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The decision to adopt one or another of the sustainable land management alternatives should not be based solely on their respective benefits in terms of climate change mitigation but also based on the performances of the productive systems used by farm holdings, assessing their environmental impacts through the cost of fertilizer resources used. This communication uses the symbolic clustering tools in order to analyse the conditional quantile estimates of the fertilizer costs of yearly crop productions in agriculture, as a replacement proxy for internal soil erosion costs. After recalling the conceptual framework of the estimation of agricultural production costs, we present the empirical data model, the quantile regression approach and the interval principal component analysis clustering tools used to obtain typologies of European countries on the basis of the conditional quantile distributions of fertilizer cost empirical estimates. The comparative analysis of econometric results for main products between European countries illustrates the relevance of the typologies obtained for international comparisons to assess land management alternatives based on their impact on agricultural carbon sequestration in soils.

Economics of agricultural carbon sequestration in soils

Signatory States to the 2015 Paris Agreement have set a common goal of achieving carbon neutrality. According to a logic of net emissions flow adopted by several European countries, France has adopted a Climate Plan in July 2017 with a target of zero net emissions (ZEN) of greenhouse gases, at the 2050 horizon (Quinet [29]). Carbon sequestration in soils is one of the means proposed to achieve common goals of reducing greenhouse gas emissions while improving the productivity and sustainability of agricultural land in both developed and developing countries (SM CRSP, 2008). In addition to their soil carbon storage capacity, sustainable land management technologies benefit farmers by increasing yields and reducing production costs. For the European Union, a group of experts from the European Commission on agricultural markets also proposes to encourage farmers to store carbon on the basis of adapted agricultural practices (EC, 2016). However, on one hand, the evolution of the CAP's regulatory frameworks by 2020 shows that the proposed instruments alone cannot support large-scale projects on the agricultural soil carbon storage in Europe: in fact, there is very little likely that the future CAP budget is sufficient (Jevnaker and Wettestad, [START_REF] Jevnaker | Ratcheting Up Carbon Trade: The Politics of Reforming EU Emissions Trading[END_REF]). Hence, the decision to adopt one or another of the sustainable land management alternatives should not be based solely on their respective benefits in terms of climate change mitigation but also based on the consideration of the farmers, assessing comprehensively the productivity, resource utilization and environmental impact of the productive system. In the framework of the ANR ASSES project, integrated into the OTE-Med Eranet, we propose to better assess the economic cost of erosion for farmers by estimating the costs of restoring soil fertility, conceived as an ecosystem service for the benefit of agriculture. The economic evaluation of erosion distinguishes between two types of costs: on-site and off-site costs: in this paper, we focus on the on-site costs and in particular the costs induced by the resulting loss of nutrients. A review of the literature shows that estimates of the cost of soil erosion due to nutrient loss are significant and vary greatly depending on the type of crops grown and the production regions. In order to evaluate erosion costs due to nutrient losses, we estimate the production costs of fertilizers using an input/output methodology. The integration of agriculture in the 27 Member States of the European Union (EU) have raised both in the context of competitive markets as markets subject to regulation, recurring needs for estimating costs of production for major agricultural products, all along the successive reforms of the Common Agricultural Policy (CAP). The analysis of agricultural production costs is a tool for analyzing economic results of farmers: it allows to assess the price competitiveness of farmers, one of the major elements for development and sustainability of food chains in the European regions. To meet the needs of simulations and impact assessment in the various common market organizations, we must be able to provide information on the entire distribution of production costs for the assessment of public agricultural policy options. Based on the observation of asymmetry and heterogeneity within the empirical distribution of agricultural inputs, we propose a methodology adapted to the problem of estimating the empirical distributions of fertilizer costs of production for the main agricultural products in a European context where agricultural holdings remain mainly oriented towards multiple productions (Desbois et al. [START_REF] Desbois | Distribution des coûts spécifiques de production dans l'agriculture de l'Union européenne : une approche reposant sur la méthode de régression quantile[END_REF]). We first present the empirical model for estimating the fertilizer costs of production, derived from an econometric cost allocation approach inspired by Divay and Meunier [START_REF] Divay | Deux méthodes de confection du tableau entrées-sorties[END_REF] using microeconomic data to build an input-output matrix. Then, we introduce the estimation methodology according to the conditional quantiles proposed by Koenker and Bassett [START_REF] Koenker | Regression quantiles[END_REF]. Next, we present the symbolic data analysis procedures used to explore the empirical estimates of conditional quantile distribution intervals based on the concepts and methods provided by the symbolic approach of Billard and Diday [START_REF] Billard | Symbolic Data Analysis: Conceptual Statistics and Data Mining[END_REF]. Then, we present the graphs of results from the analysis tools of the symbolic data applied to the estimation intervals of the conditional quantiles. Eventually, we conclude on the relevance of this approach applied to the production of pig, proposing an extension of this type of analysis at the regional level.

Conceptual framework and methodological aspects

First, we present the methodology for estimating input costs, among which the fertilizer costs. Secondly, we introduce the factorial analysis and the clustering procedure of the estimation intervals in the formalism of the symbolic data.

2.1

The empirical model for estimating the fertilizer costs of production Inspired by Divay and Meunier [START_REF] Divay | Deux méthodes de confection du tableau entrées-sorties[END_REF], the allocation of the sum i x of the input costs for farm holding 𝑖𝑖 is made by linear decomposition along the gross products 𝑌𝑌 𝑖𝑖 𝑗𝑗 of farm holding 𝑖𝑖 for each production j, where 𝑢𝑢 𝑖𝑖 is a random vector with a zero mathematical expectation:

(1)
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As Cameron and Trivedi [START_REF] Cameron | Microeconometrics. Methods and Applications[END_REF], we assume that the data generator process is a linear model with multiplicative heteroscedasticity characterized in matrix form by: (2) 𝑥𝑥 = 𝑌𝑌′𝛽𝛽 + 𝑢𝑢 with 𝑢𝑢 = 𝑌𝑌′𝛼𝛼 × 𝜀𝜀 and 𝑌𝑌′𝛼𝛼 > 0 where 𝜀𝜀 ∼ 𝑖𝑖𝑖𝑖𝑖𝑖[0, 𝜎𝜎] is a random-vector identically and independently distributed with zero mean and constant variance 𝜎𝜎 2 . Under this assumption, 𝜇𝜇 𝑞𝑞 (𝑥𝑥|𝑌𝑌, 𝛽𝛽, 𝛼𝛼), the 𝑞𝑞 𝑡𝑡ℎ conditional quantile of the production cost x, conditioned by Y and the α and β parameters, is derived analytically as follows:

(3) 𝜇𝜇 𝑞𝑞 (𝑥𝑥|𝑌𝑌, 𝛽𝛽, 𝛼𝛼) = 𝑌𝑌 ′ [𝛽𝛽 + 𝛼𝛼 × 𝐹𝐹 𝜀𝜀 -1 (𝑞𝑞)] = 𝑌𝑌′𝛾𝛾. where 𝐹𝐹 𝜀𝜀 is the cumulative distribution function (CDF) of the errors. The technical coefficient for the j th product of the q th quantile of the ferilizer cost is defined by the j th component of the multivariate slope vector: (4)

