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Abstract: This paper considers adiabatic reduction in both discrete and
continuous models of stochastic gene expression. In gene expression model,
the concept of bursting is a production of several molecules simultaneously
and is generally represented as a jump terms of random size. In a gen-
eral two-dimensional birth and death discrete model, we prove that under
specific assumptions and scaling (that are characteristics of the mRNA-
protein system) an adiabatic reduction leads to a one-dimensional discrete-
state space model with bursting production. The burst term appears then
through the reduction of the first variable. In a two-dimensional continu-
ous model, we also prove that an adiabatic reduction can be performed in a
stochastic slow/fast system. In this gene expression model, the production
of mRNA (the fast variable) is assumed to be bursty and the production of
protein (the slow variable) is linear as a function of mRNA. When the dy-
namics of mRNA is assumed to be faster than the protein dynamics (due to
a mRNA degradation rate larger than for the protein) we prove that, with
the appropriate scaling, the bursting phenomena can be transmitted to the
slow variable. We show that the reduced equation is either a stochastic dif-
ferential equation with a jump Markov process or a deterministic ordinary
differential equation depending on the scaling that is appropriate.

These results are significant because adiabatic reduction techniques seem
to have not been applied to a stochastic differential system containing a
jump Markov process. Last but not least, for our particular system, the
adiabatic reduction allows us to understand what are the necessary condi-
tions for the bursting production-like of protein to occur.

AMS 2000 subject classifications: Primary 92C45, 60Fxx; secondary
92C40,60J25,60J75.
Keywords and phrases: adiabatic reduction, piecewise deterministic Markov
process, stochastic bursting gene expression, quasi-steady state assumption,
scaling limit.

Introduction

The adiabatic reduction techniques give results that allow to reduce the dimen-
sion of a system and justify the use of an effective set of reduced equations
in lieu of dealing with a full, higher dimensional model, if different time scales
occur in the system. Adiabatic reduction results for deterministic systems of
ordinary differential equations have been available since the very precise results
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of Tikhonov (1952) and Fenichel (1979). The simplest results, in the hyperbolic
case, give an effective construction of an uniformly asymptotically stable slow
manifold (and hence a reduced equation) and prove the existence of an invariant
manifold near the slow manifold, with (theoretically) any order of approxima-
tion of this invariant manifold. Such precise and geometric results have been
generalized to random systems of stochastic differential equation with Gaussian
white noise (Berglund and Gentz (2006), see also Gardiner (1985) for previous
work on the Fokker-Planck equation). However, to the best of our knowledge,
analogous results for stochastic differential equations with jumps have not been
obtained.

The present paper gives a theoretical justification of an adiabatic reduction of
a particular piecewise deterministic Markov process (Davis, 1984). The results
we obtain do not give a bound on the error of the reduced system, but they
do allow us to justify the use of a reduced system in the case of a piecewise
deterministic Markov process. In fact, we prove limit theorems using martingale
strategy, in a similar manner than in recent papers such as Crudu et al. (2012),
Kang and Kurtz and Riedler, Thieullen and Wainrib (2012), where general con-
vergence results for discrete models of stochastic reaction networks are given.
In particular, these papers give alternative scaling of the traditional ordinary
differential equation and the diffusion approximation depending on the different
scaling chosen (see Ball et al. (2006) for some examples in a reaction network
model). After the scaling, the limiting models can be deterministic (ordinary
differential equation), stochastic (jump Markov process), or hybrid (piecewise
deterministic process). For illustrative and motivating examples given by a sim-
ulation algorithm, see Haseltine and Rawlings (2002); Rao and Arkin (2003);
Goutsias (2005). However, we emphasize that we do not consider here a continu-
ous approximation of a discrete model. Rather, we perform adiabatic reduction
on both discrete state-space and continuous state-space models. Time-scale re-
duction have been considered in Kang and Kurtz, but not on the kind we perform
here.

Our particular model is meant to describe stochastic gene expression with
explicit bursting (Friedman, Cai and Xie, 2006). In discrete state-space burst-
ing models, the variables evolve under the action of a discrete birth and death
process, interrupted by discrete positive jumps of random sizes. In continuous
state-space bursting models, the variables evolve under the action of a contin-
uous deterministic dynamical system, interrupted by positive jumps of random
sizes. In both cases, the positive jumps model the burst production of several
molecules instantaneously. In that sense, the convergence theorems we obtain
in this paper can be seen as an example in which there is a reaction with
size between 0 and ∞. We hope that the results here are generalizable to give
insight into adiabatic reduction methods in more general stochastic hybrid sys-
tems (Hespanha, 2006; Bujorianu and Lygeros, 2004). We note also that more
geometrical approaches have been proposed to reduce the dimension of such
systems in Bujorianu and Katoen (2008).

Biologically, the bursting of mRNA or protein molecules is defined as the pro-
duction of several molecules within a very short time, indistinguishable within
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the time scale of the measurement. In the biological context of models of stochas-
tic gene expression, explicit models of bursting mRNA and/or protein pro-
duction have been analyzed recently, either using a discrete (Shahrezaei and
Swain, 2008; Lei, 2009) or a continuous formalism (Friedman, Cai and Xie, 2006;
Mackey, Tyran-Kamińska and Yvinec, 2011) as more and more experimental ev-
idence from single-molecule visualization techniques has revealed the ubiquitous
nature of this phenomenon (Ozbudak et al., 2002; Golding et al., 2005; Raj et al.,
2006; Elf, Li and Xie, 2007; Xie et al., 2008; Raj and van Oudenaarden, 2009;
Suter et al., 2011). Traditional models of gene expression are composed of at
least two variables (mRNA and protein, and sometimes the DNA state). The
use of a reduced one-dimensional model (that has the advantage that it can
be solved analytically) has been justified so far by an argument concerning the
stationary distribution in Shahrezaei and Swain (2008). However, it is clear that
two different models may have the same stationary distribution but very differ-
ent behavior (continuous or discontinuous trajectories, monostable or bistable,
etc; for an example in that context, see Mackey, Tyran-Kamińska and Yvinec
(2011)). Hence, our results are of importance to rigorously prove the validity of
using a reduced model. Our results are based on the standard assumption that
the mRNA molecules have a shorter lifetime than the protein molecules, that
is widely observed in both prokaryotes and eukaryotes (Schwanhäusser et al.
(2011)). Depending on the assumed scaling of other kinetic parameters within
the mRNA degradation rates, different limiting models are obtained.

