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Coarse-grained models for macromolecular systems

V. Hugouvieux

INRA, UMR1083 SPO, 34060 Montpellier Cedex 1, France

Abstract. Neutron scattering experiments and simulations are often used as complementary tools in view
of revealing the structure and dynamics of molecular and macromolecular systems. For polymeric and self-
assembling systems, the simulation of large-scale structures and long-time processes is often achieved by
using coarse-grained models which allow to gain some orders of magnitude in space and time scales. By
discarding some details of the chains, they also allow a better understanding of the main features of the
system that govern its behaviour, such as the sequence of a macromolecule or some interaction that leads
to its self-assembly. After a brief introduction on coarse-grained models and associated representations, the
approach is illustrated with the case of amphiphilic regularly alternating multiblock copolymers in dilute
and semidilute solutions. In this context, a generic HP (H: hydrophobic ; P: hydrophilic, polar) model is
used together with a lattice representation of the system and a Monte Carlo algorithm. The simulations give
access to the various structures and phases of the system as a function of the energy of interaction between
H monomers, the ratio of H monomers in the chain, the length of the blocks and the concentration. In dilute
solution structures range from swollen coils in good solvent to chains of micelles and layered structures
in poor solvent. In semidilute solution microphase separation and gelation are observed as a function of
substitution ratio and concentration.

1. WHY USE COARSE-GRAINED OR MESOSCOPIC MODELS?

One of the main reasons why scientists use coarse-grained or mesoscopic descriptions of molecular
systems is to achieve longer simulation times and larger spatial scales by discarding part of the chemical
details of the system. In the case of polymers and self-assembling systems this scale issue is fundamental
as the behaviour of macromolecules covers several orders of magnitude in space and time. Several
review articles deal with the application of coarse-grained models to soft materials [1], proteins [2] and
membranes [3].

For standard condensed matter systems such as simple liquids it is often sufficient to perform
simulations of some 103 atoms interacting through realistic forces. Even with such small systems the
structural features and correlations can be captured: as shown by the oscillations of their pair correlation
function, these systems are usually homogeneous on scales of the order of 10 Å. Quantum chemistry
simulations are moreover available for these systems and enable relevant force fields on the atomic scale
to be derived.

On the polymer side [4], the situation is quite different with relevant length scales encompassing
several orders of magnitude. At the level of a single chain of some 103 monomers, bond lengths are of
the order of 1 Å, persistence length is some 10 Å and the radius of gyration of the coil is about 100 Å.
For collective phenomena, cross-linked networks and phase separation typical length scales may even
be larger and reach 103 Å. Also the size of the simulation box has to be larger than the characteristic
length scales of the system, which leads to very large simulated systems (106 atoms or more). Hence the
atomic scale simulation of polymer systems is restricted to small values of the degree of polymerization
NP and systems far from any phase transitions.
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The need for coarse-grained representations is emphasized by the dispersion of the time scales
pertaining to macromolecular systems. While the characteristic time for a C-C bond length or angle
vibration is around 10−13 s and the average time between two reorientational jumps in the torsional
potential is around 10−11 s, the time for the relaxation of the coil configuration of a single chain is
many orders of magnitude larger. This relaxation time �NP

scales with the chain length as �NP
∝ N2

P for
NP < 100 (Rouse model) [5] while for longer chains the scaling becomes �NP

∝ N3
P (reptation model)

[5, 6]. This typically leads to relaxation times of the order of 10−8 to 10−5 s, to be compared with times
for bond length vibrations or local reorientations.

To cope with the broad range of time and length scales, coarse-grained or mesoscopic representations
of polymer or self-assembling systems (such as membranes) have to be envisaged. Such models are
obtained by lumping groups of atoms together into single effective particles or interaction sites, thus
reducing the number of degrees of freedom of the system and removing the faster vibrations. Also
simplified and softer potentials are used for the interactions between these particles (electrostatics and
torsions are often omitted). This leads to an appreciable speed-up of the simulations and gives access to
collective phenomena such as the self-assembly of block copolymers in solution [7, 8] or the formation
and thermodynamic stability of membranes [3], usually not available from atomistic simulations.

Obviously coarse-grained models are not able to capture all the atomic scale properties of the system
under study. This is precisely the point of using such a representation: it enables the main features
influencing the mesoscale behaviour to be elucidated. Therefore two main kinds of questions can be
addressed through mesoscopic modelling and simulation. On the one hand insight can be gained into
the interactions that are responsible for the mesoscale behaviour (phase separation, self-assembly). On
the other hand the universal behaviour at a mesoscopic scale can be revealed (e.g. phase transitions in
diblock copolymer melts, transitions between different morphologies of copolymers in solution).

