

Advances in DNA markers in cherry: from the S locus to a genome wide array

Amy Iezzoni, Elisabeth Dirlewanger

▶ To cite this version:

Amy Iezzoni, Elisabeth Dirlewanger. Advances in DNA markers in cherry: from the S locus to a genome wide array. 7. International Cherry Symposium, International Society for Horticultural Science (ISHS). INT., Jun 2013, Plasencia, Spain. hal-02806008

HAL Id: hal-02806008 https://hal.inrae.fr/hal-02806008

Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Advances in DNA markers in cherry: From the S-locus to a genome-wide array

Amy lezzoni

Michigan State University

Presented by: Elisabeth Dirlewanger

INRA - Bordeaux

DNA markers in sweet cherry

Self-incompatibility locus

- 34 S-alleles identified to date
- Within these S-alleles, 6 pollen-part mutants (SFB: S haplotype-specific F-box protein)
 - & 5 stylar part mutants (S-RNase) were identified

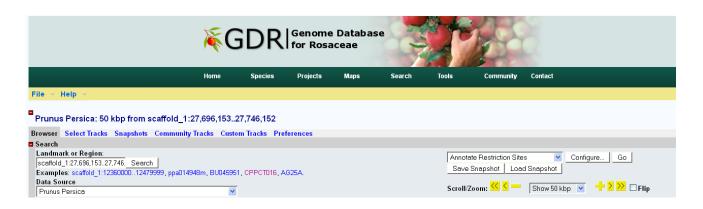
At the same time, polymorphic genome-wide markers for cherry were not available.

Advances in genome-wide DNA markers for cherry were possible due to the available peach genome sequence

nature.com ► journal home ► current issue ► article ► full text

NATURE GENETICS | ARTICLE OPEN

日本語要約


The high-quality draft genome of peach (*Prunus* persica) identifies unique patterns of genetic diversity, domestication and genome evolution

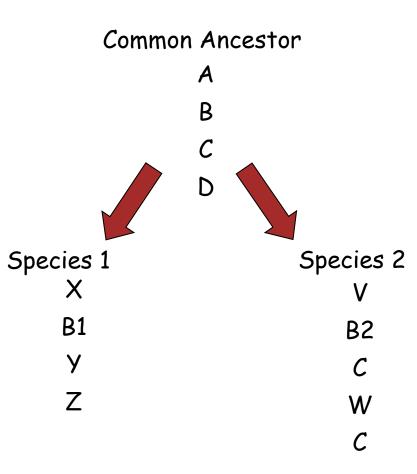
The International Peach Genome Initiative, Ignazio Verde, Albert G Abbott, Simone Scalabrin, Sook Jung, Shengqiang Shu, Fabio Marroni, Tatyana Zhebentyayeva, Maria Teresa Dettori, Jane Grimwood, Federica Cattonaro, Andrea Zuccolo, Laura Rossini, Jerry Jenkins, Elisa Vendramin, Lee A Meisel, Veronique Decroocq, Bryon Sosinski, Simon Prochnik, Therese Mitros, Alberto Policriti, Guido Cipriani, Luca Dondini, Stephen Ficklin, David M Goodstein

et al.

Outline

- Rosaceae COS markers
- High Density SNP markers
- Application Why are some cherry fruit large and some small?

Cherry markers aligned to the peach genome sequence (www.rosaceae.org)



Conserved Ortholog Set (COS) markers

- Orthologous: common evolutionary origin, conservation in sequence
- Single copy

Strategy used for the identification of the Rosaceae- COS

The COS set was comprised of Rosaceae single copy genes (ESTs) that were orthologous to the single copy genes in the Arabidopsis genome.

627 RosCOS were identified

To identify RosCOS polymorphic in sweet cherry, all these RosCOS were sequenced from a diverse panel of sweet cherry cultivars.

Emperor Francis Krupnoplodnaya

Lambert Cristobalina

Regina New York 54

282 polymorphic sweet cherry RosCOS were identified

BMC Genomics

Research article

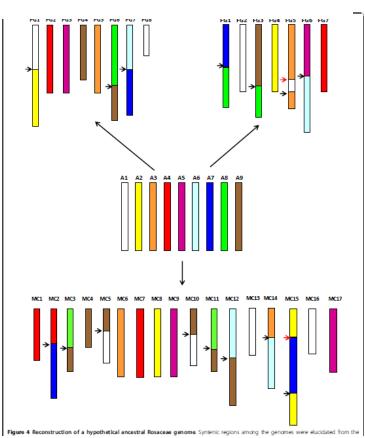
Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers

Antonio Cabrera¹, Alex Kozik², Werner Howad³, Pere Arus³, Amy F Iezzoni⁴ and Esther van der Knaap*¹