The paper is organized as follows. In the first section, we prove a reduction
results for a discrete state-space model, that is a two-dimensional birth and
death process. Assumptions on the birth and death rates are in agreement with
a standard model of gene expression for the mRNA-protein system. That is
both variables remain positive and birth of the second variable can occur only
if the first variable is positive. Using an appropriate scaling of birth and death
rates, we prove that this model converges to a general one-dimensional discrete
bursting model.

In the second section, we prove a reduction for a continuous state-space
model, that is a two-dimensional piecewise deterministic model of gene expres-
sion with a jump production term for the first variable. Using appropriate scaling
on parameters, we prove that this model converge either to a deterministic or-
dinary differential equation or to a one-dimensional continuous bursting model.

1. A bursting model from a two-dimensional discrete model

The fact that bursting models arise as a reduction procedure of a higher dimen-
sional model was already observed in Shahrezaei and Swain (2008) and Crudu
et al. (2012). In Shahrezaei and Swain (2008), the authors show that, within
an appropriate scaling, the stationary distribution of a 2-dimensional discrete
model converge to the stationary distribution of a 1-dimensional bursting model.
The authors used analytic methods through the transport equation on the gen-
erating function. Their result seems to be restricted to first-order kinetics. The
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first variable is a fast variable that induces infrequent kicks to the second one.
In Crudu et al. (2012), the authors show that, within an appropriate scaling,
a fairly general discrete state space model with a binary variable converge to
a bursting model with continuous state space. The authors obtained a conver-
gence in law of the solution through Martingale techniques. The binary variable
is a fast variable that, when switching in an ”ON” state, induces kicks to the
other variable.

We present below analogous result of Crudu et al. (2012) when the fast vari-
able is similar to the one of Shahrezaei and Swain (2008). Our limiting model is
still a discrete state space model. These results are more precise than the one of
Shahrezaei and Swain (2008), and more general (some kinetics rates can be non-
linear). We use martingales techniques, with a proof that is similar to Crudu
et al. (2012) and also inspired by results from Kang and Kurtz. We present be-
low the model, then state our result in the subsection 1.1, and divide the proof
in the three next subsections 1.2-1.4.

We consider the following two-dimensional stochastic kinetic chemical reac-
tion model

∅ λ1(X1,X2)−−−−−−−→ X1, Production of X1 at rate λ1(X1, X2)

X1
γ1(X1,X2)−−−−−−−→ ∅, Destruction of X1 at rate γ1(X1, X2)

∅ λ2(X1,X2)−−−−−−−→ X2, Production of X2 at rate λ2(X1, X2)

X2
γ2(X1,X2)−−−−−−−→ ∅, Destruction of X2 at rate γ2(X1, X2)

(1)

with γ1(0, X2) = γ2(X1, 0) = 0 to ensure positivity. This model can be rep-
resented by a continuous time Markov chain in N

2, and is then a general birth
and death process in N

2. It can be described by the following set of stochastic
differential equations

X1(t) = X1(0) + Y1

(

∫ t

0

λ1(X1(s), X2(s))ds
)

− Y2

(

∫ t

0

γ1(X1(s), X2(s))ds
)

,

X2(t) = X2(0) + Y3

(

∫ t

0

λ2(X1(s), X2(s))ds
)

− Y4

(

∫ t

0

γ2(X1(s), X2(s))ds
)

,

where Yi, for i = 1...4 are independent standard poisson processes. The genera-
tor of this process is given by

Bf(X1, X2) =λ1(X1, X2)
[

f(X1 + 1, X2)− f(X1, X2)
]

+ γ1(X1, X2)
[

f(X1 − 1, X2)− f(X1, X2)
]

+ λ2(X1, X2)
[

f(X1, X2 + 1)− f(X1, X2)
]

+ γ2(X1, X2)
[

f(X1, X2 − 1)− f(X1, X2)
]

,

(2)

for every bounded function f on N
2.
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Exemple 1. We have in mind the standard mRNA-Protein system given by the
following choice: γi(X1, X2) = giXi with gi > 0 for i = 1, 2, λ1(X1, X2) =
λ1(X2) and λ2(X1, X2) = k2X1 with k2 > 0. Note however that even in the
context of models of gene expression, different models have been proposed, that
includes nonlinear feedback of mRNA and/or nonlinear degradation terms Bose
and Ghosh (2012).

1.1. Statement of the result

We suppose the following scaling holds

γN
1 (X1, X2) = Nγ1(X1, X2)

λN
2 (X1, X2) = Nλ2(X1, X2)

where N → ∞ that is degradation of X1 and production of X2 occurs at a
faster time scale than the two other reactions. Then X1 is degraded very fast,
and induces also as a very fast production of X2. The rescaled model is given
by

XN
1 (t) = XN

1 (0) + Y1

(

∫ t

0

λ1(X
N
1 (s), XN

2 (s))ds
)

− Y2

(

∫ t

0

Nγ1(X
N
1 (s), XN

2 (s))ds
)

,

XN
2 (t) = XN

2 (0) + Y3

(

∫ t

0

Nλ2(X
N
1 (s), XN

2 (s))ds
)

− Y4

(

∫ t

0

γ2(X
N
1 (s), XN

2 (s))ds
)

,

(3)
and the generator of this process is given by

BNf(X1, X2) =λ1(X1, X2)
[

f(X1 + 1, X2)− f(X1, X2)
]

+Nγ1(X1, X2)
[

f(X1 − 1, X2)− f(X1, X2)
]

+Nλ2(X1, X2)
[

f(X1, X2 + 1)− f(X1, X2)
]

+ γ2(X1, X2)
[

f(X1, X2 − 1)− f(X1, X2)
]

.

(4)

We can prove the following reduction holds:

Theorem 1. We assume that

1. The degradation function on X2 satisfies γ2(X1, 0) ≡ 0.
2. The degradation function on X1 satisfies γ1(0, X2) ≡ 0, and

inf
X1≥1,X2≥0

γ1(X1, X2) = γ > 0.