2. HOW TO DESIGN A MESOSCALE MODEL?

When building a mesoscale model, one of the main issues is to determine which degrees of freedom or
interactions of the system have to be retained in order to recover the behaviour of interest. Two main
types of coarse-grained models can be distinguished : the minimal or generic ones, and those derived by
systematic coarse-graining. A generic polymer model is able to capture the features common to a class
of polymers with a given architecture and composition pattern. In contrast, two polymers with similar
architectures but chemically different monomers should behave differently in a systematically coarse-
grained representation.

Before describing coarse-grained models developed for macromolecules, let us first focus on the case
of the solvent, which accounts for a substantial part of the degrees of freedom of the system. In coarse-
grained simulations of polymers, explicit description of the solvent is often eliminated and replaced
by effective interactions between the solute molecules. We talk about solvent-free or implicit solvent
models. For instance, the radius R of a polymer chain consisting of N monomers scales like R ∝ N1/2

and the size L of the box should be of the order L ∼ R. So the mass fraction of polymer, N/L3 ∼ 1/L,
decreases with increasing length of the polymer. Hence discarding the explicit representation of the
solvent enables substantial computer simulation time to be saved.

In the case of minimal models (also called generic or simplified models) only a very restricted
set of features of molecules or macromolecules are taken into account. Besides excluded volume and
connectivity constraints, some interactions are deemed essential for the behaviour of interest. These
are retained in the model. This kind of models is widespread for the study of scaling properties of
polymeric systems (both static and dynamic) and in the field of self-assembling amphiphiles. Among
generic models, a distinction can be made between off-lattice and lattice representations.

The idea behind lattice representations is to describe the chains as self-avoiding walks on a lattice [9].
The simplest model consists of a regular cubic lattice where each effective particle of the chain sits on a
lattice site. A bond connecting two beads of the chain is a link between two nearest-neighbour sites of
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Figure 1. Some standard lattice moves: a) 180◦ crankshaft; b) 90◦ crankshaft (d ≥ 3); c) slithering snake; d) pivot
move (see [9] for other kinds of moves).

Figure 2. Schematic representation of the bond fluctuation model (left) and bead-spring model (right).

the lattice. Single occupation of the sites ensures excluded-volume constraints and non-crossing of the
strands also has to be checked for. A variety of moves exist which are designed for different purposes, for
instance end-bond, kink-jump, crankshaft, slithering snake and pivot moves (see Figure 1). The latter
is more relevant when studying static properties, since the aim of pivot moves is to rapidly generate
dynamically uncorrelated configurations of the chains.

The most widely used lattice algorithm is the bond-fluctuation model [10, 11] (see Figure 2, left).
It can be seen as an intermediate between cubic lattice models and continuum models, since the bond
between two monomers can take many different values (36 in 2d and 108 in 3d, compared to 4 in 2d and
6 in 3d for a simple cubic lattice). The constraints of excluded-volume and non-crossing of the strands
are assured by restrictions in the allowed bond lengths.

In off-lattice representations, the positions of effective monomers are no more restricted to lattice
sites. Again several models exist : freely jointed chain with rigid bonds, pearl-necklace model [4]. The
bead-spring model is the most widely used off-lattice model. Bonds are represented using harmonic
potentials with a constraint of finite extensibility (FENE potential) and effective particles interact
through the Lennard-Jones potential (see Figure 2, right).
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Such generic models have been widely used for the study of the static and dynamic properties of
polymers. For instance, off-lattice models have been applied to study the phase diagrams of diblock
copolymers [12] and the crossover from Rouse to reptation dynamics in polymer melts [13, 14]. Using
bead-spring models, the formation of micelles has been investigated either in solution [15] or at surfaces
[16]. Lattice models can also prove helpful in the study of the micellization and phase separation
of surfactants and multiblock copolymers [17–19]. Protein folding and aggregation is another field
of application of these models, where they are used in view of elucidating the generic mechanisms
involved [20].

The other option is to derive a coarse-grained model for a specific atomic system [21]. The general
principle of this method, usually called systematic coarse-graining, consists of:
1. choosing a set of key features of the system that the coarse-grained model should reproduce and
2. determining the coarse-grained interactions between the effective beads in order to reproduce the key

characteristics of the system.
Two main kinds of such key features are presently used : structural and thermodynamic ones. When
coarse-grained potentials are built using structural properties from all-atom molecular simulations,
distributions of geometric quantities are used to compare the structure of the coarse-grained system
and that of the all-atom configurations. These can be intramolecular (distances between two adjacent
effective particles, bond angles between three consecutive effective beads, radius of gyration of the
chain and eigenvalues of the corresponding tensor) or intermolecular (distances between the centers
of mass of different chains) properties. The determination of the coarse-grained potentials is often
based on Boltzmann inversion (for instance, in the case of non-bonded interaction potentials, UCG(r) =
−kT ln g(r) and variants thereof) of the target properties. When the target of the coarse-grained model
are the thermodynamic properties, parameters of the coarse-grained potentials can be chosen so as
to reproduce free energies of vaporization, hydration or partitioning, as was done in the case of the
MARTINI coarse-grained lipid model [22]. A presently active field of research is to determine whether
it is possible to derive coarse-grained potentials that would be consistent with both structural and
thermodynamic properties of the corresponding all-atom description.

