i , θ) + δ(x i ) + e i
Where e i is the observation error for the i th observation ρ is an unknown regression parameter δ(•) is the model inadequacy function that is independant of the code output η(•, •) 

η(•, •) ∼ N ˘m1(•, •), c1{(•, •), (•, •)} δ(•) ∼ N {m2(•), c2(•, •)}
In each case, the mean and variance functions are modelled hierarchically At the rst step, mean functions are modelled using linear model form : 

m1(x, t) = h1(x, t) T β 1 m2(x) = h2(x) T
β = (β T 1 , β T
2 ) ⇒ No specication of particular forms for covariance functions, but supposition that they are expressed in terms of some further hyperparameters denoted by ψ ⇒ φ denote (ρ, λ, ψ)

The complete set of parameters therefore comprises

The calibration parameters θ

The location parameters β

The hyperparameters φ It is reasonable to suppose that the prior information about θ is independant of the others, and with the prior expression of β, we can write : 

Remaining uncertainty

The model now take explicitly into account all the sources of uncertainty previously identied.

However, the compromise proposed here is to not account fully for all these sources.

By xing λ at an estimated value, we do not account fully for observation 

Data and model Results

Gaussian plume model

The dispersion of radionuclides is a highly complex process involving various chemical and environmental process which are not directly observable.
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Gaussian plume model

The dispersion of radionuclides is a highly complex process involving various chemical and environmental process which are not directly observable.

Many simplifying assumptions are made in the Gaussian plume model.

For instance, the speed and direction of the wind are assumed to remain constant during the travel time of the particles released.
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Gaussian plume model

The dispersion of radionuclides is a highly complex process involving various chemical and environmental process which are not directly observable.

Many simplifying assumptions are made in the Gaussian plume model.

For instance, the speed and direction of the wind are assumed to remain constant during the travel time of the particles released. 

Data and model Results

Data

Data used here comes from an accident at the Tomsk-7 chemical plant in 1993 (detail in Shershakov et al., 1995).

We consider the deposition of ruthenium 106 ( 106 Ru).

Data were obtained from an aerial survey which started to the source and continued to about 40 km downwind in such a way that consecutive measurements are very close.

A total of 695 measurements were made.
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Data and model Results

Data

Data used here comes from an accident at the Tomsk-7 chemical plant in 1993 (detail in Shershakov et al., 1995).

We consider the deposition of ruthenium 106 ( 106 Ru).

Data were obtained from an aerial survey which started to the source and continued to about 40 km downwind in such a way that consecutive measurements are very close.

A total of 695 measurements were made.

A subset of n = 10 was choosen to represent a small sample of observed data similar to that which might be collected shortly after an accident.

Additional points were taken, giving subset of size 10, 15, 20 and 25 points.
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Data and model Results

Assumptions

The log-transformation is used to approximate better the assumptions of normality.

The true log-deposition for variable inputs x is ζ(x).

The z i s are the logarithm of observed depositions.
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Data and model Results

Assumptions

The log-transformation is used to approximate better the assumptions of normality.

The true log-deposition for variable inputs x is ζ(x). The choices made here, especially for the correlation function, will not be appropriate for all applications.

A brief examination of plausible alternative formulations has been carried out (further details in Kennedy and O'Hagan, 2000b) and suggested that Any improvement due integrating with respect to the hyperparameters, as opposed to maximising, is likely to be small. The eect of using alternative covariance structures is small. This indicates some degree of robustness, but also a need to consider models that allows for more localized structure.

The method thus need to be explored with more and varied applications. 

  Parametric variablity z = η(X , θ) + δ(X ) + ε (X , θ) + δ(X ) + ε

  h(•) describes a class of shapes.The model for m(•) expresses a belief f (•) may be approximated by a

  error and residual variability/uncertainty. By xing ρ and the hyperparameters ψ2 of c2(•, •) at estimated values we do not account fully for model inadequacy. By xing the hyperparameter ψ1 of c1{(•, •), (•, •)} at estimated values we do not account fully for code uncertainty. plume model (Clarke, 1979) is used to predict the dispersion and subsequent deposition of radioactive material following an accidental release. Code inputs can be divided into two types : Atmospheric conditions at the time of the