3. The production rate of X2 satisfies λ2(0, X2) = 0.
4. The production rate function λ1 and λ2 are linearly bounded by X1 +X2.
5. Either λ1 or λ2 is bounded.
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Let (XN
1 , XN

2 ) the stochastic process whose generator is BN (defined in eq. (4)).
Assume that the initial vector (XN

1 (0), XN
2 (0)) converges in distribution to (0, X(0)),

as N → ∞. Then, for all T > 0, (XN
1 (t), XN

2 (t))t≥0 converges in L1(0, T ) (and
in Lp, 1 ≤ p < ∞) to (0, X(t)) where X(t) is the stochastic process whose
generator is given by

B∞ϕ(X) = λ1(0, X)
(

∫ ∞

0

Pt(γ1(1, .)ϕ(.))(X)dt − ϕ(X)
)

+ γ2(0, X)
[

ϕ(X − 1)− ϕ(X)
]

, (5)

where
Ptg(X) = E

[

g(Y (t,X)e−
∫

t

0
γ1(1,Y (s,X))ds

]

,

and Y (t,X) is the stochastic process starting at X at t = 0 whose generator is
given by

Ag(Y ) = λ2(1, Y )
(

g(Y + 1)− g(Y )
)

.

Remark 2. The first three hypotheses of theorem 1 are the main characteristics
of the mRNA-protein system (see example 1). Basically, they impose that quan-
tities remains non-negative, that the first variable has always the possibility to
decrease to 0 (no matter the value of the second variable), and that the second
variable cannot increase when the first variable is 0. Hence these three hypothe-
ses will guarantee that (with our particular scaling) the first variable converges
to 0, and will lead to an intermittent production of the second variable. The
last two hypotheses are more technical, and guarantee that the Markov chain is
not explosive, and hence well defined for all t ≥ 0, and that the limiting model
is well defined too.

Remark 3. The above expression eq. (5) is a generator of a bursting model for a
“general bursting size distribution“. For instance, for linear function γ1(X1, X2) =
g1X1, and λ2(X1, X2) = k2X1, we have

Pt(γ1(.)ϕ(.))(p) = g1Pt(ϕ)(p),

= g1E
[

ϕ(Y y
t )e

−g1t
]

,

= g1e
−g1t

∑

z≥y

ϕ(z)P
{

Y y
t = z

}

,

= g1e
−g1t

∑

z≥y

ϕ(z)
(k2t)

z−ye−k2t

(z − y)!
.

It follows by integration integration by parts that
∫ ∞

0

Pt(γ1(.)ϕ(.))(y)dt =
g1

g1 + k2

∑

z≥0

ϕ(z + y)
( k2
k2 + g1

)z

,

which gives then an additive geometric burst size distribution of parameter
p = k2

k2+g1
, as expected Shahrezaei and Swain (2008).
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We divide the proof in three steps: moment estimates, tightness and identi-
fication of the limit.

1.2. Moment estimates

Because production rates are linearly bounded, it is straightforward that with
f(X1, X2) = X1 + X2 in eq. (4), there is a constant CN (that depends on N
and other parameters) such that

BNf(X1, X2) ≤ CN (X1 +X2).

Then E
[

XN
1 (t) +XN

2 (t)
]

is bounded on any time interval [0, T ] and

f(XN
1 (t), XN

2 (t)) − f(XN
1 (0), XN

2 (0))−
∫ t

0

BNf(XN
1 (s), XN

2 (s))ds

is a L1-martingale.

1.3. Tightness

Clearly, from the stochastic differential equation on XN
1 , we must have

XN
1 (t) → 0. We can show in fact that the Lebesgue measure of the set

{t ≤ T : XN
1 (t) 0} converges to 0. Indeed, taking f(X1, X2) = X1 in eq. (4), we

have

XN
1 (t)−XN

1 (0)−
∫ t

0

(λ1(X
N
1 (s), XN

2 (s))−Nγ1(X
N
1 (s), XN

2 (s)))ds (6)

is a martingale. Thanks to the lower bound assumption on γ1, we have

γE
[

∫ t

0

1{XN
1
(s)≥1}ds

]

≤ E

∫ t

0

γ1(X
N
1 (s), XN

2 (s))ds.

Then, by the martingale property, we deduce from (6)

γNE
[

∫ t

0

1{XN
1
(s)≥1}ds

]

≤ E
[

XN
1 (0)

]

+

∫ t

0

E
[

λ1(X
N
1 (s), XN

2 (s))
]

ds. (7)

Now for XN
2 we obtain from eq. (3),

XN
2 (t) ≤ XN

2 (0) + Y3

(

∫ t

0

N1{XN
1
(s)≥1}λ2(X

N
1 (s), XN

2 (s))ds
)

.

Let us now distinguish between the two cases.

• Suppose first that λ2 is bounded (say by K). Then

E
[

XN
2 (t)

]

≤ E
[

XN
2 (0)

]

+KNE
[

∫ t

0

1{XN
1
(s)≥1}ds

]

.
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As λ1 is linearly bounded (say by K) by XN
1 + XN

2 , the upper bound
eq. (7) becomes

γNE
[

∫ t

0

1{XN
1
(s)≥1}ds

]

≤ E
[

XN
1 (0)

]

+K

∫ t

0

(

E
[

XN
1 (s)

]

+E
[

XN
2 (s)

]

)

ds.

Finally, with eq. (6), it is clear that

E
[

XN
1 (t)

]

≤ E
[

XN
1 (0)

]

+K

∫ t

0

(

E
[

XN
1 (s)

]

+ E
[

XN
2 (s)

]

)

ds.

Hence, with the three last inequalities, we can conclude by the Grönwall
lemma that E

[

XN
2 (t)

]

is bounded on [0, T ], uniformly in N . Then

NE
[

∫ T

0

1{XN
1
(s)≥1}ds

]

is bounded and XN
1 → 0 in L1([0, T ],N). By the law of large number,

1
N Y3(N) is almost surely convergent, and hence almost surely bounded.
We deduce then there exists a random variable C such that

XN
2 (t) ≤ XN

2 (0) +NC

∫ t

0

1{XN
1
(s)≥1}ds,

almost everywhere. By Grönwall lemma and Markov inequality

P
{

sup
t∈[0,T ]

XN
2 (t) ≥ M

}

→ 0

as M → ∞, uniformly in N .
• Now suppose λ1 is bounded (say K). By the martingale eq. (6) (and the
same lower bound hypothesis on γ1, it is clear that

NE
[

∫ T

0

1{XN
1
(s)≥1}ds

]

is bounded and XN
1 → 0 in L1([0, T ],N). Now, let us denote UN (t) =

1
NXN

1 (t), V N = 1
NXN

2 (t) andWN = N1{XN
1
(t)≥1} (which is then bounded

in L1([0, T [)). From eq. (3), and from the linear bound on λ2 (say by K)

V N (t) ≤ V N (0) +
1

N
Y3

(

∫ t

0

NKWN (UN (s) + V N (s))ds
)

.