Systematic coarse-graining can for instance be used in conjunction with the method of dissipative
particle dynamics [23].

Starting from atomistic descriptions and reaching coarser scales is the basic idea of multiscale
simulations, where phenomena are studied at different levels of resolution. These multiscale descriptions
enable a mapping to be done, from the high-resolution to the low-resolution scale, in order to reach large
time and space scales. On the other hand, back-mapping can also be envisaged from the coarse-grained
to the more-detailed level [24].

In the next section a case study is presented in details. It deals with the behaviour of amphiphilic
multiblock copolymers in dilute and semidilute solutions. These systems are studied using a generic
lattice model and a Metropolis Monte Carlo algorithm.

3. MULTIBLOCK COPOLYMERS IN SOLUTION: MODEL AND SIMULATION METHOD

In this section a more detailed account is given of the self-assembly and phase behaviour of linear
multiblock copolymers in solution. The macromolecules are represented on a lattice at a coarse-grained
level and a standard Monte Carlo algorithm is used for the simulations.

3.1 Motivation: the behaviour of methylcellulose

Methylcellulose is a water-soluble cellulose derivative which belongs to the class of associating
polymers. It is obtained by the substitution of some hydroxyl groups of the anhydroglucose units of
cellulose by the methoxide group O-CH3 (see Figure 3). Depending on the degree of methylation
of a glucose monomer, the monomer can be considered hydrophilic (no substitution) or hydrophobic
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Figure 3. A generic monomer unit of methylcellulose with Ri = H or Ri = CH3.

(3 substituted groups). Methylcellulose is characterized by its average substitution degree which
corresponds to the average number of substituted groups per monomer. The substitution pattern
can vary strongly depending on the conditions for cellulose modification and it has been shown
that commercial methylcellulose displays a heterogeneous distribution of the methyl groups along
the cellulose backbone. In agreement with experimental results [25–27], methylcellulose is usually
considered as a multiblock copolymer and not as a statistical one. The multiblock pattern gives an
amphiphilic character to methylcellulose chains. Also this biopolymer derivative is known to perform
thermoreversible gelation upon heating [27]. The interplay between amphiphilicity and gelation ability
gives rise to a range of structures and properties which attract a lot of interest from food, biomedical,
pharmaceutical and cosmetic industries. In particular amphiphilic block copolymers have attracted a
great deal of interest from the biomedical field [28], with applications such as drug delivery vectors
[29], nanoparticle stabilizers, nanoreservoirs, emulsion stabilizers, wetting agents, rheology modifiers
[30, 31] or as injectable scaffold materials for tissue engineering [32]. Using a generic coarse-grained
model and Monte Carlo simulations, we want to improve our understanding of the behaviour of
amphiphilic multiblock copolymers in solution.

3.2 Defining a model

In view of understanding the impact of the substitution pattern and ratio on the behaviour of
methylcellulose, copolymers are modelled as chains of Nm connected monomers of two types, either
hydrophobic (H) or hydrophilic (P), depending on the number of substituted hydroxyl groups. We ignore
the chemical details of the monomer units and each of them is represented as a single bead.

As stated before, experiments tend to show that methylcellulose has a blocky chemical structure,
with highly substituted zones along the chain. This is why in our model copolymers are represented as
regularly alternating blocks of hydrophobic and hydrophilic monomers. They are denoted as (HBH

PBP
)n,

where BH is the number of H monomers per hydrophobic block, BP the number of P monomers per
hydrophilic block and n the number of HBH

PBP
patterns in the polymer. A given multiblock copolymer

thus consists of a total of Nm = n(BH + BP ) monomers and its hydrophobic substitution rate, Psub, is
defined as:

Psub = BH

BH + BP

(1)

Both types of monomers are subjected to excluded-volume constraints. The solvent effect is simulated
implicitly and the interactions between the monomers and the solvent are accounted for indirectly. An
effective short-range attractive interaction between the H monomers mimics the effect of hydrophobicity
which favours the association of the H monomers. In the model the interaction is restricted to the nearest
H neighbours which corresponds to the range of the repulsion between the H monomers and the solvent.
This so called hydrophobic interaction strongly depends on the quality of the solvent with respect to the
H monomers. In practice this interaction is taken into account through the effective energy Ei between
neighbouring H monomers: when Ei = 0, there is no interaction between H monomers and the quality
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of the solvent is equally good for both kinds of monomers; for increasing |Ei |, the solvent becomes
increasingly poor for H monomers which leads to the formation of H clusters. The notion of good
and poor solvent always refers to H monomers, P monomers are always in good solvent conditions. In
summary, the interaction is always equal to zero between two hydrophilic monomers and between a
hydrophilic and a hydrophobic monomer while there is an attractive interaction of strength Ei between
two hydrophobic monomers. Hence our model takes into account different solvent qualities and various
sizes and ratios of hydrophobic and hydrophilic blocks.