RESEARCH ARTICLE

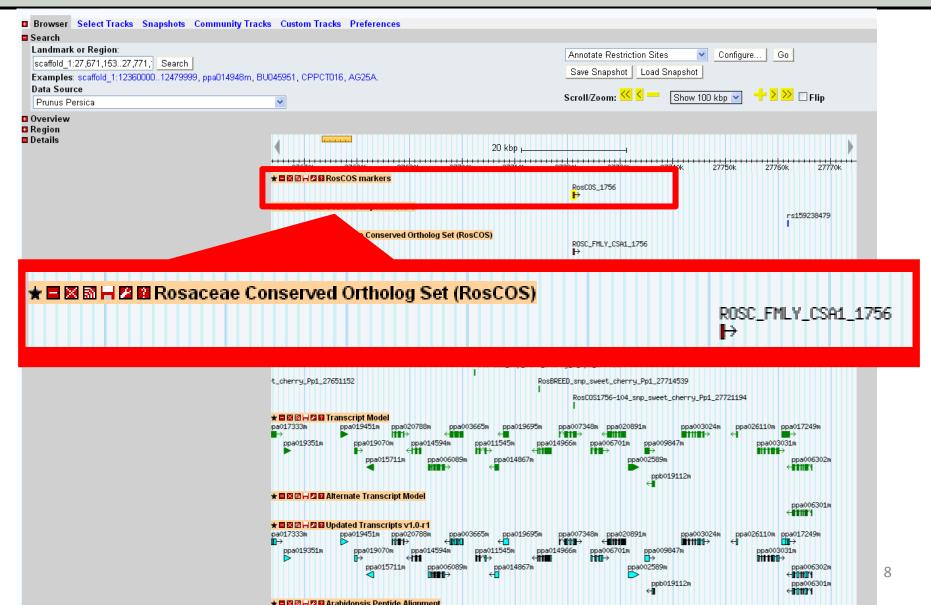
Open Access

Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family


Eudald Illa¹, Daniel J Sargent², Elena Lopez Girona², Jill Bushakra³, Alessandro Cestaro⁴, Ross Crowhurst⁵, Massimo Pindo⁴, Antonio Cabrera⁶, Esther van der Knaap⁶, Amy lezzoni⁷, Susan Gardiner³, Riccardo Velasco⁴, Pere Arús¹, David Chagné³, Michela Troggio^{4*}

Based on the position of 129 orthologous markers

Prunus


Hypothetical ancestral Rosaceae genome : 9 chromosomes

Malus

Fragaria

Gbrowse view of the peach sequence with RosCOS highlighted

Outline

- Rosaceae COS markers
- High Density SNP markers
- Application Why some cherry fruit are large and some fruit are small.

Enabling marker-assisted breeding in Rosaceae

<u>MSU</u>

Amy lezzoni (PD)

Jim Hancock Dechun Wang Cholani Weebadde

Univ. of Arkansas
John Clark

WSU

Cameron Peace
Dorrie Main
Kate Evans
Karina Gallardo
Raymond Jussaume
Vicki McCracken
Nnadozie Oraguzie
Mykel Taylor

Univ. of Minnesota

Jim Luby

Chengyan Yue

Oregon State Univ. Alexandra Stone Kenong Xu
Clemson

Clemson
Ksenija Gasic
Gregory Reighard

Cornell

Susan Brown

Texas A&M Dave Byrne

Univ. of CA-Davis
Tom Gradziel
Carlos Crisosto

Univ. of New Hamp.
Tom Davis

USDA-ARS

Nahla Bassil

Gennaro Fazio

Chad Finn

Plant Research Intl,
Netherlands
Eric van de Weg

Marco Bink

Genome Wide SNP arrays

 Genome-scanning SNP arrays developed and utilized for apple (8K), peach (9K) and cherry (6K) by international RosBREED-led efforts

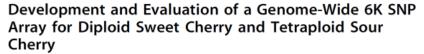
OPEN & ACCESS Freely available online

PLOS one

Genome-Wide SNP Detection, Validation, and Development of an 8K SNP Array for Apple

David Chagné¹, Ross N. Crowhurst², Michela Troggio³, Mark W. Davey⁴, Barbara Gilmore⁵, Cindy Lawley⁶, Stijn Vanderzande⁴, Roger P. Hellens², Satish Kumar⁷, Alessandro Cestaro³, Riccardo Velasco³, Dorrie Main⁶, Jasper D. Rees⁹, Amy lezzoni¹⁰, Todd Mockler¹¹, Larry Wilhelm¹², Eric Van de Weg¹³, Susan E. Gardiner⁷, Nahla Bassil⁵, Cameron Peace⁶