𝛾𝛾 𝑗𝑗 (𝑞𝑞) = [𝛽𝛽 + 𝛼𝛼 × 𝐹𝐹 𝜀𝜀 -1 (𝑞𝑞)] 𝑗𝑗 . Following D'Haultfoeuille and Givord [START_REF] D'haultfoeuille | La régression quantile en pratique[END_REF], three models can be derived: i) 𝑥𝑥 = 𝑌𝑌 ′ 𝛽𝛽 + 𝑢𝑢 with 𝑢𝑢 = 𝐾𝐾𝐾𝐾, homoscedastic errors 𝑉𝑉(𝐾𝐾|𝑌𝑌) = 𝜎𝜎 2 , denoted as the location-shift model, i.e. the linear model of conditional quantile with homogeneous slopes; while 𝑌𝑌 ′ 𝛼𝛼 = 𝐾𝐾 is constant, the conditional quantiles 𝜇𝜇 𝑞𝑞 (𝑥𝑥|𝑌𝑌, 𝛽𝛽, 𝛼𝛼) = 𝑌𝑌 ′ 𝛽𝛽 + 𝐾𝐾𝐹𝐹 𝑒𝑒 -1 (𝑞𝑞) get all the same 𝛽𝛽 slope, but differ only by a constant gap, growing as q, the quantile order, increases; ii) 𝑥𝑥 = 𝑌𝑌 ′ 𝛽𝛽 + (𝑌𝑌′𝛼𝛼)𝜀𝜀 and 𝑌𝑌 ′ 𝛼𝛼 > 0 with heteroscedastic residuals, referred as the location-scale shift model, i.e. the linear model of heterogeneous conditional quantile slopes. iii) 𝑋𝑋 = 𝑌𝑌 ′ 𝛾𝛾 𝜉𝜉 with 𝜉𝜉 random variable independent of 𝑌𝑌 following a uniform distribution over the interval [0,1] such as 𝜉𝜉 ⟶ 𝑌𝑌′𝛾𝛾 𝜉𝜉 be strictly increasing whatever 𝑌𝑌, designated as the random coefficient model. 𝜉𝜉 corresponds to a random component determining the rank of the individual within the distribution of 𝑋𝑋. Under the strong distributional hypothesis of rank invariance, the random coefficient 𝛾𝛾 𝑞𝑞 represent the effect of a marginal change in 𝑌𝑌 for agricultural holdings located at the 𝑞𝑞 𝑡𝑡ℎ quantile of the 𝜉𝜉 distribution. This distributional assumption of rank invariance means that median farms in terms of input productivity would maintain the 𝑞𝑞 = 0.5 rank, regardless of the different levels of production 𝑌𝑌 𝑖𝑖 registered for the 𝑖𝑖 𝑡𝑡ℎ farm holding.

The procedures for estimating and testing conditional quantiles

The quantile regression is defined for each quantile of order q as the solution of a problem of minimization of the sum of the deviations in absolute value (𝐿𝐿 1 norm):

(5)
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1 min arg ˆ can be written in matrix form (6):

( ) ( ) ( ) ( ) { } X] β Y [ δ X Y e q β] Y [X δ Y X e q q 1 1 p - ′ ≥ - ′ - + ′ - ≥ - ′ = ℜ ∈ 0 ' 1 0 ' min arg ˆβ β β β with 𝑒𝑒'(X -Y ′ β ≥ 0), index
of farms 𝑖𝑖 such as 𝑥𝑥 𝑖𝑖 -𝑦𝑦′ 𝑖𝑖 𝛽𝛽 ≥ 0, and 𝛿𝛿 1 , vector of absolute deviations. Thus, the linear optimization problem solving methods developed for the L1 (absolute deviation) regression easily extend to quantile regression (Koenker and d'Orey, [START_REF] Koenker | Remark AS R92: A remark on algorithm AS 229: Computing dual regression quantiles and regression rank scores[END_REF]). Although the simplex method (Dantzig [START_REF] Dantzig | Programming in a linear structure[END_REF]) has an algorithmic complexity in Ο(𝑛𝑛 6 ), the Karmarkar [START_REF] Karmarkar | A new polynomial-time algorithm for linear programming[END_REF]'s method of the "interior-point" is in practice preferable as soon as the sample size becoming large, because of its reduced algorithmic complexity to Ο(𝑛𝑛 3,5 ). For large samples, Portnoy and Koenker [START_REF] Portnoy | The gaussian hare and the laplacian tortoise: Computation of squared-errors vs. absolute-errors estimators[END_REF] have shown that a combination of the "interior-point" algorithm and a smoothing algorithm for the objective function by Madsen and Nielsen [START_REF] Madsen | A Finite Smoothing Algorithm for Linear Estimation[END_REF] makes quantile regression calculations competitive with those of least squares regression. The weighted conditional quantiles have been proposed by Koenker and Zhao [START_REF] Koenker | L-estimation for linear heteroscedastic models[END_REF] as L-estimates 1 in linear heteroscedastic models. The 𝑊𝑊 = {𝑤𝑤 𝑖𝑖 , 𝑖𝑖 = 1, … , 𝑛𝑛} weighting of the observations leads to a quantile regression scheme solving the following minimization problem [START_REF] Chouakria | An improved factorial representation of symbolic objects[END_REF]:
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The weighted estimation procedure uses the "predictor-corrector" implementation of the primal-dual algorithm proposed by Lustig et al. [START_REF] Lustig | On implementing Mehrotra's predictorcorrector interior-point method for Linear Programming[END_REF] 1 An L-estimate is an estimate defined by a linear combination of ordinal statistics.

Given the size of the Farm Accounting Data Network (FADN) sample, its nonrandom selection and the existence a priori of distinct sub-populations (e.g. specialized types of farming), we opted for the resampling method, based on the Markov Chain Marginal Bootstrap (MCMB) technique. Without distributional assumption, this method yields robust empirical confidence intervals in a reasonable computation time (He and Hu [START_REF] He | Markov Chain Marginal Bootstrap[END_REF]). For a given product 𝑗𝑗 0 such as yield crops and the l th European country, the estimation interval of technical coefficients for 𝑞𝑞 𝑡𝑡ℎ conditional quantile of the fertilizer costs (8)

𝑧𝑧 𝑙𝑙 𝑞𝑞 = �𝐼𝐼𝑛𝑛𝐼𝐼_𝛾𝛾 � 𝑙𝑙 𝑗𝑗 0 (𝑞𝑞); 𝑆𝑆𝑢𝑢𝑆𝑆_𝛾𝛾 � 𝑙𝑙 𝑗𝑗 0 (𝑞𝑞)� = �𝑧𝑧 𝑙𝑙 𝑞𝑞 ; 𝑧𝑧 𝑙𝑙 𝑞𝑞 �
is obtained by MCMB.

