

Inference for diffusions with small diffusions coefficient. Application to epidemics

Romain Guy, Catherine Laredo, Elisabeta Vergu

▶ To cite this version:

Romain Guy, Catherine Laredo, Elisabeta Vergu. Inference for diffusions with small diffusions coefficient. Application to epidemics. Dynstoch Meeting 2012, Jun 2012, Paris, France. 19 diapos. hal-02806241

HAL Id: hal-02806241 https://hal.inrae.fr/hal-02806241

Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Inference for diffusions with small diffusion coefficient and application to epidemics

Romain $GUY^{1,2}$ with C. Laredo^{1,2} and E. Vergu¹

¹ Unité Mathématiques et Informatique Appliquées, INRA, Jouy-en-Josas ² Laboratoire de Probabilités et modèles aléatoires (Paris Diderot)

> Dynstoch 2012 8 juin 2012

Outline

Parametric inference for discretely observed diffusion processes

2 Application to Epidemics

イロト イポト イヨト イヨト

э.

Settle the context

Classical SIR Epidemics S.D.E.

$$ds_t = -\lambda s_t i_t dt + \frac{1}{\sqrt{N_{pop}}} \sqrt{\lambda s_t i_t} dB_1(t)$$

$$di_t = (\lambda s_t i_t - \gamma i_t) dt - \frac{1}{\sqrt{N_{pop}}} \sqrt{\lambda s_t i_t} dB_1(t) + \frac{1}{\sqrt{N_{pop}}} \sqrt{\gamma i_t} dB_2(t)$$

Specificity : Multidimensionnal process, small diffusion coefficient, parameters (λ, γ) both in drift and diffusion function, (few observations available)

Theoretical Context

•
$$dX_t^{\epsilon} = b(\alpha, X_t^{\epsilon})dt + \epsilon \sigma(\beta, X_t^{\epsilon})dB_t, \ X_0 = x_0 \in \mathbb{R}^p$$

- Discrete observation : X_t^{ϵ} at times $t_k = k\Delta$ on a fixed interval [0, T] $(T = n\Delta)$
- $\sigma(\beta, x) \in M_{\rho}(\mathbb{R}), b(\alpha, x) \in \mathbb{R}^{\rho}, \Sigma(\beta, x) = \sigma(\beta, x) {}^{t}\sigma(\beta, x)$ invertible.

Existing results : Maximum Contrast Estimators for high frequency data (linking ϵ and n) (Sørensen-Uchida Bernoulli 2003) $\frac{1}{\epsilon n} \rightarrow 0$, $\frac{1}{\epsilon \sqrt{n}}$ bounded (Gloter Sørensen S.P.A. 2009) $\exists \rho > 0$, $\frac{1}{\epsilon n \rho}$ bounded, for a class of contrast processes depending on ρ

Main idea of our inference approach (extension of Genon-Catalot(90))

Taylor's stochastic expansion formula (Azencott (82), Wentzell-Freidlin(79))

$$X_t^{\epsilon} = x_{\alpha}(t) + \epsilon g_{\alpha,\beta}(t) + \epsilon^2 R_{\alpha,\beta}^{\epsilon}(t)$$

where $x_{\alpha}(t)$ is the deterministic solution $\frac{dx_{\alpha}(t)}{dt} = b(\alpha, x_{\alpha}(t)), \ x(0) = x_0 \in \mathbb{R}^p$,

$$dg_{\alpha,\beta}(t) = \frac{\partial b}{\partial x}(\alpha, x_{\alpha}(t))g_{\alpha,\beta}(t)dt + \sigma(\beta, x_{\alpha}(t))dB_{t}, \ g_{\alpha,\beta}(0) = 0_{\mathbb{R}^{p}}$$

and $R^{\epsilon}_{lpha,eta}$ satisfies

$$\sup_{t\in[0,T]} \{\|\epsilon R^{\epsilon}_{\alpha,\beta}(t)\|\} \underset{\mathbb{P},\epsilon\to 0}{\longrightarrow} 0, \ \mathbb{E}\left[\|R^{\epsilon}_{\alpha,\beta}(t+h)-R^{\epsilon}_{\alpha,\beta}(t)\|^{2}\right] \leq Ch.$$

Main Idea

- Compute the likelihood of the Gaussian process $Y^{\epsilon}_t = x_{\alpha}(t) + \epsilon g_{\alpha,\beta}(t)$
- Derive a Contrast process for X_t^{ϵ} from it.

