Summer extreme climatic event in the future: impact on net CO2 and water fluxes of an upland grassland and buffering impact of elevated atmospheric CO2.

To cite this version:
Jacques Roy, Damien Landais, Clément Piel, Marc Defossez, Christophe Escape, et al.. Summer extreme climatic event in the future: impact on net CO2 and water fluxes of an upland grassland and buffering impact of elevated atmospheric CO2.. , OpenScienceConference on Climate Extremes and Biogeochemical Cycles in the Terrestrial Biosphere: Impacts and Feedbacks Across Scales, Max-Planck-Institut. Jena, DEU., 2013, Seefeld, Austria. hal-02806538

HAL Id: hal-02806538
https://hal.inrae.fr/hal-02806538
Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
Summer extreme climatic event in the future: impact on net CO$_2$ and water fluxes of an upland grassland and buffering impact of elevated atmospheric CO$_2$

Jacques Roy and col.: European Ecotron of Montpellier CNRS France

Michael Bahn: Institute of Ecology University of Innsbruck Austria

Florence Volaire: CEFE CNRS, INRA Montpellier France

Angela Augusti, J-F Soussana, C. Picon-Cochard: UREP INRA Clermont-Ferrand France
3 platforms:

12 macrocosms
12 (300) microcosms
24 mesocosms

THE EUROPEAN MONTPELLIER ECOTRON
A research platform to analyse the responses of ecosystems, organisms and biodiversity to environmental changes

Open to international consortia
Call in summer 2013
Intact soil monoliths
From a mid-altitude grassland

Inserted in the macrocosms
of the Ecotron
Air diffusing ring

Tefzel sheet

Intact ecosystem sample

Internal mixing flux (2 vol / mn)

75 m³ / mn

Air outlet

Air inlet

Air conditioning unit

2,5 m³ / mn
On line measurements

Net CO$_2$ Exchange: every 12 mn

$$\text{NEE} = \frac{[F \times (C_{\text{out}} - C_{\text{in}})]}{S}$$

Whole system calibration every night in one macocosm by simulating known additional respiration

Evapotranspiration: continuous measured by weight loss (straingauges)
2010: preconditioning warmer and dryer scenario reproducing the 2050 forecasted climate for the sampled site

<table>
<thead>
<tr>
<th></th>
<th>Annual Precipitation</th>
<th>Annual Mean Air Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>856 mm</td>
<td>8,6 °C</td>
</tr>
<tr>
<td>2050</td>
<td>770 mm</td>
<td>10,9 °C</td>
</tr>
<tr>
<td>Difference 2050/1999</td>
<td>- 10%</td>
<td>+ 2,3 °C</td>
</tr>
</tbody>
</table>

2011: full experiment
T°C and rainfall = 2050
6 macrocosms ambiant CO₂: 390 ppm
6 macrocosms 2050 CO₂: 520 ppm

Summer drought : - 50% rainfall
Drought (0 %) + heat wave + 3,5 °C
Gradual rewatering
Averaged environmental conditions achieved in the 4 treatments

<table>
<thead>
<tr>
<th></th>
<th>Ctrl 390</th>
<th></th>
<th>Extr 390</th>
<th></th>
<th>Ctrl 520</th>
<th></th>
<th>Extr 520</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>stan error</td>
<td>mean</td>
<td>stan error</td>
<td>mean</td>
<td>stan error</td>
<td>mean</td>
<td>stan error</td>
</tr>
<tr>
<td>CO2</td>
<td>391,0</td>
<td>1,6</td>
<td>392,3</td>
<td>1,1</td>
<td>520,9</td>
<td>1,6</td>
<td>518,9</td>
<td>2,5</td>
</tr>
<tr>
<td>T °C</td>
<td>15,46</td>
<td>0,03</td>
<td>16,03</td>
<td>0,09</td>
<td>15,48</td>
<td>0,05</td>
<td>16,09</td>
<td>0,04</td>
</tr>
<tr>
<td>VPD</td>
<td>0,71</td>
<td>0,03</td>
<td>0,91</td>
<td>0,02</td>
<td>0,76</td>
<td>0,03</td>
<td>0,90</td>
<td>0,01</td>
</tr>
</tbody>
</table>
Soil moisture at 7cm depth

Control 2050: cold colors
Extreme 2050: warm colors
Elevated CO2: lighter colors
Net Ecosystem Exchange (24h)

- Climate: -181% $p=0.000$
 - CO$_2$: +29% $p=0.020$

Time (Year/month)

- Control $T^\circ C$: 2050, Rain: 2050
- T$^\circ C$: 2050, Rain: 2050
- T$^\circ C$: 2050, Rain: 50%
- T$^\circ C$: 2050, Rain: 0%
- T$^\circ C$: 2050, Rain: Gradual
Net Ecosystem Exchange (24h)

- **CO₂**: +29% \(p=0.020 \)
- **Climate**: -181% \(p=0.000 \)
- **Climate**: +152% \(p=0.005 \)
- **CO₂**: +143% \(p=0.006 \)

Analysis:
- **Effect CO₂**: \(F(1, 8)=14.00 \quad p=0.006 \) \(\text{Vertical Bars IC} = 0.95 \)
- **Effect Climate**: \(F(1, 8)=14.89 \quad p=0.005 \) \(\text{Vertical Bars IC à} 0.95 \)

Graph:
- Time (Year/month)
- NEE (g CO₂.m⁻².day⁻¹)
- C-380
- E-380
- C-520
- E-520

Legend:
- **T°C: 2050 Rain: 2050**
- **Cut 1**
- **Cut 2**
- **Cut 3**
- **Cut 4**
- **Climate:**
 - **Control T°C: 2050 Rain: 2050**
 - **TC-2050 Rain: -50%**
 - **TC-25°C Rain: 10%**
 - **TC-2050 Rain Gradient**
 - **T°C: 2050 Rain: 2050**
Evapotranspiration (24h)

- **Temperature (°C):** 2050
- **Rain:** 2050

Climate: - 49% p=0.000

CO₂: - 3% p=0.021

Graph showing evapotranspiration over time with different scenarios.

- **ETR (kg·day⁻¹/4m²):**
- **Time (Year/month):** 2010 to 2011

Legend:
- C-380
- E-380
- C-520
- E-520

Graph highlights different conditions and their impact on evapotranspiration.
Ecosystem Water Use Efficiency (diurnal)

Climate: - 150 % \(p=0.000 \)

\(\text{CO}_2: + 31 \% \quad p=0.007 \)
Ecosystem Water Use Efficiency (diurnal)

CO₂: + 31 % p=0.007
Climate: - 150 % p=0.000

CO₂: + 44 % p=0.011
Climate: + 51 % p=0.012

Period Post Stress
Effect CO₂ : F(1, 8)=10.87 p=0.011
Effect Climate: F(1,8)=10.51 p=0.012
ETR 11 months

NEE 11 months

Root Growth Rate

Extr 520

Above ground biomass

Sum all cuts

Root growth at different periods
Conclusions:

Significant impact of extreme drought-Temperature on NEE

Significant positive impact of CO2, overcompensate the negative effect of extremes

More impact on roots and soil than on above ground biomass

Hope to welcome you in the Ecotron
ExpeER funds Transnational Access to more than 30 European experimental sites

www.expeeronline.eu