OPEN @ ACCESS Freely available online



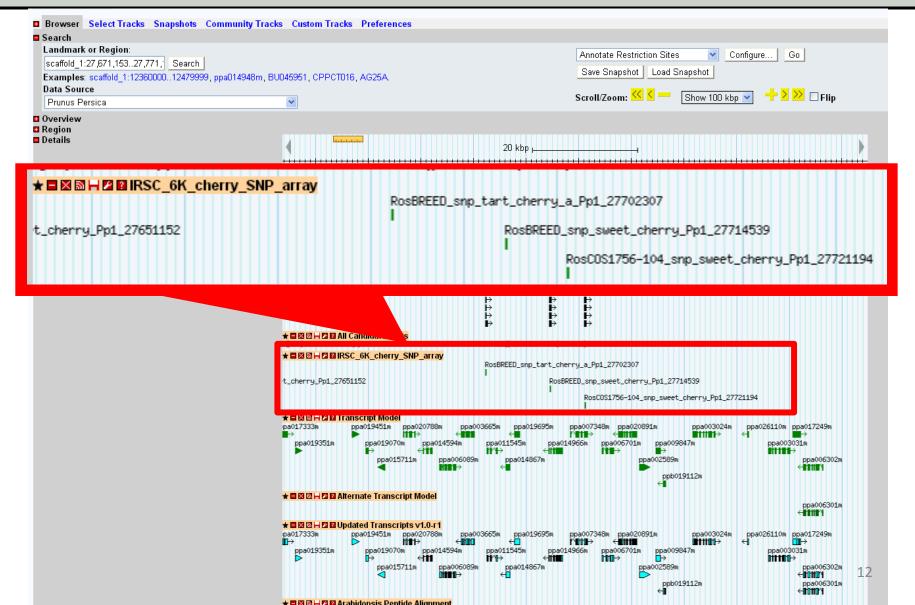
Development and Evaluation of a 9K SNP Array for Peach by Internationally Coordinated SNP Detection and Validation in Breeding Germplasm

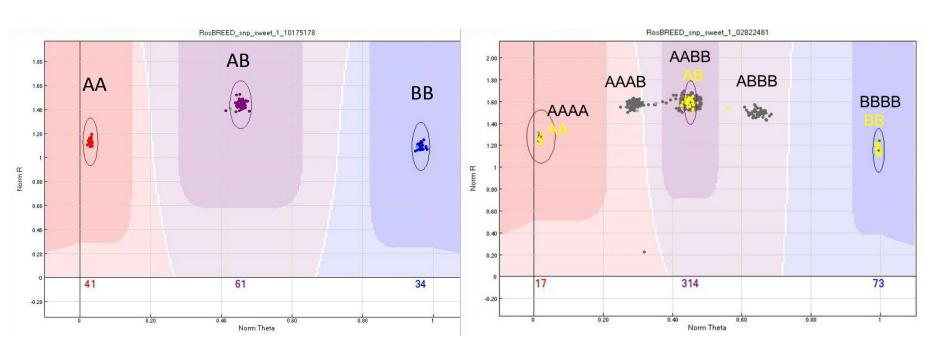
Ignazio Verde¹*, Nahla Bassii²*, Simone Scalabrin³, Barbara Gilmore², Cynthia T. Lawley⁴, Ksenija Gasic⁵, Diego Micheletti⁶, Umesh R. Rosyara⁷, Federica Cattonaro³, Elisa Vendramin¹, Dorrie Main⁸, Valeria Aramini¹, Andrea L. Blas⁶, Todd C. Mockler^{9,10}, Douglas W. Bryant^{9,11}, Larry Wilhelm¹², Michela Troggio¹³, Bryon Sosinski¹⁴, Maria José Aranzana⁶, Pere Arús⁶, Amy lezzoni⁷, Michele Morgante^{3,15}, Cameron Peace⁸*

OPEN ACCESS Freely available online

Cameron Peace¹*, Nahla Bassil², Dorrie Main¹, Stephen Ficklin¹, Umesh R. Rosyara³, Travis Stegmeir³, Audrey Sebolt³, Barbara Gilmore², Cindy Lawley⁴, Todd C. Mockler⁵, Douglas W. Bryant^{5,6}, Larry Wilhelm⁷, Amy Jezzoni³

1 Department of Horticulture, Washington State University, Pullman, Washington, United States of America, 2 USDA-ARS, National Clonal Germplasm Repository, Corvallis, Oregon, United States of America, 3 Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America, 4 Illumina Inc., Hayward, California, United States of America, 5 The Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America, 6 Intuitive Genomics, Inc., St. Louis, Missouri, United States of America, 7 Oregon Health Sciences University, Portland, Oregon, United States of America, 10 Company (Company), Portland, Oregon, United States of America, 10 Company (Company), Portland, Oregon, United States of America, 10 Company, Portland, Oregon, United States, 10 Company, Portland, Portland, Oregon, United States, 10 Company, Portland, Portland, Oregon, United States, 10 Company, Portland, Portland, Portland, Portland, Oregon, United States, 10 Company, Portland, P

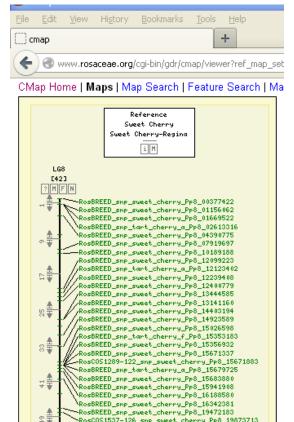

National Institute of Food and Agriculture



Gbrowse view of the peach sequence with the RosBREED SNPs highlighted

RosBREED Cherry 6K SNP Array v1 Quality-controlled genotypic data

Michigan State University cherry: genetics and breeding team



Construction and Comparative Analyses of Highly Dense Linkage Maps of Two Sweet Cherry Intra-Specific Progenies of Commercial Cultivars