Properties of $g_{\alpha,\beta}$

Φ_{lpha} the Resolvent matrix of the linearized ODE

Let Φ_{α} be the invertible matrix solution of $\frac{d\Phi_{\alpha}}{dt}(t,t_0) = \frac{\partial b}{\partial x}(\alpha, x_{\alpha}(t))\Phi_{\alpha}(t,t_0),$ with $\Phi_{\alpha}(t_0,t_0) = I_p$.

Properties of $g_{\alpha,\beta}$

- $g_{lpha,eta}$ is a Gaussian process for which we can obtain the analytic expression.
- $g_{\alpha,\beta}(t_k) = \Phi_{\alpha}(t_k, t_{k-1})g_{\alpha,\beta}(t_{k-1}) + \sqrt{\Delta}Z_k^{\alpha,\beta}$
- $Z_k^{lpha,eta}$ are independent $\mathcal{N}\left(0,S_k^{lpha,eta}
 ight)$ variables.

•
$$S_k^{\alpha,\beta} = \frac{1}{\Delta} \int_{t_{k-1}}^{t_k} \Phi_{\alpha}(t_k,s) \Sigma(\beta, x_{\alpha}(s)) t \Phi_{\alpha}(t_k,s) ds$$

(日) (同) (日) (日) (日) (日) (0) (0)

Parametric inference for discretely observed diffusion processes

Application to Epidemics

Likelihood of the Gaussian process and consequences of the approach

log-likelihood of the Gaussian process Y_t^ϵ

$$\begin{split} L_{\Delta,\epsilon}\left(\alpha,\beta\right) &= \epsilon^{2}\sum_{k=1}^{n}\log\left[\det\left(S_{k}^{\alpha,\beta}\right)\right] \\ &+ \frac{1}{\Delta}\sum_{k=1}^{n}{}^{t}N_{k}(\alpha)(S_{k}^{\alpha,\beta})^{-1}N_{k}(\alpha) \\ \text{with } N_{k}(\alpha) &= Y_{t_{k}} - x_{\alpha}(t_{k}) - \Phi_{\alpha}(t_{k},t_{k-1})\left[Y_{t_{k-1}} - x_{\alpha}(t_{k-1})\right]. \end{split}$$

Define MLE estimators

$$(\hat{\alpha}_{\epsilon,\Delta},\hat{\beta}_{\epsilon,\Delta}) = \underset{(\alpha,\beta)\in\Theta}{\operatorname{argmin}} U_{\Delta,\epsilon}(\alpha,\beta)$$

Remark on low frequency data

 Δ (and *n*) is fixed : no asymptotic result on $\hat{\beta}_{\epsilon,\Delta}$ \Rightarrow Adaptation needed

э

Construct the contrast for low frequency data (Δ and *n* fixed)

Contrast process for the diffusion X_{t}^{ϵ} (β unknown) $\overline{U}_{\epsilon}(\alpha) = \epsilon^{2} \sum_{k=1}^{n} \log \left[\det \left(S_{k}^{\alpha,\beta} \right) \right] \\ + \frac{1}{\Delta} \sum_{k=1}^{n} t N_{k}(\alpha) (S_{k}^{\alpha,\beta})^{-1} N_{k}(\alpha) \\ \text{with } N_{k}(\alpha) = X_{t_{k}} - x_{\alpha}(t_{k}) - \Phi_{\alpha}(t_{k}, t_{k-1}) \left[X_{t_{k-1}} - x_{\alpha}(t_{k-1}) \right].$ Define MCE estimator $\overline{\alpha}_{\epsilon} = \underset{(\alpha) \in \Theta_{\alpha}}{\operatorname{argmin}} \overline{U}_{\epsilon}(\alpha)$

Construct the contrast for low frequency data (Δ and *n* fixed)

Contrast process for the diffusion
$$X_t^{\epsilon}$$
 (β unknown)

$$\overline{U}_{\epsilon}(\alpha) = \frac{\epsilon^2 \sum_{k=1}^{n} log \left[det\left(S_k^{\alpha,\beta}\right)\right]}{+ \frac{1}{\Delta} \sum_{k=1}^{n} t N_k(\alpha) (S_k^{\alpha,\beta})^{-1} N_k(\alpha)}$$
with $N_k(\alpha) = X_{t_k} - x_{\alpha}(t_k) - \Phi_{\alpha}(t_k, t_{k-1}) \left[X_{t_{k-1}} - x_{\alpha}(t_{k-1})\right].$
Define MCE estimator
 $\overline{\alpha}_{\epsilon} = \underset{(\alpha) \in \Theta_{\alpha}}{\operatorname{argmin}} \overline{U}_{\epsilon}(\alpha)$