  The z i s are the logarithm of observed depositions.Critical unkown inputs are the source term and deposition velocity ⇒ The logarithms of these are the calibration parameters θ A normal distribution is used as prior for θ prior means are given by authorities prior variances are set to represent vague prior knowledge prior covariances are assumed to be data sets, posterior means and variance of z (x) were calculated for all the 670 unobserved points, and accuracy was assessed on the basis of the true values at these points. data sets, posterior means and variance of z (x) were calculated for all the 670 unobserved points, and accuracy was assessed on the basis of the true values at these points.The following strategies were compared Startegy 1 : Using a Gaussian process interpolation of the physical observation alone, taking into account measurement errors, but making no use of the Gaussian plume model. data sets, posterior means and variance of z (x) were calculated for all the 670 unobserved points, and accuracy was assessed on the basis of the true values at these points. The following strategies were compared Startegy 1 : Using a Gaussian process interpolation of the physical observation alone, taking into account measurement errors, but making no use of the Gaussian plume model. Startegy 2 : Using Bayesian calibration and model inadequacy correction as described here. data sets, posterior means and variance of z (x) were calculated for all the 670 unobserved points, and accuracy was assessed on the basis of the true values at these points. The following strategies were compared Startegy 1 : Using a Gaussian process interpolation of the physical observation alone, taking into account measurement errors, but making no use of the Gaussian plume model. Startegy 2 : Using Bayesian calibration and model inadequacy correction as described here. Startegy 3 : Using the Gaussian plume model with plug-in input parameters. The physical data are not interpolated in any way. Instead, selection of the input parameters is done by minimizing the sum of squared dierences between the model and the data.

  is a measure of a physical system ζ and is subject to error
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  has a Gaussian Process distribution with mean function m(•) and covariance function c (•, •).
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	c (•, •) must have the property that for every n = 1, 2, . . . the
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  = (t1, . . . , tq2) be the vector of calibration inputs. η(x, t) the corresponding code output.Note that the unknown value θ of the unknown calibration inputs is distinct from the (known) value t that is set as inputs when running the model.
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  i includes any residual variation as well as observation error. i includes any residual variation as well as observation error. Since it's not possible to have replication of observations in circumstances where variable inputs AND all unrecognized conditions were the same, it's not possible to separate the two sources of uncertainty. i includes any residual variation as well as observation error. Since it's not possible to have replication of observations in circumstances where variable inputs AND all unrecognized conditions were the same, it's not possible to separate the two sources of uncertainty.
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  to integrate β out to give p(θ, φ|d) However p(θ, φ|d) is a highly intractable function of φ Authors propose to derive plausible estimates of the components of φ and act as if these were xed. Use only the code output y to estimate the hyperparameter ψ1 of c1{(•, •), (•, •)} ⇒ Use z to estimate ρ, λ and the hyperparameters ψ2 of c2(•, •), having now xed ψ1.
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D1 = {(x * 1 , t1), . . . , (x * N , t N )}

Set of points for the observations z of the real process : D2 = {x1, . . . , xn } Augmenting each points of D2 by the calibration parameter θ, we dene : D2(θ) = {(x1, θ), . . . , (xn, θ)}

  Generally, developers of computer model will have given concrete physical meaning to the calibration inputs, but the true value of these physical quantities do not necessarly equate to θ It may be that the physically true value gives a worse t and less accurate future prediction than another value.⇒ It is dangerous to interpret the estimates of θ (obtained by calibration) as estimates of the true physical values.
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	True parameter values				
		RMSEs for the following values of n
	Strategy	n = 10 n = 15 n = 20	n = 25
	1	0.75	0.76	0.86	0.79
	2	0.42	0.41	0.37	0.36
	3	0.82	0.79	0.76	0.66
	For comparison, RMSE=0.84 is obtained using the code with input parameters
	xed at their prior mean				
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  Computer models with multivariate outputs have not been considered here.However, eective calibration should ideally use all available code outputs and corresponding physical measurement.The use of multiple code outputs is an ongoing topic of research (insight can be found in Higdon et al.2004, 2008) 
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Gaussian Process f (•) is seen as an unknown function.Arnaud BensadounBayesian calibration of computer models

f (•) is a random function. GP represent prior knowledge about f (•).

f (•) is a random function. GP represent prior knowledge about f (•).non-Bayesian framework f (•) is drawn randomly from some population of functions.GP represent the distribution of functions in that population.Arnaud BensadounBayesian calibration of computer models

f (•) has a Gaussian Process distribution if for every n = 1, 2, 3, . . . the joint distribution of f (x1), . . . , f (xn) is multivariate normal for all x1, . . . , xn ∈ X
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p(θ, β, φ) = p(θ)p(φ)
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Data

Data used here comes from an accident at the Tomsk-7 chemical plant in 1993 (detail in Shershakov et al., 1995).

We consider the deposition of ruthenium 106 ( 106 Ru).

Variances

Dene V1(D1) to be the matrix with (j, j ) element c1{(x * j , t j ), (x * j , t j )} Dene V1{D2(θ)} and V2(D2) similarly Let C1{D1, D2(θ)} be the matrix with (j, i ) 

Full joint postrior distribution

We can now obtain the full joint postrior distribution

Note that we have explicitly shown dependance on θ but m d (θ) also depends on β and ρ whereas V d (θ)