Carolina Klagges^{1®}, José Antonio Campoy^{2®}, José Quero-García², Alejandra Guzmán³, Levi Mansur³, Eduardo Gratacós³, Herman Silva⁴, Umesh R. Rosyara⁵, Amy Iezzoni⁵, Lee A. Meisel^{1,6*}, Elisabeth Dirlewanger^{2*}

Regina x Lapins

(687 SNPs mapped)

Black Tartarian x Kordia

(723 SNPs mapped)

RNA based cherry SNPs

Koepke et al. BMC Genomics 2012, 13:18 http://www.biomedcentral.com/1471-2164/13/18

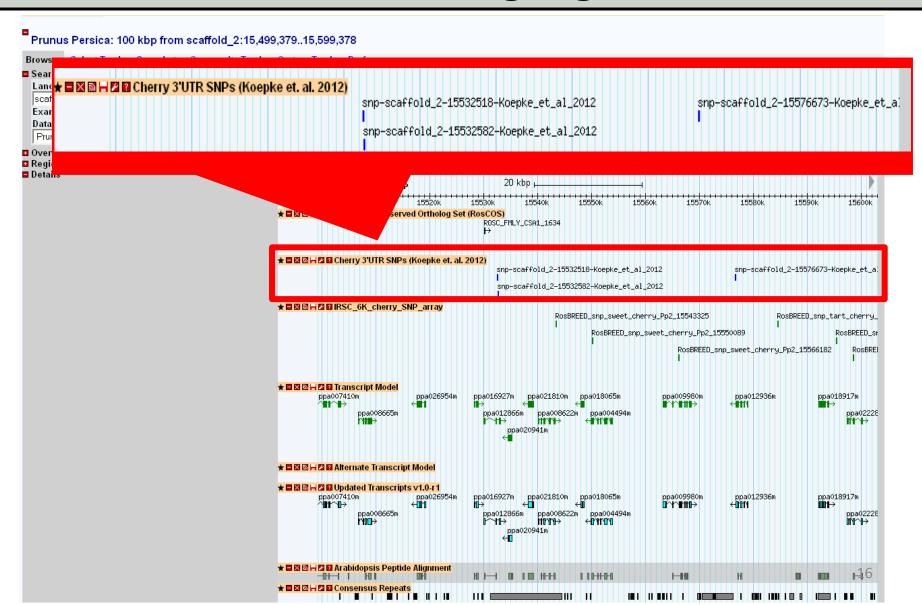
METHODOLOGY ARTICLE

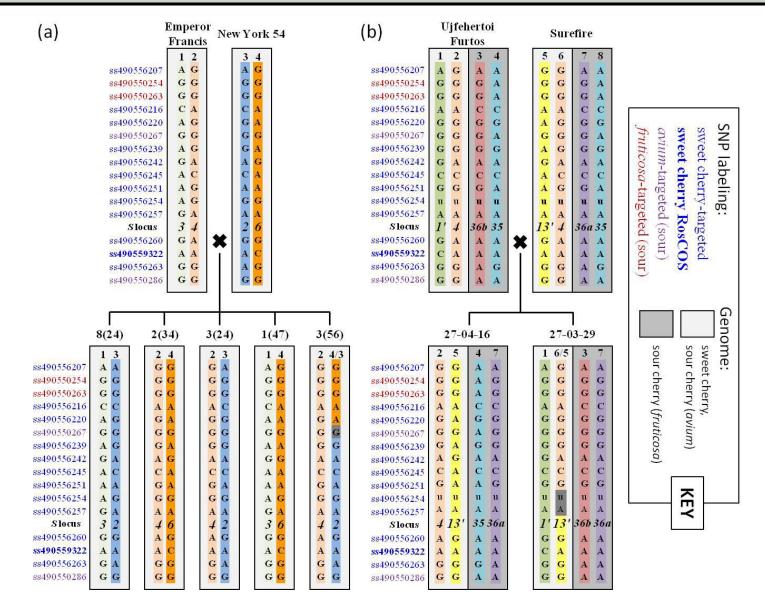
Open Access

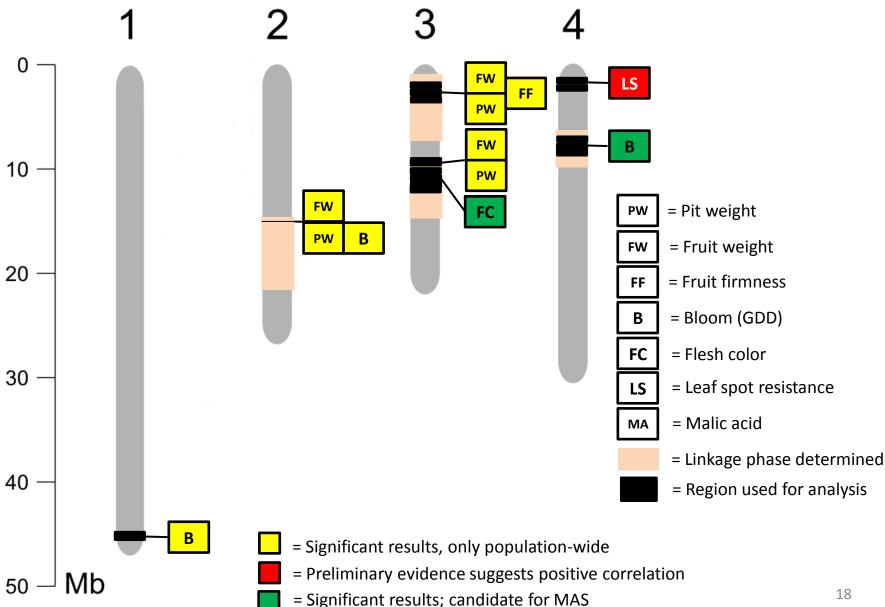
Rapid gene-based SNP and haplotype marker development in non-model eukaryotes using 3'UTR sequencing

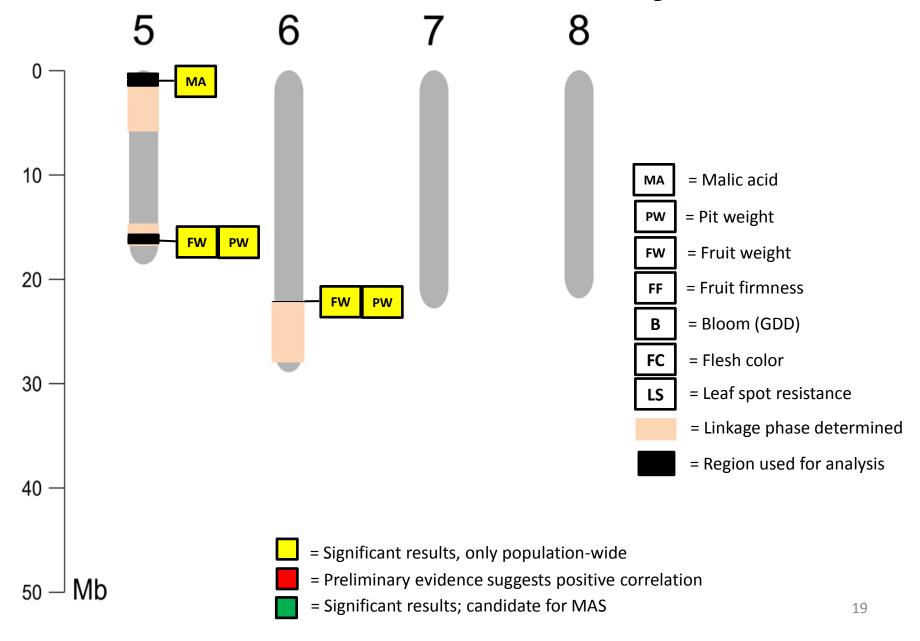
Tyson Koepke¹, Scott Schaeffer¹, Vandhana Krishnan², Derick Jiwan¹, Artemus Harper¹, Matthew Whiting³, Nnadozie Oraquzie³ and Amit Dhingra^{1*}