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

<u>Construct the contrast for low frequency data</u> (Δ and *n* fixed)

Contrast process for the diffusion X_t^{ϵ} (β unknown) $$\begin{split} \bar{U}_{\epsilon}\left(\alpha\right) &= \frac{\epsilon^{2}\sum_{k=1}^{n}\log\left[\det\left(S_{k}^{\alpha,\beta}\right)\right]}{+ \frac{1}{\Delta}\sum_{k=1}^{n}{}^{t}N_{k}(\alpha)(S_{k}^{\alpha,\beta})^{-1}N_{k}(\alpha)} \end{split}$$ with $N_k(\alpha) = \frac{X_{t_k} - x_\alpha(t_k) - \Phi_\alpha(t_k, t_{k-1}) \left[X_{t_{k-1}} - x_\alpha(t_{k-1}) \right]}{X_{t_{k-1}} - x_\alpha(t_{k-1})}$ Define MCE estimator $\bar{\alpha}_{\epsilon} = \operatorname{argmin} \bar{U}_{\epsilon}(\alpha)$ $(\alpha) \in \Theta_{\alpha}$

・ロト ・同ト ・ヨト ・ヨト ・ シックへ

<u>Construct the contrast for low frequency data</u> (Δ and *n* fixed)

Contrast process for the diffusion X_t^{ϵ} (β unknown) $\bar{U}_{\epsilon}(\alpha) = \frac{\epsilon^{2} \sum_{k=1}^{n} \log \left[\det \left(S_{k}^{\alpha,\beta} \right) \right]}{\frac{1}{\Delta} \sum_{k=1}^{n} N_{k}(\alpha) (S_{k}^{\alpha,\beta})^{-1} N_{k}(\alpha)}$ with $N_k(\alpha) = X_{t_k} - x_\alpha(t_k) - \Phi_\alpha(t_k, t_{k-1}) \left[X_{t_{k-1}} - x_\alpha(t_{k-1}) \right]$. Define MCE estimator $\bar{\alpha}_{\epsilon} = \operatorname{argmin} \bar{U}_{\epsilon}(\alpha)$ $(\alpha) \in \Theta_{\alpha}$

・ロト ・同ト ・ヨト ・ヨト ・ シックへ

Results for low frequency data (Δ and *n* fixed)

Contrast process for the diffusion X_t^{ϵ} (β unknown)

$$\overline{U}_{\epsilon}\left(\alpha,(X_{t_{k}})_{k\in\{1,\ldots,n\}}\right)=\frac{1}{\Delta}\sum_{k=1}^{n}{}^{t}N_{k}(\alpha)N_{k}(\alpha).$$

Results for low frequency data and β unknown

Under classical regularity assumptions on b and σ , and identifiability assumption : $\alpha \neq \alpha' \Rightarrow \{ \exists k, 1 \leq k \leq n, x_{\alpha}(t_k) \neq x_{\alpha'}(t_k) \}$.

$$\begin{split} \bar{\alpha}_{\epsilon} &= \underset{\alpha \in \Theta_{a}}{\operatorname{argmin}} \ \bar{U}_{\epsilon} \left(\alpha \right) \text{ satisfies} \\ \epsilon^{-1} \left(\bar{\alpha}_{\epsilon} - \alpha_{0} \right) \underset{\epsilon \to 0}{\longrightarrow} \mathcal{N}(0, J_{\Delta}^{-1}(\alpha_{0}, \beta_{0})) \end{split}$$

where $J_{\Delta}(\alpha_0, \beta_0)$ do not converges toward $I_b(\alpha_0, \beta_0)$ as $\Delta \to 0$ (the Fisher Information Matrix).

Additionnal information on β for low frequency data

In SIR-Epidemics $\alpha = (\lambda, \gamma) = \beta$

Case of useful additionnal information

 $\beta = f(\alpha)$ $\Sigma(\beta, x) = f(\beta)\Sigma_0(x)$

Return on the log-likelihood of the Gaussian process Y_t^{ϵ}

$$\begin{split} L_{\Delta,\epsilon}\left(\alpha,\beta\right) &= \epsilon^{2}\sum_{k=1}^{n}\log\left[\det\left(S_{k}^{\alpha,\beta}\right)\right] \\ &+ \frac{1}{\Delta}\sum_{k=1}^{n}{}^{t}N_{k}(\alpha)(S_{k}^{\alpha,\beta})^{-1}N_{k}(\alpha) \\ \text{with } N_{k}(\alpha) &= Y_{t_{k}} - x_{\alpha}(t_{k}) - \Phi_{\alpha}(t_{k},t_{k-1})\left[Y_{t_{k-1}} - x_{\alpha}(t_{k-1})\right] \end{split}$$