3.3 Lattice model and Monte Carlo

The behaviour of the multiblock copolymers is simulated using the algorithm of coarse-grained cell
polymer dynamics developed by Kolb and Axelos [33].

The basic idea of this model is to replace the complicated continuum dynamics of a polymer solution
or melt by a truncated lattice version. Consider any continuum polymer system. To discretize this system
we regularly divide space into compact cells. The centers of these cells form a regular lattice. The
polymer conformation and its dynamics can then be uniquely discretized by placing all the monomers
that lie in a given cell onto the corresponding lattice site. The cell size is a free parameter, for the present
calculation we set it equal to two monomer volumes, i.e. each lattice site can be occupied by zero, one or
two monomers. After projection of the conformation onto the lattice, the continuum dynamics becomes
a nearest neighbour hopping dynamics. The bond lengths of the original model are also discretized to the
values zero or one lattice spacings. This corresponds to a variation of the effective average bond length
between one half and one lattice spacings, for a chain of doubly or singly occupied sites respectively.

The original polymer model and the lattice model have the same properties on scales larger than a
lattice spacing. Computationally a lattice model is much more efficient, as the complicated continuum
dynamics is replaced by a simple nearest neighbour hopping dynamics on the lattice. In order to
reproduce statics and dynamics correctly, a lattice model must respect three essential features of polymer
structure and dynamics: the monomer connectivity along the chain, the excluded volume interaction and
the non-crossing of polymer strands. The connectivity requirement is assured by construction because
neighbouring monomers along the chain always sit on the same or on nearest neighbour sites. The
excluded volume restriction is respected automatically because each site can be occupied by at most
two monomers. The condition that two polymer strands are not allowed to cross would require elaborate
testing for the proposed discretization. To avoid this, we change the rules slightly: the double occupancy
of a lattice site is restricted to monomers that are nearest neighbours along the same polymer chain
(chemically bonded monomers). This is a minor change, which effectively corresponds to an increase
of the range of the excluded volume interaction, but which allows to guarantee the strict non-crossing
of strands in a simple way.

The key difference between cell polymer dynamics and standard lattice models is that in our model
a lattice site can be occupied by two monomers. This is also its main advantage: pure reptation along
the polymer chain is explicitly possible even at the highest densities, monomers moving between a
doubly occupied and an empty site naturally create local chain length fluctuations on the lattice, there
are no locked up conformations and hence no ergodicity problems as for standard lattice models. The
model is computationally efficient as it has, under athermal conditions, no adjustable parameters and
only one move type. The unique space and time scales of this move correspond to the cell size and its
characteristic relaxation time of the corresponding real polymer system. The model is designed in a way
such that the cited three basic conditions of polymer dynamics are guaranteed by construction for every
move. It can therefore be implemented as easily and as efficiently as the simplest lattice models.

Figure 4 shows a two-dimensional (hexagonal) representation of the scheme. The choice of the fcc
or hexagonal lattice is motivated by a greater number of nearest neighbours (12 resp. 6) and a wider
and smoother range of bonding angles than a standard cubic (6) or square (4) lattice. For a precise
operational definition of cell polymer dynamics the reader is referred to Ref. [34].
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Figure 4. 2D representation of a polymer on the lattice and the possible monomer moves. Black dots and bold
lines represent an allowed conformation of the chain and its monomers. Green lines and dots are acceptable moves
of end monomer (e1, e2) resp. internal monomers (i1, i2, i3). Red lines and dots (x1, x2) show forbidden moves
(From [34]).

In this algorithm, Rouse type moves dominate the dynamics for dilute solutions whereas reptation
moves dominate the dynamics at melt densities, just as expected for real polymers [5]. The shift from
Rouse dominated to reptation dominated dynamics occurs naturally upon increasing the monomer
density and without the tuning of a parameter.

Examples of moves that are rejected because they would lead to forbidden conformations are also
shown in Figure 4 (internal monomer x1, end monomer x2). Interactions are introduced by assigning
every monomer to be H or P and by adding an energy contribution Ei < 0 to the total energy for every
pair of H monomers that either occupy the same site or that occupy two nearest neighbour sites. When
trying to move an interacting hydrophobic (H) monomer, the move is only accepted if it is energetically
favourable, according to the Metropolis sampling scheme. The (dimensionless) energy difference �E

of a conformation before and after a move is calculated and the move is accepted if all other constraints
are satisfied and if min(1, exp(−�E)) < ran, where 0 ≤ ran ≤ 1 is a uniformly distributed random
number. Time is measured in Monte Carlo steps (MCS) which corresponds to NmNp trial moves, where
Nm is the total number of monomers per chain and Np the number of chains in the system.

