Development of extraction and analytical methods by GC-MS2 and LC-MS2 in honey for 3 pesticide families (nicotinoids, pyrethroids and pyrazoles)
Delphine Paradis, Géraldine Bérail, Jean-Marc Bonmatin, Xavier Hirardot, Benjamin Poirot, Luc Belzunces

To cite this version:
Delphine Paradis, Géraldine Bérail, Jean-Marc Bonmatin, Xavier Hirardot, Benjamin Poirot, et al.. Development of extraction and analytical methods by GC-MS2 and LC-MS2 in honey for 3 pesticide families (nicotinoids, pyrethroids and pyrazoles). Annual Meeting of the Doctoral School in Biological and Health Sciences, Jun 2011, Marseille, France. 1 p., 2011. hal-02805718

HAL Id: hal-02805718
https://hal.inrae.fr/hal-02805718
Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Introduction

Honeybees play an essential role in pollination (75% of entomofaunistic pollination). They are also considered bioindicators because of their high sensitivity to pesticides. Since a dozen years, colonies worldwide have collapsed. Pesticides are highly suspected to participate in the collapse. But, analytical methods able to detect very low amounts of these molecules have to be developed.

The aim of this work was to develop extraction and analytical methods in honey and enabling quantification of 25 pesticides belonging to 3 chemical families.

Methods validation

To be validated analytically and statistically, methods have to be specific, reliable, accurate, repeatable and reproducible. (Decision 2002/657/CE)

- Mass spectrometry is performed in SRM (Selective Reaction Monitoring) mode.
- Each ion is characterized by a quantification transition and a confirmation transition.
- The graphs show the chromatographic signal \[\text{signal} = f(t)\] and the mass spectrum \[\text{intensity} = f(m/z)\]

Conclusions

- Specific methods for the 4 types of honey tested (oilseed rape, acacia, chestnut and “all flowers”)
- Recovery rates within the SANCO limits 2011
- Quantification at values of 1 ng/g for 21 pesticides and 2 ng/g for 4 pesticides
- Methods used in routine in an analysis laboratory

Recovery yields

- The QuEChERS extraction was repeated twice at each spiking level (0.5, 2 and 10 ng/g) and each sample was injected twice.
- Mean yields were typically between 90 and 120% and CV were < 30%. Average yields are shown on the graph below.

Perspectives

- Analysis of more than 300 samples collected in Vendée during a 2009-2010 field study
- Development of similar methods in other hive products (pollen and bees)
- Availability of these methods for the study of pesticide impact on bee mortalities