Then, still by the law of the large number there exists a random variable
C such that

V N (t) ≤ V N (0) + C

∫ t

0

WN (UN (s) + V N (s))ds,
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and hence

XN
2 (t) ≤ XN

2 (0) + C

∫ t

0

WN (XN
1 (s) +XN

2 (s))ds.

By Grönwall lemma,

sup
[0,T ]

XN
2 (t) ≤ (XN

1 (0) +XN
2 (0)) exp

(

C

∫ t

0

WN (s)ds
)

,

which is then bounded, uniformly in N .

For any subdivision of [0, T ], 0 = t0 < t1 < · · · < tn = T ,

n−1
∑

i=0

| XN
2 (ti+1)−XN

2 (ti) | ≤
n−1
∑

i=0

Y3

(

∫ ti+1

ti

N1{XN
1
(s)≥1}λ2(X

N
1 (s), XN

2 (s))ds
)

≤ Y3

(

∫ T

0

N1{XN
1
(s)≥1}λ2(X

N
1 (s), XN

2 (s))ds
)

so by a similar argument as above, we also get the tightness of the BV norm

P
{

‖XN
2 ‖[0,T ] ≥ K

}

→ 0

as K → 0, independently in N . Then XN
2 is tight in Lp([0, T ]), for any 1 ≤ p <

∞ (Giusti (1984)).

1.4. Identification of the limit

We choose an adherence value (0, X2(t)) of the sequence (XN
1 (t), XN

2 (t)) in
L1([0, T ])×Lp([0, T ]). Then a subsequence (again denoted by) (XN

1 (t), XN
2 (t))

converge to (0, X2(t)), almost surely and for almost t ∈ [0, T ]. We are looking
for test-functions such that

f(XN
1 (t), XN

2 (t))− f(XN
1 (0), XN

2 (0)−
∫ t

0

BNf(0, XN
2 (s))1XN

1
(s)=0ds

−
∫ t

0

BNf(XN
1 (s), XN

2 (s))1XN
1
(s)≥1ds

is a martingale and BNf(XN
1 (s), XN

2 (s)) is bounded independently of N when
X1 ≥ 1. The following choice is inspired by Crudu et al. (2012). We introduce
the stochastic process Y x,y

t , starting at y and whose generator is

Axg(y) = λ2(x, y)
[

g(y + 1)− g(y)
]

,

for any x ≥ 1. and we introduce the semigroup P x
t defined on bounded function,

for any x ≥ 1, by

P x
t g(y) = E

[

g(Y x,y
t )e−

∫
t

0
γ1(x,Y

x,y
s )ds

]

. (8)
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Then the semigroup P x
t satisfies the equation

dP x
t g(y)

dt
= AxP x

t g(y)− γ1(x, y)P
x
t g(y).

Now for any bounded function g, define recursively

f(0, y) = g(y),

f(x, y) =

∫ ∞

0

P x
t (γ1(x, .)f(x − 1, .))(y)dt.

Such a test function is well defined by the assumption on γ1. We then verify
that

BNf(0, y) = λ1(0, y)
(

∫ ∞

0

P 1
t (γ1(1, .)g(.))(y)dt − g(y)

)

+ γ2(0, y)
[

g(y − 1)− g(y)
]

,

BNf(x, y) = λ1(x, y)
[

f(x+ 1, y)− f(x, y)
]

+ γ2(x, y)
[

f(x, y − 1)− f(x, y)
]

.

Indeed, for any x ≥ 1,

Axf(x, y)− γ1(x, y)f(x, y)

=

∫ ∞

0

AxP x
t (γ1(x, .)f(x− 1, .))(y)− γ1(x, y)P

x
t (γ1(x, .)f(x − 1, .))(y)dt,

=

∫ ∞

0

d

dt
P x
t (γ1(x, .)f(x− 1, .))(y)dt,

= lim
t→∞

P x
t (γ1(x, .)f(x, .))(y) − γ1(x, y)f(x − 1, y),

= −γ1(x, y)f(x− 1, y).

Then

λ2(x, y)
[

f(x, y + 1)− f(x, y)
]

+ γ1(x, y)
[

f(x− 1, y)− f(x, y)
]

= 0.

Hence BNf(x, y) is independent of N, and, taking the limit N → ∞ in

f(XN
1 (t), XN

2 (t))− f(XN
1 (0), XN

2 (0))−
∫ t

0

BNf(XN
1 (s), XN

2 (s))ds,

we deduce

g(X2(t)) − g(X2(0))−
∫ t

0

B∞g(X2)

is a martingale where

B∞g(y) = λ1(0, y)
(

∫ ∞

0

P 1
t (γ1(1, .)g(.))(y)dt−g(y)

)

+γ2(0, y)
[

g(y−1)−g(y)
]

.

Uniqueness Due to assumption on k1 and k2, the limiting generator defines
a pure-jump Markov process in N which is not explosive. Uniqueness of the
martingale then follows classically.
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2. Continuous-state bursting model

The model we consider now is a continuous state-space model that explicitly
assume the production of several molecules instantaneously, through a jump
Markov process, in agreement with experimental observations (Golding et al.
(2005); Raj et al. (2006)). In line with experimental observations, it is stan-
dard to assume a Markovian hypothesis (an exponential waiting time between
production jumps) and that the jump sizes are exponentially distributed (geo-
metrically in the discrete case) as well (Suter et al. (2011)). The intensity of the
jumps can be a linearly bounded function, to allow for self-regulation.

For simplicity, we will only consider the standard model of gene expression,
that is with linear degradation rates and the production rate of the second
variable is linear with respect to the first variable (as in example 1). Note that
more general rates as in the previous section could be considered as well. Here,
we ask the question of what is the correct scaling so that the bursting production
term is transmitted from the first variable to the second one, when the first
variable is eliminated through an adiabatic limit. The propagation of bursting
property in a gene network is an important question in molecular biology Kaern
et al. (2005).

This section is structured as follows. We first present the model in the rest
of this paragraph, then state the results in subsection 2.1, and divide the proofs
in the remaining three subsection 2.2,2.3,2.4.