RNAseq Bing / Rainier



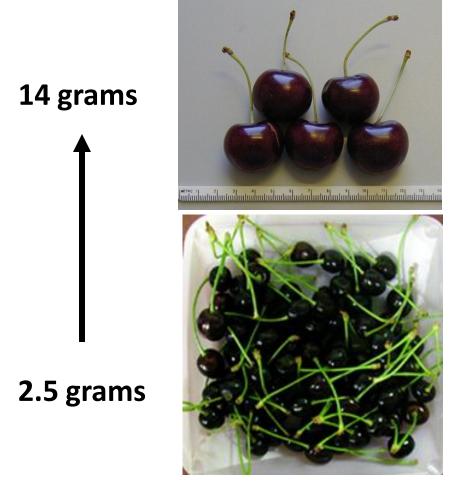



Gbrowse view of the peach sequence with the 3' UTR SNPs highlighted


Progress in sour cherry genetics

QTL verified in sour cherry: LG 1-4

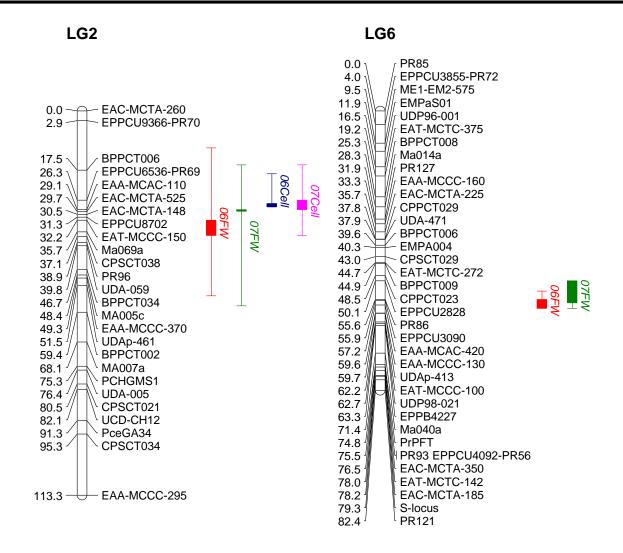
QTL verified in sour cherry: LG 5-8


Outline

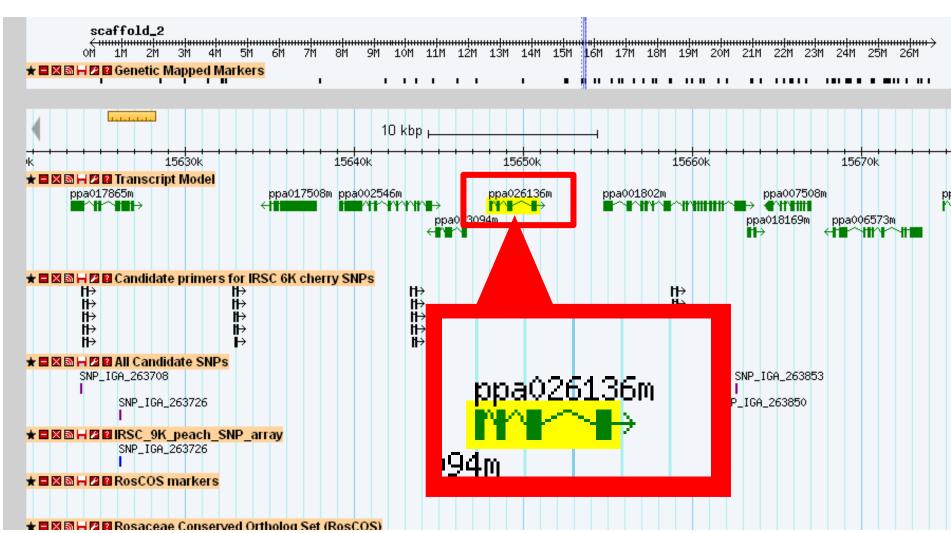
- Rosaceae COS markers
- High Density SNP markers
- Application Why some cherry fruit are large and some fruit are small?

Relative Contribution of Fruit Size Components (Olmstead et al. 2007)

Selah



74% increase in cell number

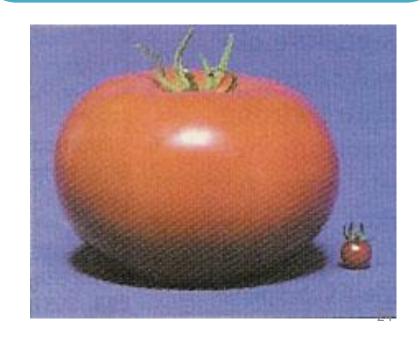

26% increase in cell size

NY54

Two fruit size QTLs were identified: LG2 and LG6

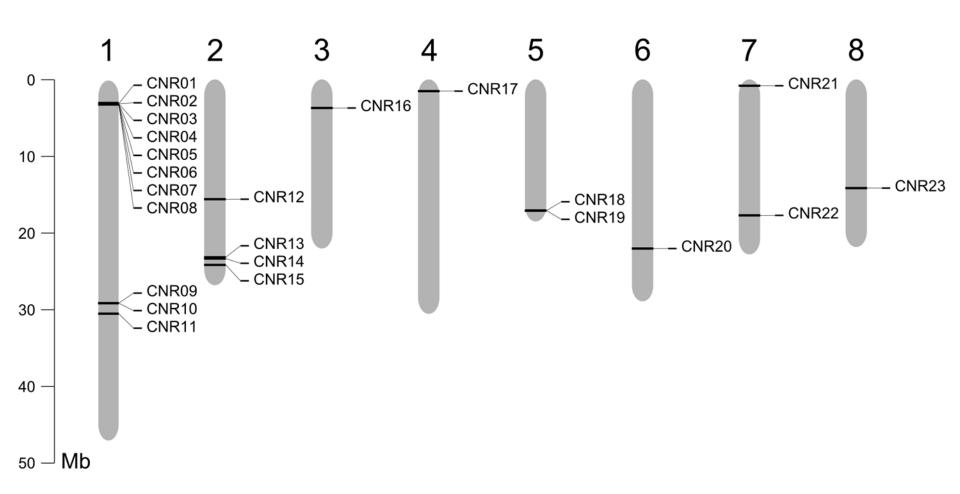
Gbrowse view of the peach sequence for the G2 fruit size QTL region