Symbolic PCA of the fertilizer cost distributions

The symbolic approach has been introduced by Diday [START_REF] Diday | Thinking by Classes in Data Science: the Symbolic Data Analysis Paradigm[END_REF] in order to take in account several values rather a single one attached to a variable into the framework of exploratory methods of data analysis. Within this conceptual framework of symbolic data analysis, the extension of principal component analysis (PCA) to interval data was initially proposed by Cazes et al. [START_REF] Cazes | Extension de l'analyse en composantes principales à des données de type intervalle[END_REF] and later improved by Chouakria et al. [START_REF] Chouakria | An improved factorial representation of symbolic objects[END_REF] with the Vertex and the Center methods using either the vertices or the center of the hyper-rectangle defined by interval values as a multidimensional support for the initial PCA. In this paper, we propose to assess different PCA variants around the Vertex or the Center Methods, proposed by Garro and Rodriguez [START_REF] Garro | Optimized Dimensionality Reduction Methods for Interval-Valued Variables and Their Application to Facial Recognition[END_REF] in order to maximize the variance of the projections or to minimize the distance between the vertices and the projections of the hyperrectangle, on the basis of distributional data. As symbolic objects, the L national distributions Ω = {𝜔𝜔 1 , ⋯ , 𝜔𝜔 𝑙𝑙 , ⋯ 𝜔𝜔 𝐿𝐿 } are described by a set of 𝑄𝑄 = 5 descriptors 2 , which are the estimation intervals of {𝑧𝑧 0.10 , 𝑧𝑧 0.25 , 𝑧𝑧 0.50 , 𝑧𝑧 0.75 , 𝑧𝑧 0.90 }, coding for the D1 and D9 deciles combined with the three quartiles Q1, Q2 and Q3. Let define the set of 𝐿𝐿 × 𝑄𝑄 "within interval"-value matrices,

ℳ = �𝑍𝑍 ∈ 𝑀𝑀 𝐿𝐿×𝑄𝑄 |𝑧𝑧 𝑙𝑙 𝑞𝑞 ∈ �𝑧𝑧 𝑙𝑙 𝑞𝑞 ; 𝑧𝑧 𝑙𝑙 𝑞𝑞 ��.

The center-PCA of the interval distribution for quantile estimates

Let us define 𝑈𝑈 ∈ ℳ, the center-interval matrix of Z, by:

𝑈𝑈 = [𝑈𝑈 1 , ⋯ , 𝑈𝑈 𝑞𝑞 , ⋯ , 𝑈𝑈 𝑄𝑄 ] = � 𝑢𝑢 1 1 ⋯ 𝑢𝑢 1 𝑄𝑄 ⋮ 𝑢𝑢 𝑙𝑙 𝑞𝑞 ⋮ 𝑢𝑢 𝐿𝐿 1 … 𝑢𝑢 𝐿𝐿 𝑄𝑄 � with 𝑢𝑢 𝑙𝑙 𝑞𝑞 = 𝑧𝑧 𝑙𝑙 𝑞𝑞 +𝑧𝑧 𝑙𝑙 𝑞𝑞 2 ; 2
This choice of a small number of descriptors was made for comparative convenience with some more classical graphic approaches (Desbois et al. [START_REF] Desbois | Distribution des coûts spécifiques de production dans l'agriculture de l'Union européenne : une approche reposant sur la méthode de régression quantile[END_REF]); however, like this earlier work, it could be extended without disadvantage to sets of descriptors of cardinality Q=9 (deciles), or even Q=99 (percentiles) if the analysis objectives required it.

𝑉𝑉 = � 𝑣𝑣 1 1 ⋯ 𝑣𝑣 1 𝑄𝑄 ⋮ 𝑣𝑣 𝑙𝑙 𝑞𝑞 ⋮ 𝑣𝑣 𝐿𝐿 1 … 𝑣𝑣 𝐿𝐿 𝑄𝑄 � with 𝑣𝑣 𝑙𝑙 𝑞𝑞 = � 𝑧𝑧 𝑙𝑙 𝑞𝑞 -𝜇𝜇 � 𝑞𝑞 √𝐿𝐿𝜎𝜎 � 𝑞𝑞 ; 𝑧𝑧 𝑙𝑙 𝑞𝑞 -𝜇𝜇 � 𝑞𝑞 √𝐿𝐿𝜎𝜎 � 𝑞𝑞 �
where 𝜇𝜇̂𝑞𝑞 and 𝜎𝜎 � 𝑞𝑞 are respectively the mean and the standard deviation of the q th column vector 𝑈𝑈 𝑞𝑞 of the matrix U.

According to Cazes et al. [START_REF] Cazes | Extension de l'analyse en composantes principales à des données de type intervalle[END_REF], the interval principal components are defined by the following equations:

(9)

𝜑𝜑 𝑙𝑙 𝑞𝑞 = ∑ �𝑢𝑢 𝑙𝑙 𝑘𝑘 -𝜇𝜇̂𝑘𝑘�𝜁𝜁 𝑘𝑘 𝑞𝑞 𝑘𝑘=1,𝐾𝐾; 𝜁𝜁 𝑘𝑘 𝑞𝑞 <0 + ∑ �𝑢𝑢 𝑙𝑙 𝑘𝑘 -𝜇𝜇̂𝑘𝑘�𝜁𝜁 𝑘𝑘 𝑞𝑞 𝑘𝑘=1,𝐾𝐾; 𝜁𝜁 𝑘𝑘 𝑞𝑞 ≥0 (10) 𝜑𝜑 𝑙𝑙 𝑞𝑞 = ∑ �𝑢𝑢 𝑙𝑙 𝑘𝑘 -𝜇𝜇̂𝑘𝑘�𝜁𝜁 𝑘𝑘 𝑞𝑞 𝑘𝑘=1,𝐾𝐾; 𝜁𝜁 𝑘𝑘 𝑞𝑞 <0 + ∑ �𝑢𝑢 𝑙𝑙 𝑘𝑘 -𝜇𝜇̂𝑘𝑘�𝜁𝜁 𝑘𝑘 𝑞𝑞 𝑘𝑘=1,𝐾𝐾; 𝜁𝜁 𝑘𝑘 𝑞𝑞 ≥0
where 𝜁𝜁 𝑘𝑘 𝑞𝑞 is the q th coordinate of the k th eigenvector of 𝑈𝑈 ′ 𝑈𝑈, the variancecovariance matrix of U.

According to Rodriguez, Diday and Winsberg [START_REF] Rodriguez | Conditioning of Quasi-Newton Methods for Function Minimization[END_REF], the pattern of duality in the center-PCA implies the following relationships: 

𝜑𝜑 ℎ 𝑞𝑞 = 𝑚𝑚𝑚𝑚𝑥𝑥 �∑ 𝑣𝑣 ℎ 𝑘𝑘 𝜁𝜁 ́𝑘𝑘 𝑞𝑞 𝑘𝑘=1,…,𝑄𝑄; 𝜁𝜁 𝑘𝑘 𝑞𝑞 <0 + ∑ 𝑣𝑣 ℎ 𝑘𝑘 𝜁𝜁 ́𝑘𝑘 𝑞𝑞 ; -1 (11) 
𝑍𝑍 𝑙𝑙 = ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 𝑧𝑧 𝑠𝑠 1 1 ⋮ 𝑧𝑧 𝑠𝑠 ℎ 1 ⋯ ⋮ … ⋮ 𝑧𝑧 𝑠𝑠 𝑛𝑛 𝑙𝑙 1 ⋮ … 𝑧𝑧 𝑠𝑠 1 𝑞𝑞 ⋮ 𝑧𝑧 𝑠𝑠 ℎ 𝑞𝑞 ⋯ ⋮ … ⋮ 𝑧𝑧 𝑠𝑠 𝑛𝑛 𝑙𝑙 𝑞𝑞 ⋮ … 𝑧𝑧 𝑠𝑠 1 𝑞𝑞 ′ ⋮ 𝑧𝑧 𝑠𝑠 ℎ 𝑞𝑞 ′ ⋮ 𝑧𝑧 𝑠𝑠 𝑛𝑛 𝑙𝑙 𝑞𝑞 ′ … ⋮ … ⋮ … ⋮ … ⋮ … 𝑧𝑧 𝑠𝑠 1 𝑄𝑄 ⋮ 𝑧𝑧 𝑠𝑠 ℎ 𝑄𝑄 ⋮ 𝑧𝑧 𝑠𝑠 𝑛𝑛 𝑙𝑙 𝑄𝑄 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤
In this way, the vertices of hyper-rectangles ℋ 𝑙𝑙 are vectors of ℝ 𝑄𝑄 , while the Q estimates of the conditional quantiles are elements of ℝ 𝑁𝑁 , with 𝑁𝑁 = ∑ 𝑛𝑛 𝑙𝑙 𝐿𝐿 𝑙𝑙=1