4. DILUTE SOLUTION OF MULTIBLOCK COPOLYMERS

In the case of dilute solutions of copolymers, no intermolecular interactions are included and therefore
we may consider the properties of a single copolymer. Simulations give access to different kinds of
information. Direct visual inspection of the conformations and their evolution with time gives a first
insight into the structure and dynamics of the mesostructures as a function of the parameters. A more
quantitative analysis can be made from calculating structural properties of the simulated configurations:
radii of gyration, size of H clusters and form factors. Both the radii of gyration and the form factors
are also available from experiments. Confronting visual inspection and statistical properties allows
one to identify the signature of each conformation that is expected in an experimental measurement
(e.g. scattering experiment).

4.1 Effect of solvent quality

We first focus on the effect of the interaction energy Ei between H monomers on the overall size of the
chain. The copolymer is characterized by its radius of gyration Rg , computed as:

R2
g = 1

Nm

〈
Nm∑
i=1

(�ri − �rcm)2

〉
(2)
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Figure 5. Mean squared radii of gyration as a function of Ei , for Nm = 600 and BH = 3. Dotted line: Psub = 0.1;
Dashed line: Psub = 0.3; Full line: Psub = 0.5. Inset: Ratio � = R2
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gP versus Ei for Psub = 0.3 (From [34]).

where �ri is the position of monomer i and �rcm is the position of the center of mass of the polymer at
a given time, and 〈.〉 denotes an average over all configurations. Figure 5 shows the evolution of the
average value of the squared radius of gyration of the copolymer with the interaction energy Ei , for
chain length (Nm = 600) and H block size (BH = 3), for three values of Psub (Psub = 0.1, 0.3 and 0.5).
We observe the expected behaviour, from a swollen state with large R2

g at low values of Ei (good
solvent) to a more compact state with high solvent selectivity (poor solvent for H monomers).
Decreasing the length of the non-interacting P blocks while keeping the H block length fixed (i.e.
increasing Psub) shifts the collapsed region to weaker energies. The same effect is observed when
increasing simultaneously the lengths of interacting and non-interacting blocks while keeping Psub fixed
(not shown here), in agreement with previous findings [35].

Also form factors can be computed using the simulated configurations :

F (q) = 1

Nm

〈
Nm∑

j ,k=1

exp [i�q · (�rj − �rk)]

〉
(3)

Since the system is isotropic, the form factor can be averaged over all �q vectors of equal length, using
the scheme described in Ref. [36]. The average 〈.〉 is also performed over all configurations. We limit
the analysis of the form factor at large q to q < 2�/a, where a is the lattice spacing, as for q � 2�/a

the scattering intensity is dominated by lattice effects. We assume here that the scattering lengths of
both kinds of monomers are equal. Figure 6 shows the form factors of the chains under different solvent
conditions and for two values of Psub. At Ei = 0, the solvent is equally good for H and P monomers and
the copolymer shows a fractal dimension of 1.7 in the intermediate q-range, typical of homopolymers
in good solvent with F (q) ∝ q−1.7. For interaction energies typical of poor solvents (as determined
from the energy dependence of Rg , see Figure 5), several features can be noticed. The low q region of
F (q), for qRg 
 1, gives access to the overall size of the copolymer, using the Guinier approximation.
Figure 6 is in agreement with the observations of the evolution of Rg , with a compaction of the coil as
Ei increases, for fixed Psub: In a poor solvent the plateau is reached at larger q values (smaller values
of Rg). In the intermediate q-range, for qRg ≥ 1, one probes the internal structure of the polymer. In
particular, F (q) ∝ q−4 characterizes a compact spherical structure. A homopolymer (Psub = 1) under
poor solvent conditions is expected to collapse into such a compact spherical structure (see Figure 6).
For Psub values different from Psub = 1 (red line in Figure 6), the behaviour is different and correlations
appear at intermediate q values, which become more pronounced with increasing Ei at fixed Psub (not
shown).
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(From [34]).

The presence of correlation lengths in F (q), as shown by the shoulder at q ≈ 1, suggests the
existence of mesostructures with characteristic lengths smaller than the overall chain size Rg in poor
solvent. This observation is likely to be related to the existence of dense clusters of H monomers, as
indicated by the decreasing ratios of hydrophobic to hydrophilic radii of gyration (Figure 5). To check
this hypothesis we have identified hydrophobic clusters in the simulated conformations. For our purpose
a cluster is defined as a set of interacting H blocks. Two blocks are said to interact if any two monomers
of these blocks are nearest neighbours. This property is transitive, if block A interacts with block B and
block B with block C then all three belong to the same cluster. The aggregation number NC of a cluster
is defined as the number of H blocks belonging to this cluster.