Tomato: fw2.2

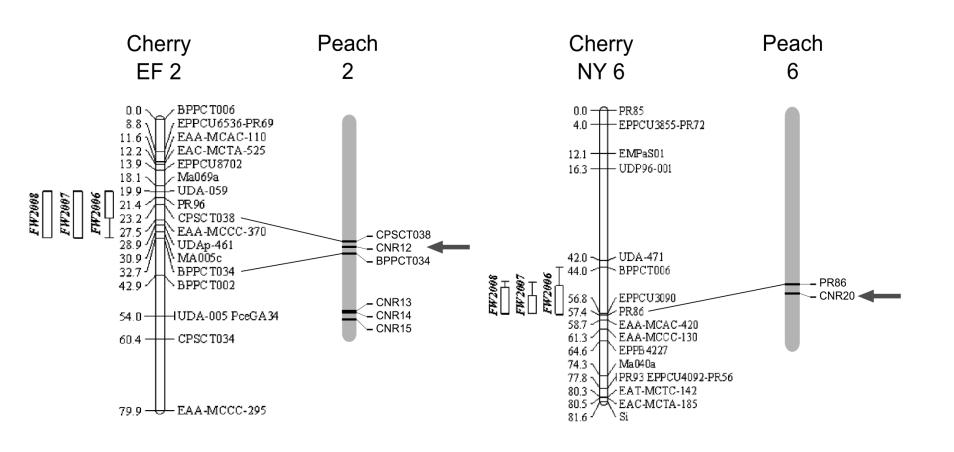

fw2.2: A Quantitative Trait Locus Key to the Evolution of Tomato Fruit Size

Anne Frary, 1* T. Clint Nesbitt, 1* Amy Frary, 1†
Silvana Grandillo, 1 Esther van der Knaap, 1 Bin Cong, 1
Jiping Liu, 1 Jaroslaw Meller, 2 Ron Elber, 2 Kevin B. Alpert, 1
Steven D. Tanksley 18

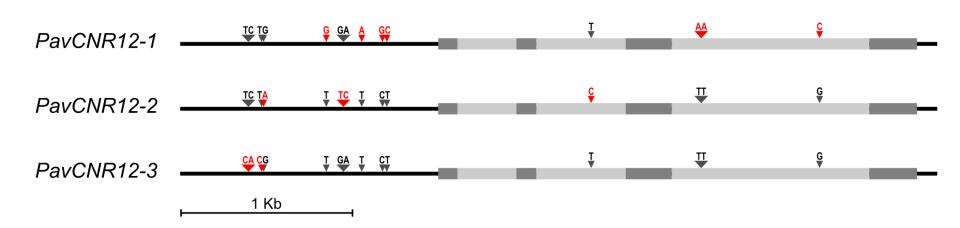
Domestication of many plants has correlated with dramatic increases in fruit size. In tomato, one quantitative trait locus (QTL), fw2.2, was responsible for a large step in this process. When transformed into large-fruited cultivars, a cosmid derived from the fw2.2 region of a small-fruited wild species reduced fruit size by the predicted amount and had the gene action expected for fw2.2. The cause of the QTL effect is a single gene, ORFX, that is expressed early in floral development, controls carpel cell number, and has a sequence suggesting structural similarity to the human oncogene c-H-ras p21. Alterations in fruit size, imparted by fw2.2 alleles, are most likely due to changes in regulation rather than in the sequence and structure of the encoded protein.


Tomato and cherry fruit are both enlarged ovaries

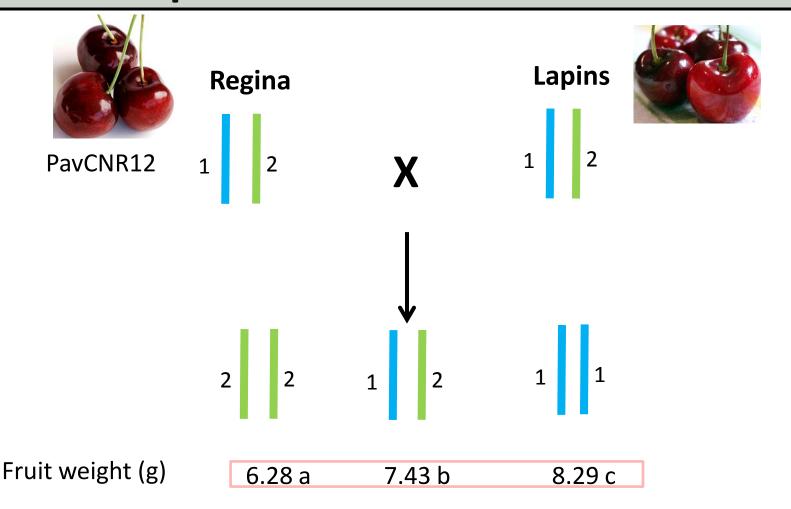
A fruit size gene was discovered in tomato that is a regulator of cell division



23 cell number regulator (CNR) genes were identified in the peach genome sequence



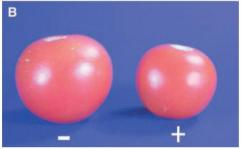
Three sweet cherry PavCNR12 alleles were identified that were differentiated by 14 SNPs