Let x1 and x2 denote the concentrations of mRNA and protein respectively.
A simple model of single gene expression with bursting transcription is given by

dx1

dt
= −g1x1 + N̊(h, λ1(x2)), (9)

dx2

dt
= −g2x2 + k2x1. (10)

Here g1 and g2 are the degradation rates for the mRNA and protein respectively,
k2 is the mRNA translation rate, and N̊(h, λ1(x2)) describes the transcription
that is assumed to be a compound Poisson white noise occurring at a rate λ1(x2)
with a non-negative jump size ∆x1 distributed with density h.

The equations (9)-(10) are a short hand notation for

x1(t) = x1(0)−
∫ t

0

g1x1(s
−)ds (11)

+

∫ t

0

∫ ∞

0

∫ ∞

0

1{r≤λ1(x2(s−))}zN(ds, dz, dr),

x2(t) = x2(0)−
∫ t

0

g2x2(s
−)ds+

∫ t

0

k2x1(s
−)ds. (12)

where Xs− = limt→s− X(t), and N(ds, dz, dr) is a Poisson random measure on
(0,∞) × [0,∞)2 with intensity dsh(z)dzdr, where s denotes the times of the
jumps, r is the state-dependency in an acceptance/rejection fashion, and z the
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jump size. Note that (x1(t)) is a stochastic process with almost surely finite
variation on any bounded interval (0, T ), so that the last integral is well defined
as a Stieltjes-integral.

Hypothesis 2. The following discussion is valid for general rate functions λ1

and density functions h(·) that satisfy
• λ1 ∈ C1, λ1 is globally lipschitz and linearly bounded with

0 ≤ λ1(x) ≤ c+Kx.

• h ∈ C0 and
∫∞
0 xh(x)dx < ∞.

For such a general density function h, we denote the average burst size by

b =

∫ ∞

0

xh(x)dx. (13)

Remark 4. Hill functions are often used to model gene self-regulation, so that
λ1 is given by

λ1(x2) =
1 + xα

2

L+Dxα
2

where L, D are positive parameters and α is a positive integer (see Mackey,
Tyran-Kamińska and Yvinec (2011) for more details). An exponential distribu-
tion of the bursting transcription is often used in modeling gene expression, in
accordance with experimental findings (Xie et al. (2008)), so that the density
function h is given by

h(x) =
1

b
e−x/b,

with b the average burst size.

If λ1(x2) ≡ k1 is independent of the state x2, the average transcription rate
is bk1, and the asymptotic average mRNA and protein concentrations are

xeq
1 := E

[

x1(t → ∞)
]

=
bk1
g1

.

xeq
2 := E

[

x2(t → ∞)
]

=
k2
g2

xeq
1 =

bk1k2
g1g2

.

2.1. Statement of the results

Although Equations (9)-(10) are simple, they are not analytically solvable.
Hence, for pratical use to interpret experimental data, and to avoid numeri-
cal simulations, one looks for a reduced, analytically solvable, one-dimensional
equation. In the following discussion, we consider the situation when mRNA
degradation is a fast process, i.e. g1 is “large enough“, but the average equilib-
rium protein concentration xeq

2 remains unchanged. In most organisms and for
most genes, mRNA has a smaller lifetime than protein (Schwanhäusser et al.
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(2011)). In what follows, we denote by gn1 , k
n
2 sequences of parameters, λn

1 se-
quence of functions and hn sequence of density function that will replace g1,
k2, λ1, h in (11)-(12) and satisfy hypothesis 2. We then denote (xn

1 , x
n
2 ) its

associated solution. We will always assume one of the following three scaling
relations:

(S1) Frequent production rate of mRNA, namely gn1 = ng1, λ
n
1 = nλ1, and

kn2 = k2 hn = h are independent of n;
(S2) Large burst of mRNA, namely gn1 = ng1, hn(z) = 1

nh(
z
n ) and λn

1 =
λ1,k

n
2 = k2 remain unchanged;

(S3) Large production rate of protein, namely gn1 = ng1, k
n
2 = nk2, and λn

1 = λ1

hn = h are independent of n;

These three different scaling are then associated with different behaviors of
the biological systems given by (x1, x2). As different genes may have different
kinetics, each one of the possible scaling are of importance (Suter et al. (2011);
Schwanhäusser et al. (2011)).

In this section we determine an effective reduced equation for equation (10)
for each of the three scaling conditions (S1)-(S3). In particular, we show that
under assumption (S1), equation (10) can be approximated by the deterministic
ordinary differential equation

dx2

dt
= −g2x2 + λ2(x2) (14)

where
λ2(x2) = bk2λ1(x2)/g1.

We further show that under the scaling relations (S2) or (S3), equation (10) can
be reduced to the stochastic differential equation

dx2

dt
= −g2x2 + N̊(h̄, λ1(x2)). (15)

where h̄ is a suitable density function in the jump size ∆x2 (to be detailed
below).

We first explain, using some heuristic arguments, the differences between the
three scaling relations and the associated results. When n → ∞, gn1 → ∞ and
applying a standard quasi-equilibrium assumption we have

dxn
1

dt
≈ 0,

which yields

xn
1 (t) ≈

1

gn1
N̊(hn(.), λn

1 (x
n
2 )) = N̊(gn1 h

n(gn1 ·), λn
1 (x

n
2 )),

and therefore the second equation (10) becomes

dxn
2

dt
≈ −g2x

n
2 +

kn2
gn1

N̊(hn(.), λn
1 (x

n
2 )),

≈ −γ2x
n
2 + N̊

(

gn1
kn2

hn(
gn1
kn2

), λn
1 (x

n
2 )

)

.
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Hence in (15), h̄(x2) = (k2/g1)
−1h((k2/g1)

−1x2) under the scaling (S2) and
(S3). Furthermore, we note that the scaling (S2) also implies nhn(n·) = h(·),
while in (S1), nhn(n·) = nh(n·) so that the jumps become more frequent and
smaller.

We denote (D[0,∞), S) the cadlad function space of function defined on
[0,∞) at values in R

+ with the usual Skorohod topology (Jacod and Shiryaev
(1987)). Similarly (D[0, T ], J) is the cadlag funtion space on [0, T ], with the
Jakubowski topology (Jakubowski (1997)). Also, Lp[0, T ) the space of Lp inte-
grable function on [0, T ), with T > 0, which we endowed with total variation
norm (Giusti (1984)), and M(0,∞) is the space of real measurable function on
[0,∞) with the metric (Kurtz (1991))

d(x, y) =

∫ ∞

0

e−tmax{1, | x(t)− y(t) |}dt.