From the cluster size distributions for different values of Psub and Ei , and for sufficiently long
chains (Nm = 600), we distinguish two main types of behaviour. For low Psub, in a poor solvent a
distribution of cluster sizes appears around a well defined average value Nc. With increasing energy Ei

the peak of the distribution becomes sharper and shifts to higher values. This is particularly clear for
Psub = 0.3 (see Figure 7). For Ei = 0.8 there are 〈Nc〉 ≈ 20 blocks in a cluster which corresponds to an



294 Collection SFN

Figure 8. Typical configurations for different substitution rates: (a) Psub = 0.3, chain of micelles; (b) Psub = 0.5
with BH = 3, tubular structure; (c) Psub = 0.5 with BH = 2, layered structure. H monomers are depicted in black,
P monomers in light gray (From [34]).

average of three H clusters per chain. For Psub = 0.1 the same general picture is observed, but with the
interaction energies shifted to higher values. Simulations with Nm = 600 and 1200 at Psub = 0.1 support
the expectation that the number of clusters is growing with the chain length and the size distribution
(aggregation number) is independent of chain length. For large values of Psub, Psub = 0.5, the cluster
size distribution is qualitatively different from small Psub. Up to Ei = 0.4 no well defined cluster is
present, beyond Ei = 0.5 almost all H blocks collapse into a single cluster. Not surprisingly, in both
cases a decrease of the probability of finding isolated H blocks with increasing interaction energy Ei is
observed.

Calculation of the radii of gyration, form factors and cluster size distributions gives information
about the influence of the solvent quality on the overall structure of the polymer coil but also on its
internal correlations. For a full understanding of the intramolecular structures in poor solvent, further
analyses have to be performed.

4.2 Intramolecular structures in poor solvent

A first insight into the intramolecular structures in poor solvent can be obtained from the direct
visualization of copolymer conformations. We notice several well-defined features, as shown in Figure 8.

For Psub ≤ 0.3, we observe the formation of intramolecular chains of micelles (a single
intramolecular micelle for short chains): The H blocks aggregate into clusters (see Figure 7) which
are surrounded by P blocks (see Figure 8a). These clusters typically are spherical or ellipsoidal, and
they are linked to each other by one or several P blocks. The number of such intramolecular clusters
increases linearly with Nm.

For Psub ≥ 0.5, when decreasing the solvent quality, the copolymer undergoes a transition from a
swollen chain to a chain containing H aggregates and then to a single cluster containing all H blocks,
no matter how long the copolymer. There are two different types of structures observed in the very poor
solvent single cluster regime with Psub = 0.5. For BH = BP = 3, upon increasing the energy there first
appears a tubular shaped single cluster (the tube may be open, torus-like or with its ends folded back
anywhere onto the tube) and for stronger energies a layered structure with a hydrophobic inner layer
(crystalline, possibly distorted and with defects), see Figure 8. The transition from tubular to layered
structure with increasing Ei proceeds via the formation of a chain of growing pieces of the layered
structure. The transition from the tubular to the layered structure is most clearly seen in simulations
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Figure 9. Partial form factor of hydrophobic monomers under poor solvent conditions. From bottom to top:
(a) Psub = 0.3, Nm = 600, BH = 3, BP = 7, Ei = 0.9 (chain of micelles); (b) Psub = 0.5, Nm = 600, BH = 3,
BP = 3, Ei = 0.7 (tubular structure); (c) Psub = 0.5, Nm = 600, BH = 2, BP = 2, Ei = 0.7 (layered structure);
(d) Psub = 0.625, Nm = 600, BH = 5, BP = 3, Ei = 0.8 (layered structure with rough surfaces and defects). Solid
line: analytical form factor of a 2d-platelet. Note that the curves are normalized by NH and shifted vertically by one
order of magnitude for clarity (From [34]).

using a slowly increasing energy ramp. The formation of a tubular and then a layered structure upon
increasing the energy is also observed for BH = 5 and BP = 3. On the other hand, for BH = BP = 2,
there is no tubular structure and the layered cluster is formed directly with poorer solvent quality. In this
case the layered structure is much more regular and the surfaces are much smoother than the previous
ones.