Define MLE estimators

$$(\hat{\alpha}_{\epsilon,\Delta},\hat{\beta}_{\epsilon,\Delta}) = \underset{(\alpha,\beta)\in\Theta}{\operatorname{argmin}} U_{\Delta,\epsilon}(\alpha,\beta)$$

・ロト ・四ト ・ヨト ・ヨト

э

Additionnal information on β for low frequency data

In SIR-Epidemics $\alpha = (\lambda, \gamma) = \beta$

Case of useful additionnal information

 $\beta = f(\alpha)$ $\Sigma(\beta, x) = f(\beta)\Sigma_0(x)$

Return on the log-likelihood of the Gaussian process Y_t^{ϵ}

$$\begin{split} L_{\Delta,\epsilon}\left(\alpha,\beta\right) &= \epsilon^{2}\sum_{k=1}^{n}\log\left[\det\left(S_{k}^{\alpha,\beta}\right)\right] \\ &+ \frac{1}{\Delta}\sum_{k=1}^{n}{}^{t}N_{k}(\alpha)(S_{k}^{\alpha,\beta})^{-1}N_{k}(\alpha) \\ \text{with } N_{k}(\alpha) &= Y_{t_{k}} - x_{\alpha}(t_{k}) - \Phi_{\alpha}(t_{k},t_{k-1})\left[Y_{t_{k-1}} - x_{\alpha}(t_{k-1})\right] \end{split}$$

Define MLE estimators

$$(\hat{\alpha}_{\epsilon,\Delta},\hat{\beta}_{\epsilon,\Delta}) = \underset{(\alpha,\beta)\in\Theta}{\operatorname{argmin}} U_{\Delta,\epsilon}(\alpha,\beta)$$

・ロト ・四ト ・ヨト ・ヨト

Additionnal information on β for low frequency data

In SIR-Epidemics $\alpha = (\lambda, \gamma) = \beta$

Case of useful additionnal information

 $\begin{aligned} \beta &= f(\alpha) \\ \Sigma(\beta, x) &= f(\beta) \Sigma_0(x) \end{aligned}$

Return on the log-likelihood of the Gaussian process Y_t^{ϵ}

$$\begin{split} L_{\Delta,\epsilon}\left(\alpha,\beta\right) &= \epsilon^{2}\sum_{k=1}^{n}\log\left[\det\left(S_{k}^{\alpha,\beta}\right)\right] \\ &+ \frac{1}{\Delta}\sum_{k=1}^{n}{}^{t}N_{k}(\alpha)(S_{k}^{\alpha,\beta})^{-1}N_{k}(\alpha) \\ \text{with } N_{k}(\alpha) &= Y_{t_{k}} - x_{\alpha}(t_{k}) - \Phi_{\alpha}(t_{k},t_{k-1})\left[Y_{t_{k-1}} - x_{\alpha}(t_{k-1})\right] \end{split}$$

Define MLE estimators

$$(\hat{\alpha}_{\epsilon,\Delta},\hat{\beta}_{\epsilon,\Delta}) = \underset{(\alpha,\beta)\in\Theta}{\operatorname{argmin}} U_{\Delta,\epsilon}(\alpha,\beta)$$

Additionnal information on β for low frequency data

In SIR-Epidemics $\alpha = (\lambda, \gamma) = \beta$

Case of useful additionnal information

$$\begin{cases} \beta = f(\alpha) \\ \Sigma(\beta, x) = f(\beta)\Sigma_0(x) \end{cases} \right\} S_k^{\alpha, \beta} = \tilde{S}_k^{\alpha}$$

Contrast process for the diffusion X_t^{ϵ} (with information on β)

$$\begin{split} \tilde{U}_{\epsilon}\left(\alpha\right) &= \underbrace{\epsilon^{2} \sum_{k=1}^{n} log \left[\det\left(\widetilde{S}_{k}^{\alpha}\right) \right]}_{k=1} \\ &+ \underbrace{\frac{1}{\Delta} \sum_{k=1}^{n} {}^{t} N_{k}(\alpha) (\widetilde{S}_{k}^{\alpha})^{-1} N_{k}(\alpha)}_{\text{with } N_{k}(\alpha)} &= X_{t_{k}} - x_{\alpha}(t_{k}) - \Phi_{\alpha}(t_{k}, t_{k-1}) \left[X_{t_{k-1}} - x_{\alpha}(t_{k-1}) \right]. \end{split}$$