Our main results can be stated as follows

Theorem 3. Consider the equations (9)-(10) and assume Hypothesis 2. If the
scaling (S1) is satisfied, i.e., kn1 = nk1, and if xn

2 (0) → x0
2, then when n → ∞,

1. The stochastic process xn
1 (t) does not converge in any functional sense;

2. The stochastic process xn
2 (t) converges in law in (D[0,∞), S) towards the

deterministic solution of the ordinary differential equation

dx2

dt
= −g2x2 + λ2(x2), x2(0) = x0

2, (16)

where
λ2(x2) = bk2λ1(x2)/g1.

Theorem 4. Consider the equations (9)-(10) and assume Hypothesis 2. If the
scaling (S2) is satisfied, i.e., hn(z) = 1

nh(
z
n ), and if xn

2 (0) → x0
2, then when

n → ∞,

1. The stochastic process
xn
1 (t)
n converges in law in Lp, 1 ≤ p < ∞ and in

(D[0, T ], J) to the (deterministic) fixed value 0;
2. The stochastic process xn

2 (t) converges in law in Lp, 1 ≤ p < ∞ and in
(D[0, T ], J) to the stochastic process defined by the solution of the stochas-
tic differential equation

dx2

dt
= −g2x2 + N̊(h̄, λ1), x2(0) = x0

2 ≥ 0, (17)

where h̄(x2) = (k2/g1)
−1h((k2/g1)

−1x2).

Theorem 5. Consider the equations (9)-(10) and assume Hypothesis 2. If the
scaling (S3) is satisfied, i.e., kn2 = nk2, and if xn

2 (0) → x0
2, then when n → ∞,

1. The stochastic process xn
1 (t) converges in law in Lp, 1 ≤ p < ∞ and in

(D[0, T ], J) to the (deterministic) fixed value 0;
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2. The stochastic process xn
2 (t) converges in law in Lp, 1 ≤ p < ∞ and

in (D[0, T ], J) to the stochastic process determined by the solution of the
stochastic differential equation

dx2

dt
= −γ2x2 + N̊(h̄, ϕ), x2(0) = x0

2 ≥ 0,

where h̄(x2) = (k2/g1)
−1h((k2/g1)

−1x2).

Remark 5. Note that scalings (S2) and (S3) give similar results for the equation
governing the protein variable x2(t) but very different results for the asymptotic
stochastic process related to the mRNA. In particular, in Theorem 4, very large
bursts of mRNA are transmitted to the protein, where in Theorem 5, very rarely
is mRNA present but when present it is efficiently synthesized into a burst of
protein.

In the rest of this paper, we provide proofs of the results mentioned above,
using martingale techniques. In a companion paper Yvinec et al. (2012), we use
partial differential techniques to prove similar results (see also Haseltine and
Rawlings (2005); Zeron and Santillán (2010); Santilln and Qian (2011)).

The proofs of the three theorems above are divided in three steps. In section
2.2 we first recall generator properties and derive moment estimates associated
to (9)-(10). In section 2.3 we show the tightness result for all three theorems.
We then identify the limit using a martingale approach in section 2.4.

2.2. General properties and moment estimates

We first summarize the important background results on the stochastic processes
used in the next.

One dimensional equation For the one-dimensional stochastic differential
equation (15) perturbed by a compound Poisson white noise, of intensity λ(.)
and jump size distribution h(.), the extended generator of the stochastic process
(x2(t))t≥0 is (Davis, 1984, Theorem 5.5), for any f ∈ D(A∞),

A1f(x) = −g2x
df

dx
+ λ(x)

(

∫ ∞

x

h(z − x)f(z)dz − f(x)
)

D(A1) = {f ∈ M(0,∞) : t 7→ f(xe−γ2t) is absolutely

continuous for t ∈ R+ and

E

∑

Ti≤t

|f(x2(Ti))− f(x2(T
−
i ))| < ∞ for all t ≥ 0}

where M(0,∞) denotes a Borel-measurable function of (0,∞) and the times
Ti are the instants of the jump of x2. It is an extended domain containing
all functions that are sufficiently smooth along the deterministic trajectories
between the jumps, and with a bounded total variation induced by the jumps.
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For any f ∈ D(A1), we have

d

dt
Ef(x2(t)) = EA1(f(x2(t))).

Two dimensional equation Consideration the two-dimensional stochastic
differential equation (9)-(10) perturbed by a compound Poisson white noise,
of intensity λ1(x2) and jump size distribution h follows along similar lines. Its
infinitesimal generator and extended domain are

A2g(x1, x2) = −g1x1
∂g

∂x1
+ (k2x1 − g2x2)

∂g

∂x2

+ λ1(x2)

(

∫ ∞

x1

h(z − x1)g(z, x2)dz − g(x1, x2)

)

, (18)

D(A2) = {g ∈ M((0,∞)2) : t 7→ g(φt(x1, x2)) is absolutely (19)

continuous for t ∈ R+ and

E

∑

Ti≤t

|g(x1(Ti), x2(Ti))− g(x1(T
−
i ), x2(T

−
i ))| < ∞ for all t ≥ 0}

where φt is the deterministic flow given by the deterministic part of equations
(9)-(10), namely

dx1

dt
= −g1x1,

dx2

dt
= −g2x2 + k2x1.

For any f ∈ D(A2), we have

d

dt
Ef(x1(t), x2(t)) = EA2(f(x1(t), x2(t))). (20)

Using the stochastic differential equations (11)-(12), we can deduce moment
estimates, needed to be able to use unbounded test function (namely f(x1, x2) =
x1 and f(x1, x2) = x2) in the martingale formulation. By taking the mean into
(11)-(12), neglecting negatives values and using hypothesis 2,

0 ≤ E
[

x1(t)
]

≤ E
[

∫ t

0

bλ1(x2(s))ds
]

≤
∫ t

0

b(c+KE
[

x2(s)
]

)ds

0 ≤ E
[

x2(t)
]

≤
∫ t

0

k2E
[

x1(s)
]

ds

where we note b = E
[

h
]

=
∫∞
0

zh(z)dz. By Gronwall inequalities, there exist a
constant C such that

E
[

sup
t∈[0,T ]

x1(t)
]

≤ C(E
[

x1(0)
]

+ eCT )

E
[

sup
t∈[0,T ]

x2(t)
]

≤ C(E
[

x2(0)
]

+ eCT )
(21)
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Then we claim that f(x1, x2) = x1 is in the domain of the generator A2. We
only have to verify (see Eq (19))

E

∑

Ti≤t

|x1(Ti)− x1(T
−
i )| < ∞ for all t ≥ 0.

