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1. ABC concepts

• Approximate Bayesian Computing (ABC) is a free likelihood method
to estimate model parameters

• Definition of statistics (or descriptors)
• Fast computing model

Notations:
Observed data D and simulated data D?

θ is the vector of parameters with Prior π(.)
s(.): function that computes a set of statistics (descriptors)
S = s(D) vector of statistics for data D
S? = s(D?) vector of statistics for data D?
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1. ABC: a free likelihood method

Algorithm (Accept/Reject)
0: Suppose we have observed data D and S = s(D)
1: Generate θ? from π(.)
2: Generate D? from f (.|θ?)
3: Compute statistics S? for D?

4: Accept θ? if dW (S,S?) ≤ ε and return to (1)

Prior Simulation Joint Ditribution Posterior
π(θ) D? (θ?,S?) π(θ|dW (S, S?) ≤ ε)
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1. ABC: a free likelihood method
This algorithm gives an approximation of π(θ|D).

Two important points for the approximation:
• The threshold ε:

smaller ε → better approximation

• D? is summarised by the statistics S?:
better statistics → better approximation
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2. The root system model

Complexity of plant root system:

Functionning is linked to the dynamics of the architecture. Water and
nutriment uptake depend on the root surface..

Plant root system modelling:

Integration of knowledge and test of new hypotheses
Summarize data into a low number of key values

The stochastic model:

Number of parameters: 14
Output of the model: image of root system
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3. The root system model

• 4 parameters over 14 are estimated with images.
• 15 statistics are computed: size and shape of the root system,

density of pixels in different areas, ...
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3. Sensitivity analysis of statistics

• Can parameters be estimated with the statistics ?
• Anova: 4 factors with 5 levels, interaction of order 3

Gray: Principal
Black: Interaction
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• About 8-10 statistics over the 15 seem to be sufficient to estimate
parameters
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4. Sensitivity analysis of MSE

• Find the best weights W of dW to minimize MSE criterion ?

• Point estimate: θ̂ = Mean{θ? : dW (S,S?) ≤ ε} with

d2
W (S,S?) =

NS=15∑
i=1

wi(Si − S?i )2 and wi > 0,
NS∑
i=1

wi = 1.

• Criterion to evaluate point estimate θ̂:

MSEθ(W ) =
Nθ=4∑
k=1

(θ̂(k) − θ(k))2

σ2
θ(k)
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4. Sensitivity analysis of MSE

• Generate uniformly a R-sample of weights W r , r = 1, ...,R with
W r = (w r

1 , ...,w r
NS

) and
∑NS

i=1 w r
i = 1

• Generate a N-sample θl , l = 1, ...,N from π(θ).
• For each θl , l = 1, ...,N

- Compute MSEθl (W r ), r=1,...,R
- Fit a canonical polynomial of degree 2:

MSEθl (W ) = Pl(W ) + e, l = 1, ...,N

with Pl(W ) =

NS∑
i=1

δiiw2
i +

NS∑
i=1

NS∑
i<j

δijwiwj

- Sensitivity indices by comparing nested polynomials models.
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4. Sensitivity analysis of MSE

Sensitivity indices Minimum weights
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4. Sensitivity analysis of MSE
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5. Conclusion

Conclusion
• Difficult to find an optimal distance (for all θ)
• Interaction between weights associated to statistics
• ABC with three steps:

1 Pilot ABC (→ first approximation θ̃)
2 Determine optimal weights associated to θ̃
3 ABC with the optimal weights (→ second approximation θ̂)

Future work
• Optimal weights determined by global optimum of PW

• Study based on the expectations of the statistics (rather one
observation)
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