. where

𝜇𝜇 𝑞𝑞 = 1 𝐿𝐿 ∑ 𝑧𝑧 𝑙𝑙 𝑞𝑞 𝐿𝐿 𝑙𝑙=1
is the average of the q th conditional quantile of cost estimates and 𝑤𝑤 𝑞𝑞 𝑘𝑘 , the q th coordinate of the k th eigenvector of the variance-covariance matrix of Z. Defining the supplementary normalised vertex 𝑍𝑍 � = �𝑍𝑍 � 1 , … , 𝑍𝑍 � 𝑙𝑙 , … , 𝑍𝑍 � 𝐿𝐿 � ′ by its l th submatrix, where 𝜎𝜎 𝑞𝑞 is the standard deviation of

𝑍𝑍 𝑞𝑞 𝑍𝑍 � 𝑙𝑙 = ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 𝑧𝑧 𝑙𝑙 1 -𝜇𝜇 1 √𝐿𝐿𝜎𝜎 1 ⋮ 𝑧𝑧 𝑙𝑙 1 -𝜇𝜇 1 √𝐿𝐿𝜎𝜎1 ⋯ ⋮ … ⋮ 𝑧𝑧 𝑙𝑙 1 -𝜇𝜇 1 √𝐿𝐿𝜎𝜎 1 ⋮ … 𝑧𝑧 𝑙𝑙 𝑞𝑞 -𝜇𝜇 𝑞𝑞 √𝐿𝐿𝜎𝜎 𝑞𝑞 ⋮ 𝑧𝑧 𝑙𝑙 𝑞𝑞 -𝜇𝜇 𝑞𝑞 √𝐿𝐿𝜎𝜎𝑞𝑞 ⋯ ⋮ … ⋮ 𝑧𝑧 𝑙𝑙 𝑞𝑞 -𝜇𝜇 𝑞𝑞 √𝐿𝐿𝜎𝜎𝑞𝑞 ⋮ … 𝑧𝑧 𝑙𝑙 𝑄𝑄 -𝜇𝜇 𝑄𝑄 √𝐿𝐿𝜎𝜎 𝑄𝑄 ⋮ 𝑧𝑧 𝑙𝑙 𝑄𝑄 -𝜇𝜇 𝑄𝑄 √𝐿𝐿𝜎𝜎 𝑄𝑄 ⋮ 𝑧𝑧 𝑙𝑙 𝑄𝑄 -𝜇𝜇 𝑄𝑄 √𝐿𝐿𝜎𝜎 𝑄𝑄 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤
Each 𝑠𝑠 ℎ vertex of hyper-rectangle of the l th national distribution of fertilizer cost estimate 𝑍𝑍 𝑙𝑙 � can be projected on the principal components of the Z-PCA, with the following k th coordinates: ( 15)

𝑐𝑐 𝑠𝑠 ℎ 𝑘𝑘 = ∑ 𝑧𝑧̃𝑠𝑠 ℎ 𝑞𝑞 𝑤𝑤 𝑞𝑞 𝑘𝑘 𝑄𝑄 𝑞𝑞=1
. According to Rodriguez [START_REF] Rodriguez | Classification et Modèles Linéaires en Analyse des Données Symboliques[END_REF], the minimum and maximum of the k th coordinate for each estimation interval for the l th country can be computed as follows:

(16) 𝜓𝜓 𝑙𝑙 𝑘𝑘 = 𝐼𝐼𝑛𝑛𝐼𝐼�𝑐𝑐 𝑠𝑠 ℎ 𝑘𝑘 � 𝑠𝑠 ℎ = 1, … , 𝑛𝑛 𝑙𝑙 = ∑ �𝑧𝑧 𝑙𝑙 𝑞𝑞 -𝜇𝜇 𝑞𝑞 �𝑤𝑤 𝑞𝑞 𝑘𝑘 �𝑞𝑞|𝑤𝑤 𝑞𝑞 𝑘𝑘 <0� + ∑ �𝑧𝑧 𝑙𝑙 𝑞𝑞 -𝜇𝜇 𝑞𝑞 � �𝑞𝑞|𝑤𝑤 𝑞𝑞 𝑘𝑘 ≥0� 𝑤𝑤 𝑞𝑞 𝑘𝑘 ( 17 
) 𝜓𝜓 𝑙𝑙 𝑘𝑘 = 𝑆𝑆𝑢𝑢𝑆𝑆�𝑐𝑐 𝑠𝑠 ℎ 𝑘𝑘 � 𝑠𝑠 ℎ = 1, … , 𝑛𝑛 𝑙𝑙 = ∑ �𝑧𝑧 𝑙𝑙 𝑞𝑞 -𝜇𝜇 𝑞𝑞 �𝑤𝑤 𝑞𝑞 𝑘𝑘 �𝑞𝑞|𝑤𝑤 𝑞𝑞 𝑘𝑘 <0� + ∑ �𝑧𝑧 𝑙𝑙 𝑞𝑞 -𝜇𝜇 𝑞𝑞 � �𝑞𝑞|𝑤𝑤 𝑞𝑞 𝑘𝑘 ≥0�
𝑤𝑤 𝑞𝑞

𝑘𝑘

Let us denote 𝑡𝑡 ℎ the eigenvectors of 𝑍𝑍 � 𝑍𝑍 � ′ for ℎ = 1, … , 𝐻𝐻, the coordinate of the q th quantile estimates on the h th principal component is given by: ( 18)

𝑟𝑟 ℎ 𝑞𝑞 = ∑ 𝑍𝑍 � ′ 𝑞𝑞 𝑠𝑠 𝑡𝑡 𝑠𝑠 ℎ 𝑁𝑁 𝑠𝑠=1
According to Garro and Rodriguez [START_REF] Garro | Optimized Dimensionality Reduction Methods for Interval-Valued Variables and Their Application to Facial Recognition[END_REF], by projection of the q th quantile estimate on the h th principal component in the direction of 𝑡𝑡 ℎ , the infimum and supremum values of the hyper-rectangle ℋ 𝑙𝑙 are computed as follows: and where 𝑃𝑃𝑟𝑟 ℧(𝑍𝑍) �𝑍𝑍 � 𝑙𝑙 � is the projection of the sub-matrix 𝑍𝑍 � 𝑙𝑙 , coding the vertices of the hyper-rectangle ℋ 𝑙𝑙 , on ℧(𝑍𝑍), as an appropriate orthonormal basis. The interval-valued matrix 𝑍𝑍 * that solves the optimization problem [START_REF] Koenker | Regression quantiles[END_REF] 𝑀𝑀𝑖𝑖𝑛𝑛 Ψ(𝑍𝑍) 𝑍𝑍 ∈ ℳ is estimated through Procedure (below), using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, in order to find the minimal distance to 𝑍𝑍 � , the vertex matrix.