By equation (11)

E

∑

Ti≤t

|x1(Ti)− x1(T
−
i )| = E

∫ t

0

∫ ∞

0

∫ ∞

0

1{r≤λ1(x2(s−))}zN(ds, dz, dr),

≤ bE
[

∫ t

0

c+Kx2(s)ds
]

.

which is finite according to the previous estimates.

2.3. Tightness

S1 We first show the tightness property for the scaling (S1) corresponding to
theorem 3. In such case xn

1 does no converge in any functional sense because it
fluctuates very fast, as more and more jumps appears of size that stay of order

1 (given by h). However, E
[

xn
1 (t)

]

remains bounded,
xn
1

n goes to 0, and by eq.
(12),

| xn
2 (t) |≤| xn

2 (0) | +
∫ t

0

k2 | xn
1 (s) | ds.

For any n, let Nn be the compound Poisson process associated to (11), with
{Tn,i}∞i=1 the jump times which occur at a rate nλ1(x2(s)

n), and {Zn,i}∞i=1 the
jump sizes that are iid random variables with density h (with the convention
Tn,0 = 0 and Zn,0 = X0),

Nn(t) =
∑

Tn,i≤t

Zn,i.

Then
xn
1 (t) =

∑

Tn,i≤t

Zn,ie
−ng1(t−Tn,i) 1{t≥Tn,i}.

By integration,

∫ t

0

xn
1 (s)ds =

∑

Tn,i≤t

Zn,i
1

ng1
(1− e−g1(t−Tn,i))1{t≥Tn,i}.

Then,

xn
2 (t) ≤ xn

2 (0) +

∫ t

0

k2x
n
1 (s)ds ≤ xn

2 (0) +
k2
ng1

∑

Tn,i≤t

Zn,i.

Finally we deduce, by definition of the compound Poisson process,

xn
2 (t) ≤ xn

2 (0) +
k2
ng1

Nn(t).



R. Yvinec1/adiabatic reduction for PDMP 18

Now, by a time change, there exists a process Y such that

Nn(t) = Y
(

∫ t

0

nλ1(x
n
2 (s))ds

)

,

where Y is unit rate compound Poisson process of jump size iid (with density
h). By the law of large number, 1

nY (nt) is almost surely convergent, and hence
almost surely bounded. We deduce then there exists a random variable C such
that

xn
2 (t) ≤ xn

2 (0) +
k2
g1

C

∫ t

0

λ1(x
n
2 (s))ds.

By Gronwall lemma and Markov inequality

P
{

sup
t∈[0,T ]

xn
2 (t) ≥ M

}

→ 0,

as M → ∞ and uniformly in n. Similarly, for any t1, t2 ∈ [0, T ],

| xn
2 (t2)− xn

2 (t1) |≤
k2
ng1

| Nn(t2)−Nn(t1) | .

Again, Nn(t2)−Nn(t1) = Y
(

∫ t2

t1

nλ1(x
n
2 (s))ds

)

and, still by the law of large

number

| xn
2 (t2)− xn

2 (t1) |≤
k2
g1

C

∫ t2

t1

λ1(x
n
2 (s))ds,

so that , for any ε > 0

lim
θ→0

lim sup
n

sup
S1≤S2≤S1+θ

P
{

| xn
2 (S2)− xn

2 (S1) |≥ ε
}

= 0,

where the supremum is over stopping times bounded by T . Then by Aldous’
tightness criteria ((Jacod and Shiryaev, 1987, thm 4.5 p 356)), xn

2 is tight in
(D[0,∞), S).

S3 Now we show the tightness property for the scaling (S3) corresponding to
theorem 5, with kn2 = nk2. In such case xn

1 converges to 0 in L1, and we get a

control over n
∫ t

0 x
n
1 (s)ds. Indeed using g(x1, x2) = x1 in (18), we get

xn
1 (t)− xn

1 (0)−
∫ t

0

(−ng1x
n
1 (s) + bλ1(x2(s)

n)ds),

is a martingale so that due to Hypothesis 2,

g1E
[

n

∫ t

0

xn
1 (s)ds

]

≤ E
[

xn
1 (0)

]

+ b(ct+K

∫ t

0

E
[

xn
2 (s)

]

ds)

By eq. (12),

xn
2 (t) ≤ E

[

xn
2 (0)

]

+ k2n

∫ t

0

xn
1 (s)ds.
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then

sup
t∈[0,T ]

xn
2 (t) ≤ E

[

xn
2 (0)

]

+ k2n

∫ T

0

xn
1 (s)ds.

Reporting into the estimates for xn
1 yelds

g1E
[

n

∫ t

0

xn
1 (s)ds

]

≤ E
[

xn
1 (0)

]

+ b(ct+K(E
[

xn
2 (0)

]

+ tk2n

∫ t

0

E
[

xn
1 (s)

]

ds)),

≤ C1
T + C2

TE
[

n

∫ t

0

xn
1 (s)ds

]

,

for two constants C1
T , C

2
T that depends solely on T . Then E

[

n
∫ t

0
xn
1 (s)ds

]

is
bounded uniformly in n so that xn

1 converges to 0 in L1 and

P
{

sup
t∈[0,T ]

xn
2 (t) ≥ M

}

→ 0

as M → ∞ and uniformly in n. Now for any subdivision of [0, T ], 0 = t0 < t1 <
· · · < tn = T ,

n−1
∑

i=0

| xn
2 (ti+1)− xn

2 (ti) | ≤ E
[

xn
2 (0)

]

+ k2n

∫ t

0

xn
1 (s)ds,

so that we also get the tightness of the BV norm,

P
{

‖xn
2‖[0,T ] ≥ M

}

→ 0,

as M → 0, independently in n. Then xn
2 is tight in Lp([0, T ]), for any 1 ≤ p <

∞ (Giusti (1984)) and also, by a similar criteria, in (D[0, T ], J) (Jakubowski
(1997)).