Three sweet cherry PavCNR12 alleles were identified that were differentiated by 14 SNPs

Mean fruit weight and cell number based on Group 2 *PavCNR12* allelic variants

Cell number regulator genes in *Prunus* provide candidate genes for the control of fruit size in sweet and sour cherry


- P. De Franceschi · T. Stegmeir · A. Cabrera · E. van der Knaap ·
- U. R. Rosyara · A. M. Sebolt · L. Dondini · E. Dirlewanger ·
- J. Quero-Garcia · J. A. Campoy · A. F. Iezzoni

Mol Breeding 2013

Frary et al. 2000. Science

Fig. 1. (A) Fruit size extremes in the genus *Lycopersicon*. On the left is a fruit from the wild tomato species *L. pimpinellifolium*, which like all other wild tomato species, bears very small fruit. On the right is a fruit from *L. esculentum* cv Giant Red, bred to produce extremely large tomatoes. (B) Phenotypic effect of the *fw2.2* transgene in the cultivar Mogeor. Fruit are from R1 progeny of fw107 segregating for the presence (+) or absence (-) of cos50 containing the small-fruit allele.

Fw2.2 – Prunus avium CNR12 & 16 have a common genetic basis, and possibly a common role in fleshy fruit growth & development

Conclusions

- Genome-wide polymorphic DNA markers are available for cherry
- The peach physical map locations for all these markers are known
- The genetic linkage map locations for many of these markers are known
- This information is publically available and "just a click away" on the Genome Database Rosaceae (<u>www.rosaceae.org</u>)
- This genetic knowledge will enable researchers to determine the genetic basis of trait variation in cherry

Acknowledgements

Travis Stegmeir Audrey Sebolt Umesh Rosyara

Esther van der Knaap Antonio Cabrera

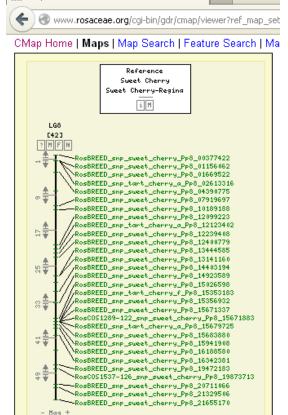
Paolo De Franceschi Luca Dondini

University of Bologna, Italy

Jose Antonio Campoy Elisabeth Dirlewanger Jose Quero-Garcia

www.rosaceae.org

Dorrie Main & Sook Jung


United States Department of Agriculture National Institute of Food and Agriculture

Construction and Comparative Analyses of Highly Dense Linkage Maps of Two Sweet Cherry Intra-Specific Progenies of Commercial Cultivars

Carolina Klagges^{1®}, José Antonio Campoy^{2®}, José Quero-García², Alejandra Guzmán³, Levi Mansur³, Eduardo Gratacós³, Herman Silva⁴, Umesh R. Rosyara⁵, Amy lezzoni⁵, Lee A. Meisel^{1,6*}, Elisabeth Dirlewanger^{2*}

Regina x Lapins

Number of	BT	384
markers	K	275
	$BT \times K$	723
	R	335
	L	247
	R×L	687
Size (cM)	BT	719
	K	788
	$BT \times K$	753
	R	619
	L	610
	R×L	640
	ВТ	1,9
Average	K	3,0
marker	$BT \times K$	1,1
distance	R	1,8
(cM)	L	2,5
	R×L	0,9

Black Tartarian x Attika

Table 1. Numbers of RosCOS and RosBREED Illumina SNP markers polymorphic in sweet cherry and average numbers of polymorphic RosBREED SNP markers based on the peach physical map (Mb) and sweet cherry genetic maps (cM). Values are presented for each of the eight *Prunus* linkage groups.

-1		4	b	
-1	4		L	

#*							
	Linkage	Physical Physical	Genetic	Number of	Number of	Average	Average
	Group	length	1ength	polymorphic	polymorphic	physical	genetic
		(Mb) ^a	$(cM)^b$	RosCOSc	RosBREED	distance	distance
					$SNPs^d$	between	between
						RosBREED	RosBREED
						SNPs (kb)	SNPs (cM)
	1	46.88	189	71	359 (42)	130	0.53
	2	26.81	90	19	204 (17)	131	0.44
	3	22.02	102	29	203 (14)	108	0.50
	4	30.53	78	27	222 (26)	138	0.35
	5	18.50	68	29	184 (33)	101	0.37
	6	28.90	120	43	228 (30)	127	0.53
	7	22.79	72	24	199 (22)	114	0.36
	8	21.83	91	26	226 (19)	97	0.40
	TOTAL	218.26	788	268	1825 (203)	120	0.43
				·	·	•	

^a From Verde et al. (2013)

b Sweet cherry genetic map length from <u>Klagges</u> et al. (2013). The longest <u>cM</u> length reported is presented.

[©] From Cabrara et al. (2012)

d From Peace et al. (2012). Numbers in parentheses are totals from RosCOS SNPs derived from sweet cherry and included in the first number.