(19) 𝜒𝜒 𝑙𝑙 𝑞𝑞 = 𝐼𝐼𝑛𝑛𝐼𝐼�𝑟𝑟 𝑠𝑠 𝑙𝑙 𝑞𝑞 � 𝑠𝑠 𝑙𝑙 = 1, … , 𝑛𝑛 𝑙𝑙 = ∑ 𝑧𝑧̃′ 𝑙𝑙 𝑠𝑠 𝑡𝑡 𝑠𝑠 ℎ �𝑠𝑠|𝑡𝑡 𝑠𝑠 ℎ <0� + ∑ 𝑧𝑧̃′ 𝑙𝑙 𝑠𝑠 �𝑠𝑠|𝑡𝑡 𝑠𝑠 ℎ ≥0� 𝑡𝑡 𝑠𝑠 ℎ (20) 𝜒𝜒 𝑙𝑙 𝑞𝑞 = 𝑆𝑆𝑢𝑢𝑆𝑆�𝑟𝑟 𝑠𝑠 𝑙𝑙 𝑞𝑞 � 𝑠𝑠 𝑙𝑙 = 1, … , 𝑛𝑛 𝑙𝑙 = ∑ 𝑧𝑧̃′ 𝑙𝑙 𝑠𝑠 𝑡𝑡 𝑠𝑠 ℎ �𝑠𝑠|𝑡𝑡 𝑠𝑠 ℎ <0� + ∑ 𝑧𝑧̃′ 𝑙𝑙 𝑠𝑠 �𝑠𝑠|𝑡𝑡 𝑠𝑠 ℎ ≥0� 𝑡𝑡 𝑠𝑠
Let us define the function Λ(𝑍𝑍, 𝑠𝑠):

ℳ × 𝑁𝑁 → ℝ + such as Λ(𝑍𝑍, 𝑠𝑠) = ∑ 𝜆𝜆 ℎ 𝑠𝑠 ℎ=1
, the variance of the first s components issued from the PCA of Z, where 𝜆𝜆 ℎ is the h th eigenvalue associated to the h th eigenvector of ℧(𝑍𝑍). The interval-valued matrix 𝑍𝑍 s that solves the optimization problem [START_REF] Koenker | Remark AS R92: A remark on algorithm AS 229: Computing dual regression quantiles and regression rank scores[END_REF] 𝑀𝑀𝑚𝑚𝑥𝑥 Λ(𝑍𝑍, 𝑠𝑠) 𝑍𝑍 ∈ ℳ is estimated through Procedure 2 (below) using the BFGS algorithm, in order to maximize the variance of the first s components. 

Symbolic clustering analysis of the fertilizer cost distributions

The local dissimilarities between country l and country l', associated with these estimation intervals of technical coefficients for the q th conditional quantile, are computed according to the Euclidean distance metric:

(23) 𝛿𝛿 𝑀𝑀 �𝑧𝑧 𝑙𝑙 𝑞𝑞 , 𝑧𝑧 𝑙𝑙 ′ 𝑞𝑞 � = � �𝐼𝐼𝑛𝑛𝐼𝐼_𝛾𝛾 � 𝑙𝑙 𝑗𝑗 0 (𝑞𝑞) -𝐼𝐼𝑛𝑛𝐼𝐼_𝛾𝛾 � 𝑙𝑙 ′ 𝑗𝑗 0 (𝑞𝑞)� 2 + �𝑆𝑆𝑢𝑢𝑆𝑆_𝛾𝛾 � 𝑙𝑙 𝑗𝑗 0 (𝑞𝑞) -𝑆𝑆𝑢𝑢𝑆𝑆_𝛾𝛾 � 𝑙𝑙 ′ 𝑗𝑗 0 (𝑞𝑞)� 2 .
For this metric M, a global dissimilarity between country l and country l' based on the differences over the national distributions of estimation intervals for the technical coefficients is computed according to the following quadratic criterion:

(24) 𝑖𝑖(𝜔𝜔 𝑙𝑙 , 𝜔𝜔 𝑙𝑙 ′ ) = �∑ 𝛿𝛿 𝑀𝑀 2 �𝑧𝑧 𝑙𝑙 𝑞𝑞 , 𝑧𝑧 𝑙𝑙 ′ 𝑞𝑞 � 𝑄𝑄 𝑞𝑞=1 � 1 2 ⁄
. Given a matrix of dissimilarities between national empirical distributions of fertilizer costs issued from the previous computations, we can use the methods of unsupervised clustering. In a way similar to the Ward's method, Chavent et al. [START_REF] Chavent | DIVCLUS-T: A monothetic divisive hierarchical clustering method[END_REF] proposes a divisive hierarchical clustering algorithm on symbolic data (DIVCLUS-T), valid for both interval data and categorical data. Subsequently, we detail for interval data the principles on which the operations of this unsupervised clustering procedure are based. The divisive hierarchical clustering algorithm recursively splits each cluster into two sub-clusters, starting from the whole set of countries as symbolic objects Ω = {𝜔𝜔 1 , ⋯ , 𝜔𝜔 𝑙𝑙 , ⋯ 𝜔𝜔 𝐿𝐿 }. At each partition in k symbolic clusters P 𝐾𝐾 = {𝐶𝐶 1 , ⋯ , 𝐶𝐶 𝑘𝑘 ⋯ , 𝐶𝐶 𝐾𝐾 }, a cluster has to be divided in order to get a partition P 𝐾𝐾+1 , with 𝐾𝐾 + 1 clusters, optimizing the selected adequacy criterion based on the inertia. The inertia of the k th cluster is defined by 𝐼𝐼(𝐶𝐶 𝑘𝑘 ) = ∑ 𝜇𝜇 𝑙𝑙 𝑖𝑖 𝑀𝑀 2 𝑙𝑙∈𝐶𝐶 𝑘𝑘 �𝑧𝑧 𝑙𝑙 , 𝑔𝑔(𝐶𝐶 𝑘𝑘 )� where 𝜇𝜇 𝑙𝑙 is the weight of the l th country and 𝑔𝑔(𝐶𝐶 𝑙𝑙 ) is the cluster centroid defined as: [START_REF] Lustig | On implementing Mehrotra's predictorcorrector interior-point method for Linear Programming[END_REF] 𝑔𝑔(𝐶𝐶 𝑘𝑘 ) = . For a partition 𝑃𝑃 𝐾𝐾 , the total inertia sums the intra inertia with the inter inertia: [START_REF] Portnoy | The gaussian hare and the laplacian tortoise: Computation of squared-errors vs. absolute-errors estimators[END_REF] 𝐼𝐼(Ω) = 𝑊𝑊(𝑃𝑃 𝐾𝐾 ) + 𝐵𝐵(𝑃𝑃 𝐾𝐾 ). Hence, minimizing the heterogeneity (measured by W) is equivalent to maximizing the homogeneity (measured by B). Generated by the logical binary choice (yes/no) to a numerical binary question Ψ = [𝐼𝐼𝑠𝑠 𝑧𝑧 𝑞𝑞 ≤ 𝑐𝑐 ? ], let us denote �𝐴𝐴 𝑘𝑘 , 𝐴𝐴 𝑘𝑘 � the induced bipartition of a cluster 𝐶𝐶 𝑘𝑘 formed of 𝑛𝑛 𝑘𝑘 objects. In order to choose among the 𝑛𝑛 𝑘𝑘 -1 possible bipartitions of the 𝐶𝐶 𝑘𝑘 cluster, a discriminating criterion can be defined by the following ratio:

(29) 𝐷𝐷(Ψ) = 𝐵𝐵 𝑞𝑞 �𝐴𝐴 𝑘𝑘 ,𝐴𝐴 𝑘𝑘 � 𝐼𝐼 𝑗𝑗 (𝐶𝐶 𝑘𝑘 ) = 1 - 𝑊𝑊 𝑗𝑗 �𝐴𝐴 𝑘𝑘 ,𝐴𝐴 𝑘𝑘 � 𝐼𝐼 𝑞𝑞 (𝐶𝐶 𝑘𝑘 ) ,
where the inter inertia 𝐵𝐵 𝑞𝑞 �𝐴𝐴 𝑘𝑘 , 𝐴𝐴 𝑘𝑘 � and the inertia 𝐼𝐼 𝑞𝑞 (𝐶𝐶 𝑘𝑘 ) are computed with regards to the 𝑞𝑞 𝑡𝑡ℎ conditional quantile. Hence, minimizing the intra inertia W�𝐴𝐴 𝑘𝑘 , 𝐴𝐴 𝑘𝑘 � is equivalent to maximizing the inter inertia B�𝐴𝐴 𝑘𝑘 , 𝐴𝐴 𝑘𝑘 � and, as a result, to the 𝐷𝐷(Ψ) discriminating criterion.

As in Ward method, the "upper hierarchy" (Mirkin [27]) of partition 𝑃𝑃 𝐾𝐾 is indexed by the height h of a cluster 𝐶𝐶 𝐾𝐾 , defined by its inter inertia as follows:

(30) ℎ(𝐶𝐶 𝑘𝑘 ) = 𝐵𝐵�𝐴𝐴 𝑘𝑘 , 𝐴𝐴 𝑘𝑘 � = 𝜇𝜇(𝐴𝐴 𝑘𝑘 )𝜇𝜇�𝐴𝐴 𝑘𝑘 � 𝜇𝜇(𝐴𝐴 𝑘𝑘 )+𝜇𝜇�𝐴𝐴 𝑘𝑘 � 𝑖𝑖 2 �𝑔𝑔(𝐴𝐴 𝑘𝑘 ), 𝑔𝑔�𝐴𝐴 𝑘𝑘 ��
The DIVCLUS-T algorithm splits the cluster 𝐶𝐶 𝐾𝐾 * that maximises ℎ(𝐶𝐶 𝐾𝐾 ), ensuring that the next partition 𝑃𝑃 𝐾𝐾+1 = 𝑃𝑃 𝐾𝐾 ⋃�𝐴𝐴 𝐾𝐾 , 𝐴𝐴 𝐾𝐾 � -𝐶𝐶 𝐾𝐾 * has the minimum intra inertia value, with respect to the rule [START_REF] Rodriguez | Conditioning of Quasi-Newton Methods for Function Minimization[END_REF] 𝑊𝑊(𝑃𝑃 𝐾𝐾+1 ) = 𝑊𝑊(𝑃𝑃 𝐾𝐾 ) -ℎ(𝐶𝐶 𝐾𝐾 * ). In order to determine an optimal clustering, we use as the internal quality index for each partition 𝑃𝑃 𝐾𝐾 , the log of the determinant ratio computed as follows:

(32) 𝜘𝜘 𝐾𝐾 = 𝑁𝑁 log � 𝑑𝑑𝑒𝑒𝑡𝑡(𝑇𝑇) 𝑑𝑑𝑒𝑒𝑡𝑡�𝑊𝑊𝑊𝑊 (𝐾𝐾) � �
where 𝑇𝑇 = 𝑍𝑍 ′ 𝑍𝑍 is the total scatter matrix (N times the total variance-covariance matrix) and

𝑊𝑊𝑊𝑊 (𝐾𝐾) = ∑ 𝑊𝑊 (𝑘𝑘) 𝐾𝐾 𝑘𝑘=1
the sum of the within-group scatter matrices, 𝑊𝑊 (𝑘𝑘) for each group 𝐶𝐶 𝑘𝑘 of the partition 𝑃𝑃 𝐾𝐾 in K groups. The optimal score for the quality index is given by the min_diff decision rule:

𝐾𝐾 * = arg_min 𝐾𝐾 {𝜕𝜕 𝐾𝐾 -𝜕𝜕 𝐾𝐾-1 } with 𝜕𝜕 𝐾𝐾 = 𝜘𝜘 𝐾𝐾+1 -𝜘𝜘 𝐾𝐾 , using procedure ClusterCrit proposed by Desgraupes [START_REF] Desgraupes | Clustering Indices[END_REF] for needed computations.

Results

Based on the gross product, the estimation according to the quantiles provides a conditional allocation of the fertilizer costs by main products, within the framework of a multi-product exploitation. In the framework of the Farm Accountancy Cost Estimation and Policy Analysis project (FACEPA) research project, the managers in charge of the Knowledge Based Bio-Economy project of the 7 th EU Framework Program of Research has chosen to focus on the main agricultural commodities produced at a level sufficiently broad at the European level to allow meaningful cross-country comparisons for the twelve European Member States which are the main producers (EU12), choosing 2006 as a baseline for comparison convenience. We analyse the results obtained in particular for the yield crops about fertilizer inputs. The figures are estimated from a quantile regression of the fertilizer inputs on a decomposition of the gross product into five product aggregates (yearly crops, permanent crops, pasture livestock, off-ground livestock, others) for the set of twelve European countries (UE12) selected on 2006. Table 1 presents for yield crops the estimation intervals of conditional quantiles (lower decile D1, lower quartile Q1, median Q2, upper quartile Q3, upper decile D9) of the fertilizer inputs of agricultural production.

Tab. 1. Yield Crops, estimation intervals for technical coefficients of quantile fertilizer costs for € 1 of gross product, EU12. Source: author's processing, from EU-FADN 2006.