S2 Now we show the tightness property for the scaling (S2) corresponding to

theorem 4, with hn = 1
nh(

1
n ). Remark that on such case, denoting zn =

xn
1

n , the
variables (zn, xn

2 ) satisfies (11)-(12) with the (S3) scaling, so we already now
that xn

2 is tight in Lp([0, T ]), for any 1 ≤ p < ∞.
For xn

1 , formally, note that each jumps yelds a contribution for
∫

xn
1 of b

g1
so

there’s no hope for a convergence to 0 in L1. However, we still have

xn
1 (t) =

∑

Tn,i≤t

Zn,ie
−ng1(t−Tn,i) 1t≥Tn,i

.

where Tn,i appears with rate λ1(x
n
2 (s)), and {Zn,i}∞i=1 are iid random variables

with density hn. Then

xn
1 (t) ≤

∑

Tn,i≤t

Zn,i

(

1{[Tn,i,Tn,i+
1

√

n
} + e

−ng1
1

√

n 1t≥Tn,i

)

.
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But for M > 0, by Markov inequality,

P
{

Zn,ie
−√

ng1 > M
}

≤ nb

Me
√
ng1

≤ ε,

for any ε and n sufficiently large. Then, conditionning by the jump times,

∫ t

0

P
{

xn
1 (s) > M | Tn,i

}

≤
∑

Tn,i≤t

1√
n
1{t≥Tn,i} +

∑

Tn,i≤t

ε(t− Tn,i)1{t≥Tn,i} ≤ ε.

for n large. Because
∫ t

0
xn
2 (s)ds has been shown to be bounded independently

of n, we can drop the conditionning, and
∫ t

0
P
{

xn
1 (s) > M

}

is arbitrary small.
We show also similarly that

lim
h→0

sup
n

∫ T

0

max(1, | xn
1 (t+ h)− xn

1 (t) |)dt = 0,

so that xn
1 is tight in M(0,∞) ((Kurtz, 1991, thm 4.1)).

2.4. Identification with the martingale problem

The three theorems below can be proved using martingale techniques, with
similar spirit. For each scaling, the generator An

2 can be decomposed into a fast
component, or order n, and a slow component, of order 1. In each case, one need
to find particular condition to ensure that the fast component vanishes. For the
scaling (S1), the fast component acts only in the first variable, so ergodicity
of this component will ensure that it vanishes, as in averaging theorems Kurtz
(1992). For the other two scaling, the fast component acts on both variables, and
we will have to find the particular relation between both variable that ensures
this component vanishes.

Proof of Theorem 3 For any B ∈ B(R+), t > 0, we define the occupation
measure

V n
1 (B × [0, t]) =

∫ t

0

1{B}(x
n
1 (s))ds,

and we identify V n
1 as a stochastic process with value in the space of finite

meaure on R
+. Because E

[

xn
1 (t)

]

remains bounded uniformly in n on any [0, T ],
it is stochastically bounded and V1 then satisfies Aldous criteria of tightness.
Now take a test function f that depends only on x1, so that

An
2f(x1) = nCx2

f(x1),

with

Cx2
f(x1) = −g1x1f

′(x1) + λ1(x2)

(

∫ ∞

x1

h(z − x1)f(z)dz − f(x1)

)

.
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Then

Mn
t = f(xn

1 (t))− f(xn
1 (0))− n

∫

R+

∫ t

0

Cxn
2
(s)f(x1)V

n
1 (dx1 × ds)

is a martingale. Dividing by n, for any limiting point (V1, x2), we must have,
for any f ∈ Cb(R+),

E
[

∫

R+

∫ t

0

Cx2(s)f(x1)V1(dx1 × ds)
]

= 0.

Because for any x2, the generator Cx2
is (exponentially) ergodic, V1 is uniquely

determined by the invariant measure associated to Cx2
. In particular, for any

t > 0
∫

R+

∫ t

0

x1V
n
1 (dx1 × ds) →

∫ t

0

b

g1
λ1(x2(s))ds.

Then for f that depends only on x2,

f(xn
2 (t)) − f(xn

2 (0))−
∫

R+

∫ t

0

(k2x1 − g2x
n
2 (s))f

′(xn
2 (s))V

n
1 (dx1 × ds)

converges to

f(x2(t))− f(x2(0))−
∫ t

0

(
bk2
g1

λ1(x2(s))− g2x2(s))f
′(x2(s))ds

Due to the assumption on λ1, there exists a unique solution associated to the
(deterministic) equation 14 so x2 is uniquely determined.

Proof of Theorem 5 We’ve already seen that xn
1 converges to 0 in L1([0, T ])

and xn
2 is tight in Lp([0, T ]). We then take a subsequence (xn

1 (t), x
n
2 (t)) that

converges to (0, x2(t)), almost surely and for almost t ∈ [0, T ]. Then we consider
the fast component of the generator An

2 , given in this case by

−g1x1
∂f

∂x1
+ k2x1

∂f

∂x2
.

This defines a transport equation. Starting at (x1, x2) at time 0, the asymptotic
value of the flow associated to the transport equation is (0, y) where

y = x2 +

∫ ∞

0

k2x1(s)ds = x2 +

∫ x1

0

k2z

g1z
dz = x2 +

k2
g1

x1

We then consider

f(x1, x2) = g(x2 +
k2
g1

x1),

that satisfies, for any x1, x2,

−g1x1
∂f

∂x1
+ k2x1

∂f

∂x2
= 0.
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Now taking the limit n → ∞ into

f(xn
1 (t), x

n
2 (t))− f(xn

1 (0), x
n
2 (0))−

∫ t

0

An
2 f(x

n
1 (s), x

n
2 (s))ds,

yelds

g(x2(t)) − g(x2(0))−
∫ t

0

−g2x2g
′(x2(s))

+ λ1(x2(s))

(

∫ ∞

0

h̄(z)g(x2(s) + z)dz − g(x2(s))

)

ds,

where h̄(x2) = (k2/g1)
−1h((k2/g1)

−1x2). Hence the limiting process x2 must
satisfy the martingale problem associated with the generator

A∞g(x) = −g2x
dg

dx
+ λ1(x)

(

∫ ∞

x

h̄(z − x)f(z)dz − f(x)
)

,

for which uniqueness holds for bounded k1 (see (Crudu et al., 2012, thm 2.5)).
A truncature argument allows then to conclude for linearly bounded k1.

Proof of Theorem 4 As noticed before, (zn, xn
2 ) with zn(t) =

xn
1 (t)
n satisfies

the scaling (S3) so similar conclusion holds for xn
2 .
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