A more detailed analysis of the intramolecular structures can be obtained from the partial structure
factors FH (q) (see Figure 9), Fcluster (q) (not shown) and FP (q) (see Figure 10). FH (q) (FP (q)) gives
information about the correlations between all H (all P) monomers, whereas Fcluster (q) correlates H
monomers within the same cluster and can be used for characterizing the shapes and sizes of the H
clusters (see Sec. 4.1). Let us first focus on the properties of FH (q) (Figure 9) and Fcluster (q). For
small q values, FH (q) reaches a plateau, which corresponds to the Guinier regime where qRg 
 1. For
intermediate q values, FH (q) tends to behave as q−4, which stands for a compact object with a sharp
interface (well defined density drop). This feature is independent of Psub and in this range of q values,
FH (q) and Fcluster (q) can be superimposed (adjusting the scales appropriately). Note that for Psub > 0.3,
FH (q) ≈ Fcluster (q) as most H blocks belong to a single cluster. For Psub = 0.3, Fcluster (q) can be fitted
to the analytical form factor of a polydisperse sphere of radius Rs = 1.85 (not shown, see [34]). For
lower q values, the behaviours of FH (q) and Fcluster (q) depart from each other for Psub = 0.3: FH (q)
shows a well-defined correlation distance at qc ≈ 1.2 (≈ 5.2 lattice units in real space), which becomes
more pronounced for longer chains and disappears for short chains (single intramolecular micelle).
Therefore this correlation peak reflects the average distance between H clusters: It is absent in the case
of a single cluster and increases when the number of clusters and hence the number of inter-cluster
distances increases. For Psub = 0.5 and BH = 3 (see Figure 9b), we observe an inflexion point around
q ≈ 1.3, which turns into a short plateau for longer chains (Nm = 1200, not shown here). As explained
above (and detailed in Sec. 4.1), there is a single cluster of H monomers and this inflexion point might
correspond to the mean distance between monomers on opposite sides of closed tubular conformations,
predominant in this case. This hypothesis is supported by the fact that the intensity at which the inflexion
occurs increases with increasing Ei , when the structure becomes better defined. For Psub = 0.5 and
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Figure 10. Partial form factors of hydrophilic monomers in poor solvent conditions. From bottom to top:
(a) Psub = 0.3, Nm = 600, BH = 3, BP = 7, Ei = 0.9 (chain of micelles); (b) Psub = 0.5, Nm = 600, BH = 3,
BP = 3, Ei = 0.7 (tubular shape); (c) Psub = 0.5, Nm = 600, BH = 2, BP = 2, Ei = 0.7 (layered structure); (d)
Psub = 0.625, Nm = 600, BH = 5, BP = 3, Ei = 0.8 (layered structure with rough surfaces). Note that curves are
normalized by NH and shifted vertically for clarity (From [34]).

BH = 2, FH (q) becomes quite different with the onset of a q−2 behaviour at intermediate q values,
which is typical of two-dimensional structures. For higher q, the structure is compact with a q−4 slope.
The H blocks form a compact two-dimensional structure. The same kind of behaviour is observed for
Psub = 0.625 with BH = 5 and BP = 3, however the onset of the q−2 behaviour is not observed for two
reasons: For the same value of Nm, the layer is thicker and its surface area is smaller than for BH = 2,
which reduces the range of the q−2 behaviour. At the same time, the surface is much rougher and shows
more defects for Psub = 0.625, which leads to an effective surface fractal dimension dg ≥ 2.

If we now move on to the contribution from the P monomers (Figure 10), the salient feature of FP (q)
is a peak at a qP value between 1 and 2, depending on Psub. The most straightforward case to interpret
is the two-dimensional platelet of H blocks, as found for Psub = 0.5 with BH = 2 and Psub = 0.625
with BH = 5. Due to connectivity constraints, the P blocks must coat the surfaces of the H platelet
and consequently, FP (q) has a scattering function similar to that of stacked lamellae. The position and
widths of the peak is in this case related to the spacing d between two consecutive lamellae [37]. For
the other two cases, the situation is quite different. The distances dp = 2�

qP
can be associated with the

tube diameter and the sphere diameter of the hole due to the presence of the H core (see [34] for more
details).

4.3 Overview of the behaviour in dilute solution

Comparing the statistical properties extracted from the simulations with the direct visualization of the
intramolecular structures, we are able to give an accurate description of the conformations of single
multiblock copolymers as a function of solvent quality in terms of the form factors.

For weak interaction energies, the copolymer trivially has the properties of a swollen coil, as
shown by F (q) ∝ q−1.7. The transition from good to poor solvent is accompanied by the formation
of fluctuating aggregates due to the attractive interaction between H monomers. With increasing values
of Ei , after the individual collapse of the hydrophobic blocks different intramolecular structures develop.
This is shown in the phase diagram, Figure 11, as a function of energy Ei and hydrophilic block length
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Figure 11. Phase diagram of the intramolecular structures of multiblock copolymers as a function of Ei and 1
BP

, for
BH = 3. Symbols denote simulated systems, with equilibration at constant energy (solid symbols) or with an energy
ramp (open symbol). Copolymers in good solvent are denoted as triangles, pearl necklaces of micelles as dots,
tubular structures as squares and layered structures as diamonds. Dashed lines indicate the boundaries between the
phases corresponding to the different structures. Snapshots show typical conformations observed in the simulations.
The arrow points in the direction where a simultaneous increase of Ei and BP maintains the energy-entropy balance
necessary for stabilizing a given structure (From [34]).

BP . With increasingly poorer solvent the qualitatively different conformations encountered are, in order,
chains of micelles (see region A in Figure 11), tubular (region B) and layered structures (region C). The
diagram corresponds to a given value of BH (BH = 3 in Figure 11), but it is similar for other values of
BH . The parameters Ei and BP (or 1

BP
in the diagram) are used, because the observed structures result

from a balance between energy and entropy: Ei governs the energy contribution of the interacting H
monomers, while BP is a measure for the configurational entropy of the P blocks. Different values of
BH change the size of the elementary H cores, but do not change the principle of the energy-entropy
balance responsible for the different structures.