The pre-visualization of the fertilizer cost estimates is done according to the graph in Fig. 2, showing the conditional quantile point estimates in ascending order for each country. This graph of point estimates of conditional quantiles of fertilizer costs for yield crop by country highlights some distributional facts. Below 3%, the overall level of the Netherlands distribution curbs (iNED and sNED on Figure 1) is the lowest of the twelve European countries studied, with the exception of the lower bound (i) of the first decile (D1) in Sweden (SVE) which is negative. The Netherlands distribution is also the flattest of the twelve European distributions analysed, followed by the distributions for Italy and Belgium, which have fairly moderate slopes and overall estimation levels below 13%. The Netherlands distribution illustrates the location shift linear model of conditional quantile with homogeneous slopes. Conversely, the maximum and minimum curves of the Swedish distribution (iSVE and sSVE) are the steepest (from 1,6% to near 30%), immediately followed by those of France (iFRA and sFRA) and Poland (iPOL and sPOL). These three countries illustrate the location-scale shift linear model of conditional quantile with heterogeneous slopes. Next, Hungary (iHUN and sHUN), Germany (iDEU and sDEU), Austria (iOST and sOST), the United Kingdom (iUKI and sUKI) and Spain (iESP and sESP) form an intermediate group where, on the basis of this first graph, it becomes difficult to distinguish clear differences between these national distributions. Except for the third principal component (C3), the optimised distance option of the interval PCA displays the minimum absolute deviation (MAD) between supremum and infimum vertices over the principal components, compared to the centers option and the optimised variance options (cf. table 3). So the optimised distance option provides a narrower display of interval estimates for quantile. In the first factorial plane, the optimised distance and the optimised variance options display a pattern of correlations between quantile estimates and principal components very similar to those of the classic PCA on the two first principal components. As shown by their contributions to inertia (table 4), the first two principal components have roughly the same definition in terms of quantile. The correlations between quantile estimates and the other principal components (C3, C4 and C5) are different from the classical PCA for the optimised variance option, however without few practical implications due to the very small level of inertia (below 5%) expressed by this these components.

Tab. 4. Comparison of the relative contribution to inertia (Contr.) between the principal components of the three PCA options: classic PCA (Classic), optimised distance (Optdist), and optimised variance (Optvar). Source: author's processing, from EU-FADN 2006.

The contributions to inertia for the national distributions of fertilizer estimates (table 5) show similar patterns on the two first components between the optimised options and the classic PCA, with the exception of Poland opposed to Sweden in the optimised variance option, instead of Hungary in classic and optimised distance options for the C2 component. As summarized by the mean absolute deviation in table 3, the display of all country rectangle projections is the largest into the centers option (figure 4) and the smallest into the optimised distance option (figure 6) while the display of the optimised variance option (figure 5) is of medium range between the two previous options, both in the lengths (dimension 1 of the first principal component) and the widths (dimension 2 of the second principal component). 

The divisive hierarchy of fertilizer cost estimates

The divisive hierarchy obtained with Euclidean distance option shows that the set of D1, Q1, Q2 and Q3 quantile estimates is used by the discriminant values, which implies keeping these parameters to describe the distribution, and possibly extending it by a finer quantile scale allowing some of the national distributions to be better distinguished. The first partition in two clusters corresponds to the supremum level of the median estimate (Q2S). At the top of the divisive hierarchy, the clustering procedure allows to identify two contrasted models for empirical distributions of the fertilizers technical coefficients for yearly crops production costs used to € 1,000 of gross product. As the first cluster, Netherlands (Ned) and the group of Italy (Ita), Belgium, (Bel), Denmark (Dan) and Spain (Esp) grouped by their supremum median (Q2S) levels which are lower than € 7, are split in the following divisive step by the supremum higher quartile (Q3S) level of € 5 which identifies Netherlands as the less intensive in fertilizer input. Netherlands is the archetype of the location-shift model formalizing the assumption of homogeneous producers in their fertilizer costs. As the second cluster, for which their supremum median (Q2S) of fertilizer cost is greater than 7 €, is split into two groups: first, the group for which the fertilizer first decile input is greater than € 1, i.e. the subgroup formed by Poland (Pol), and Hungary (Hun) aggregated with France (Fra); second, the group formed by Sweden (Sve) aggregated with the subgroup formed by Germany (Deu), Austria (Ost) and United-Kingdom (Uki), on the basis of their fertilizer first decile lesser than € 1 input level. This latter group illustrates the location-scale shift model, formalizing the assumption of heterogeneous producers in their fertilizer costs. The partition into four groups displays by figure 8 is the optimal partition for the minimum difference in the logarithm of the ratio of determinants (package ClusterCrit), which is a consistent rule with the criterion of the DIVCLUS-T algorithm.

Conclusions

Based on quantile regression and symbolic data analysis, this paper presents a global methodology which aims to keep as much as possible relevant information for the policy design, all along the econometric process of estimating and analyzing agricultural fertilizer costs for yearly crops production. The different properties of three options of interval PCA (centers, optimized distance and optimized variance) are described allowing to identify different models of distributional scale, notably that of the location shift model opposite that of the location-scale shift one. Differences and similarities between interval estimates are exploited using divisive hierarchical clustering to produce two country clusters identifying through quantile cost thresholds the archetypes of the location shift model and the location-scale shift one. The differences between four groups of countries are delimited by optimal thresholds expressed according to the conditional quantiles in unitary terms of the gross product. These thresholds can be used for segmenting farm populations to later analyze the differential impacts of agricultural policy measures. We will apply this methodology at the second level of the European Nomenclature of Territorial Units for Statistics (NUTS 2, 281 regions).
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 1 Fig. 1. The symbolic coding of the estimation intervals for the technical coefficients of the lower (Q1) and higher (Q3) quartiles of fertilizer costsLet us apply PCA to 𝑍𝑍 ∈ ℳ, a within-interval value matrix. The k th principal component of the l th country is given by: (14)𝜓𝜓 𝑙𝑙 𝑘𝑘 = ∑ �𝑧𝑧 𝑙𝑙 𝑞𝑞 -𝜇𝜇 𝑞𝑞 �𝑤𝑤 𝑞𝑞 𝑘𝑘 𝑄𝑄 𝑞𝑞=1
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  Thus, the Z-PCA provides a dual representation of the fertilizer empirical cost distributions represented by their estimation intervals, which are the symbolic objects, and conditional quantiles which are the descriptors of these symbolic objects. Let us define ℧(𝑍𝑍) = {𝑤𝑤 1 𝑍𝑍 , … 𝑤𝑤 𝑠𝑠 𝑍𝑍 , … , 𝑤𝑤 𝑆𝑆 𝑍𝑍 }, the orthonormal basis of eigenvectors issued from the variance-covariance matrix of Z, and the function Ψ(𝑍𝑍): ℳ → ℝ + ∪ {0} based on the Euclidean norm ‖. ‖, such as Ψ(𝑍𝑍) = ∑ �𝑍𝑍 � 𝑙𝑙 -𝑃𝑃𝑟𝑟 ℧(𝑍𝑍) �𝑍𝑍 � 𝑙𝑙 �� 2 𝐿𝐿 𝑙𝑙=1