Define MCE estimator

$$\tilde{\alpha}_{\epsilon} = \underset{(\alpha)\in\Theta_{a}}{\operatorname{argmin}} \tilde{U}_{\epsilon}(\alpha)$$

Results for low frequency data (Δ and *n* fixed)

Contrast with information on β

$$\tilde{U}_{\epsilon}(\alpha) = \frac{1}{\Delta} \sum_{k=1}^{n} {}^{t} N_{k}(\alpha) (\tilde{S}_{k}^{\alpha})^{-1} N_{k}(\alpha)$$

Results

Under the same assumptions (regularity and identifiability) $\tilde{\alpha}_{\epsilon} = \operatorname{argmin} \tilde{U}_{\epsilon}(\alpha)$ satisfies $(\alpha) \in \Theta_a$ $\epsilon^{-1}(\tilde{\alpha}_{\epsilon} - \alpha_0) \longrightarrow \mathcal{N}(0, I_0^{-1}(\alpha_0, \beta_0))$

$$\epsilon \stackrel{-}{\longrightarrow} (\alpha_{\epsilon} - \alpha_{0}) \xrightarrow[\epsilon \to 0]{} \mathcal{N}(0, I_{\Delta} (\alpha_{0}, \beta_{0}))$$

with $I_{\Delta}(\alpha_0,\beta_0) \xrightarrow{}_{\Delta \to 0} I_b(\alpha_0,\beta_0)$

11/14

・ロト ・同ト ・ヨト ・ヨト ・ シックへ

Results for high frequency data $(\Delta \rightarrow 0)$ (without linking ϵ and n)

Contrast process

Using
$$\|S_k^{\alpha_0,\beta_0} - \Sigma(\beta_0, X_{t_{k-1}})\| \xrightarrow[\epsilon, \Delta \to 0]{} 0$$
, we consider :

$$\begin{split} \check{U}_{\Delta,\epsilon}(\alpha,\beta)) &= \epsilon^2 \sum_{k=1}^n \log \left[\det \left(\Sigma(\beta, X_{t_{k-1}}) \right) \right] \\ &+ \frac{1}{\Delta} \sum_{k=1}^n {}^t N_k(\alpha) \Sigma^{-1}(\beta, X_{t_{k-1}}) N_k(\alpha) \end{split}$$

Asymptotic Normality

Under classical regularity and identifiability assumptions on *b* and σ $(\check{\alpha}_{\epsilon,\Delta},\check{\beta}_{\epsilon,\Delta}) = \underset{(\alpha,\beta)\in\Theta}{\operatorname{argmin}}\check{U}_{\Delta,\epsilon}(\alpha,\beta)$ satisfies

$$\begin{pmatrix} \epsilon^{-1}(\alpha_{\epsilon,\Delta}^{*} - \alpha_{0}) \\ \sqrt{n}(\beta_{\epsilon,\Delta}^{*} - \beta_{0}) \end{pmatrix} \xrightarrow[n \to \infty, \epsilon \to 0]{} N \begin{pmatrix} 0, \begin{pmatrix} I_{b}^{-1}(\alpha_{0}, \beta_{0}) & 0 \\ 0 & I_{\sigma}^{-1}(\alpha_{0}, \beta_{0}) \end{pmatrix} \end{pmatrix}$$

< ∃ >

Some generalities

Transmissible disease : a world of incomplete and aggregated data

- Date of infection and recovery of an infected individual unknown
- Total Number of new infected cases collected at regular time interval (days or week)

Modelisation : the simpler, the better

$$S \stackrel{\lambda I/N_{pop}}{\rightarrow} I \stackrel{\gamma}{\rightarrow} R$$

Ethier & Kurtz diffusion approximation

$$\begin{aligned} ds_t &= -\lambda s_t i_t dt + \frac{1}{\sqrt{N_{pop}}} \sqrt{\lambda s_t i_t} dB_1(t) \\ di_t &= (\lambda s_t i_t - \gamma i_t) dt - \frac{1}{\sqrt{N_{pop}}} \sqrt{\lambda s_t i_t} dB_1(t) + \frac{1}{\sqrt{N_{pop}}} \sqrt{\gamma i_t} dB_2(t) \end{aligned}$$

Estimation over simulations

Simulations using Matlab

Simulations over 1000 runs of a scenario close to influenza ($\lambda = 0.4 \ days^{-1}$, $\gamma = 1/3 \ days^{-1}$, T = 50) Study of different scenarios : $N_{pop} \in [100; 10000]$, $\Delta \in [T/10; 1; T/100]$

= nar