In region A of Figure 11, intramolecular pearl necklaces of core-shell micelles are formed, with
well-defined core size of the micelles. The size of the pearls are stabilized by the P shells: Increasing
the size of the H clusters, for a given Ei and BP , would lead to an important entropy penalty due to
the crowding of the P shell; decreasing the size of the H cores would induce an energy loss that is not
compensated by a sufficient entropy gain. As a consequence, a simultaneous increase of Ei and BP

in region A (see the arrow) keeps the topology of the structure unchanged: strengthening Ei tends to
increase the size of the H cores, increasing the length of the P blocks reinforces the protective corona of
the micelles and tends to decrease the core size.

In region B, the formation of tubular-shaped structures with a hydrophobic core is observed. Such
a tubular core is energetically more favourable than the spherical cores of region A but it has less
surface area available for the hydrophobic corona. With respect to region A, region B corresponds either
to copolymers with shorter P blocks (larger 1

BP
) thus reducing the entropic contribution, or to larger

energies Ei , or both. As in region A, the length of the copolymer has no influence on the structure of the
tube. The energy Ei does have an effect on the detailed shape of the tube: for smaller values the tube
and the corona have a spherical cross-section whereas for larger energies small parts of the tube locally
begin to form pieces of layered domains, as a precursor of the third morphology.

In region C one observes two-dimensional disk-like layered structures with an inner H layer and two
outer P layers. With respect to B this morphology requires a further increase of the energy Ei and/or
a decrease of the length of the hydrophilic blocks BH . Besides the data point for BH = 3 shown in
Figure 11 similar structures were obtained for Ei ≈ 0.7 for BH = BP = 2 and for BH = 5,BP = 3. The
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most perfect crystalline structures were obtained for BH = BP = 2 whereas for BH = 5 and BP = 3
the resulting crystal is less perfect and with a rougher surface. This difference can be explained by the
very short H and P blocks for BH = BP = 2, which impose a strong restriction on the hydrophobic
monomers during the formation of the layer.

Simulations with other values of BH confirm the morphologies and their dependence on the
parameters. The chain of transitions of aggregates → tubular shape → disk-like layered structure with
increasing Ei is not only observed for BH = BP = 3 but also for BH = 3 and BP = 5, with energies
Ei = 0.5 and Ei = 0.7, respectively. The different morphologies and their order in the phase diagram
can be understood as a result of the competition between entropy and energy: starting from the origin,
the same morphological changes are expected from an entropy decrease (horizontally) and from an
energy increase (vertically).

The different morphologies found in our simulations can be compared with the theoretical work
based on scaling arguments by Borisov and Zhulina [38] on amphiphilic graft copolymers with
hydrophobic backbone: They predict the formation of analogous structures (necklace of star-like or
crew-cut micelles, cylindrical worm-like micelle and lamellar structure) depending on the degree of
branching of the copolymer and the solvent quality. Despite the different connectivity constraints for the
two polymers, sparse grafting may be compared to high substitution rate and dense grafting corresponds
to multiblock copolymers with few associating monomers. On the experimental side, different studies on
multiblock linear copolymers and graft copolymers revealed the formation of intramolecular core-shell
micelles, chains of micelles and rod-like micelles (see [34] for more details), in qualitative agreement
with our findings.

5. SEMIDILUTE SOLUTION OF MULTIBLOCK COPOLYMERS

In semidilute solution both intra- and intermolecular interactions are accounted for. The concentration �
is defined as the occupied fraction of the total available volume which, because of the double occupancy,
is twice the number of available lattice sites. Simulations were performed on monodisperse many-chain
systems, for two substitution ratios, Psub = 0.2 and Psub = 0.5, for different concentrations � ranging
from 0.01 to 0.5 and for different interaction energies Ei . This enables a broad range of behaviours to be
encompassed, from rather dilute and good solvent conditions, to concentrated and strongly interacting
systems. Also different chain lengths Nm and numbers Np are used as they give insight into their
influence on phase behaviour (influence of Nm on percolation threshold) and finite-size effects (influence
of the box size at a given concentration). For poorly substituted copolymers micelles are formed, which
may be either intra- or intermolecular depending on concentration. For the higher substitution ratio
(Psub = 0.5), larger tubular structures form which grow with concentration. Also gelation is observed.
The structure of the observed network strongly depends on Psub: for poorly substituted copolymers, the
connection is through the cross-linked micelles while for the highly substituted chains, the connection
is through the extended hydrophobic cores. The interplay between gelation and phase separation of the
hydrophobic monomers is observed in the case of poorly substituted copolymers. More details about
this work can be found in [39].
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