  is defined by the sum of the inertias of the clusters to their centroids:[START_REF] Madsen | A Finite Smoothing Algorithm for Linear Estimation[END_REF] 𝑊𝑊(𝑃𝑃 𝐾𝐾 ) = ∑ 𝐼𝐼 𝑘𝑘=1,…,𝐾𝐾 (𝐶𝐶 𝑘𝑘 ). The inter inertia is defined by the inertia of the centroids with regards to the g overall centroid of Ω , as follows:[START_REF] Mirkin | Clustering for Data Mining. A Data Recovery Approach[END_REF] 𝐵𝐵(𝑃𝑃 𝐾𝐾 ) = ∑ 𝜇𝜇 𝑘𝑘 𝑖𝑖 𝑀𝑀 2 𝑘𝑘=1,…,𝐾𝐾 (𝑔𝑔(𝐶𝐶 𝑘𝑘 ), 𝑔𝑔) where 𝜇𝜇 𝑘𝑘 = ∑ 𝜇𝜇 𝑙𝑙 𝑙𝑙=1,…,𝑘𝑘
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 231 Fig. 2. Yield Crops, interval estimation for fertilizer coefficients of conditional quantiles for 12 EU member States; iOST stands for Austria infimum, respectively, sOST for Austria supremum. Source: author's processing, from EU-FADN 2006. -0,030 -0,020 -0,010 0,000 0,010 0,020 0,030 0,040 0,050 0,060 0,070 0,080 0,090 0,100 0,110 0,120 0,130 0,140 0,150 0,160 0,170 0,180 0,190 0,200 0,210 0,220 0,230 0,240 0,250 0,260 0,270 0,280 0,290 0,300 0,310
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 3 Fig. 3. Symbolic PCA ('centers' option) for Quantile Estimates, factorial plane F1xF2 of EU12 countries. Source: author's processing, from EU-FADN 2006.

Fig. 4 .

 4 Fig. 4. Symbolic PCA ('centers' option) for Quantile Estimates, factorial plane C1xC2 of EU12 countries. Source: author's processing, from EU-FADN 2006.

Fig. 5 .

 5 Fig. 5. Symbolic PCA ('optimized.distance' option) for Quantile Estimates, factorial plane F1xF2 of EU12 countries. Source: author's processing, from EU-FADN 2006.

Fig. 6 .

 6 Fig. 6. Symbolic PCA ('optimized.variance' option) for Quantile Estimates, factorial plane F1xF2 of EU12 countries. Source: author's processing, from EU-FADN 2006. By the relative sizes and locations of their hyper-rectangle projections, these three factorial representations (figures 4, 5, and 6) distinguish clearly Netherlands on the first principal component, as the archetype of the location shift model, and

Fig. 7 .

 7 Fig. 7. Symbolic Divisive Clustering ('Euclidean distance' option) for Quantile Estimates, EU12 countries. Source: author's processing, from EU-FADN 2006.

Fig. 8 .

 8 Fig. 8. Symbolic Divisive Clustering (C4 optimal partition for Determinant Ratio Criterion) for Quantile Estimates, factorial plane F1xF2 of EU12 countries. Source: author's processing, from EU-FADN 2006.

  The 'best point' PCA of the interval distribution for quantile estimates In the bivariate case (𝑞𝑞 = 2) with the Q1 (𝑍𝑍 0.25 ) and Q3 (𝑍𝑍 0.75 ) quartiles, the vertex submatrix 𝑍𝑍 𝑙𝑙 associated with the 𝑙𝑙 𝑡𝑡ℎ country, is defining the 𝑛𝑛 = 2 𝑞𝑞 = 4 vertices of a Q1 by Q3 rectangle ℋ 𝑙𝑙 (cf. figure1): 𝐿𝐿, let us define 𝑍𝑍 = �𝑍𝑍 1 , … , 𝑍𝑍 𝑙𝑙 , … , 𝑍𝑍 𝐿𝐿 � matrix, by its submatrices 𝑍𝑍 𝑙𝑙 of the l th country 𝜔𝜔 𝑙𝑙 , represented by ℋ 𝑙𝑙 the hyper-rectangle build with 𝑛𝑛 𝑙𝑙 = 2 𝑞𝑞 𝑙𝑙 vertices of the 𝑞𝑞 𝑙𝑙 non-trivial intervals.

						𝑍𝑍	0.25	𝑍𝑍	0.75
	(13)				𝑍𝑍 𝑙𝑙 =	⎪ ⎧ 𝑧𝑧 𝑙𝑙 0.25 𝑧𝑧 𝑙𝑙 0.25	𝑧𝑧 𝑙𝑙 0.75 𝑧𝑧 𝑙𝑙 0.75	⎫ ⎪	.
						⎩ ⎪ ⎨	𝑧𝑧 𝑙𝑙 0.25 𝑧𝑧 𝑙𝑙 0.25	𝑧𝑧 𝑙𝑙 0.75 𝑧𝑧 𝑙𝑙 0.75 ⎭ ⎪ ⎬
	Via a similar process for 𝑙𝑙 = 1, … ,
								𝑘𝑘=1,𝐾𝐾; 𝜁𝜁 𝑘𝑘 𝑞𝑞 ≥0	�
	(12)	𝜑𝜑 ℎ 𝑞𝑞 = 𝑚𝑚𝑖𝑖𝑛𝑛 �∑	𝑘𝑘=1,…,𝑄𝑄; 𝜁𝜁 𝑘𝑘 𝑞𝑞 <0	𝑣𝑣 ℎ 𝑘𝑘 𝜁𝜁 ́𝑘𝑘 𝑞𝑞	+ ∑	𝑘𝑘=1,𝐾𝐾; 𝜁𝜁 𝑘𝑘 𝑞𝑞 ≥0	𝑣𝑣 ℎ 𝑘𝑘 𝜁𝜁 ́𝑘𝑘 𝑞𝑞 ; 1 �
	where 𝜁𝜁 ́𝑘𝑘 V, and 𝑣𝑣 ℎ 𝑘𝑘 =	𝑆𝑆𝑢𝑢𝑆𝑆�𝑣𝑣 𝑙𝑙 ℎ 𝑘𝑘 � 𝑙𝑙 ℎ ∈ 𝐿𝐿	respectively 𝑣𝑣 ℎ 𝑘𝑘 =	𝐼𝐼𝑛𝑛𝐼𝐼�𝑣𝑣 𝑙𝑙 ℎ 𝑘𝑘 � 𝑙𝑙 ℎ ∈ 𝐿𝐿

𝑞𝑞 is the q th coordinate of the h th eigenvector of 𝑉𝑉𝑉𝑉 ′ the inertia matrix of . This duality pattern determines the infimum and the supremum of the hyper-rectangle defined by the projection of the q th vector of V in the direction of the h th principal component of VV'. 2.3.2 ′ , the vertex-interval

  the C2 component, Sweden is clearly opposed to the other countries, taking in account its extreme D9 estimates. Countries symbolised by a larger rectangle are Austria, Sweden, Hungary, United-Kingdom, Belgium, and Poland, which correspond to those with greater interval range. Conversely, countries symbolised by a smaller rectangle are Denmark, Italy, Netherlands, Spain, Germany, and France, which are characterised by a narrower range of estimate intervals. For individuals, alternate projections are provided by the "best point" PCA options, the optimised distance option on one hand, and on the other hand the optimized variance option. As shown in table 2, the optimised variance option of the PCA maximizes the variance of the first components since the cumulative percentage of variance of the first factorial plan is the highest (98.7%) compared to the optimal distance option (94.9 %) and to the classical PCA (97.4%). So, the optimised variance option provides a more complete summary in two dimensions.

	Tab. 2. Comparison of the percentage of cumulative variance between the principal components of
	the three following PCA options: classical PCA (clCssic), optimised distance (Optdist), and
	optimised variance (Optvar). Source: author's processing, from EU-FADN 2006.