

Potential carcinogenic mechanisms by red and cured meat

Denis E. Corpet, Fabrice H.F. Pierre, Nadia Bastide, Océane Martin, Sylviane Taché, Nathalie Naud, Françoise Guéraud

▶ To cite this version:

Denis E. Corpet, Fabrice H.F. Pierre, Nadia Bastide, Océane Martin, Sylviane Taché, et al.. Potential carcinogenic mechanisms by red and cured meat. Royal Swedish Academy of Agriculture and Forestry Conference, Royal Swedish Academy of Agriculture and Forestry. SWE., May 2012, Stockholm, Sweden. 31p. hal-02806788

HAL Id: hal-02806788 https://hal.inrae.fr/hal-02806788

Submitted on 6 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Potential Carcinogenic Mechanisms by Red & Cured Meat

Denis E. Corpet

Pierre F., Bastide NM., Martin O., Taché S., Naud N., Guéraud F. ToxAlim - INRA - Institut National Recherche Agronomique **ENVT - Ecole Nationale Vétérinaire Toulouse - France**

Exaggerated, but true. Why?

Method: Rats given a colon carcinogen

DMH, AOM, PhIP, MNU, MNNG...

Dimethylhydracine - DMH

Azoxymethane - AOM

2-amino-1-methyl-6-phenylimidazol [4,5-b]pyridin - PhiP

No spontaneous colon cancer in rats but **easy to induce ACF, MDF & cancers**

Tumor development & pathology are similar in rats and in humans

Rat model with precancer lesions

ACF, Aberrant Crypt Foci

Methylene Blue staining x40, 15d after carcinogen initiation Correlation with cancer, not 100% (*Bird, Cancer Let. 1987*) Ki-ras mutation

MDF, Mucin Depleted Foci

HIDAB staining x40 high iron diamine Alcian blue 100d after carcinogen initiation MDF-cancer correlation >> ACF (Caderni, Cancer Res. 2002) Apc mutation (Femia, 2007)

Experimental testing of the 3 major hypotheses

- Carcinogen-initiated rats given meat-derived factors for 100d in a 2x2x2 design
- H1- Hemoglobin 1% in diet. Heme
- H2- Nitrite + Nitrate (0.17 + 0.23 g/l)NaNO₂ + NaNO₃) in drinking water 0 = zero Nitrite / N = added Nitrite
- H3- Heterocyclic amines (PhIP + MeIQx) in diet. HCA
- Endpoint: Number of precancer lesions per rat. MDF per colon

MDF per colon

Data shown in Stockholm KSLA clearly show that heme only promoted MDF. Data removed because they are not yet published.

Hemoglobin diets significantly increased the number of MDF per colon (p<0.001), independently of the two others factors

Rat Model → First evidence of red meat & heme promotion of colon carcinogenesis:

In a **calcium-depleted diet**, Beef meat & Black pudding (blood sausage) promote Mucin Depleted Foci (& ACF) More heme = more MDF

Pierre et al., J.Nutr. 2004

Beef meat & Black pudding raise fecal & urinary markers of fat peroxidation: TBARs, DHN-MA, cytotoxicity More heme = more peroxides

Dietary Calcium normalizes beef meat effects

> => Calcium fully suppressed beef-induced promotion

Fat peroxides: MDA genotoxic & cytotoxic

-> Calcium fully suppressed beefinduced lipoperoxidation

Pierre et al., British Journal of Nutrition (2008)

Carcinogenesis vol.28 no.2 pp.321–327, 2007 doi:10.1093/carcin/bgl127 *Advance Access publication August 2, 2006*

MECHANISMS

Apc mutation induces resistance of colonic cells to lipoperoxide-triggered apoptosis induced by faecal water from haem-fed rats

F.Pierre^{1,*}, S.Tache¹, F.Guéraud², A.L.Rerole¹, M.-L.Jourdan³ and C.Petit¹

¹Ecole Nationale Vétérinaire Toulouse, UMR INRA-ENVT Xénobiotiques,

Published mechanistic studies suggest that heme-induced fat peroxides promote colon cancer by selection of *apc* mutated cells in the colonic mucosa

In all our previous rats studies, carcinogenesis promotion by fresh red meat or by heme was associated with fat peroxidations biomarkers:

- Fecal water TBARs
- Fecal water cytotoxicity
- Urinary DHN-MA (metabolite of 4-hydroxynonenal) Pierre et al., 2003, 2004, 2006, 2007; Santarelli et al., 2008

The agents that decrease the level of these biomarkers also suppress carcinogenesis in rats

How can haem & lipoperoxides promote cancer? We guess it is by **selection** of cancer cells

Similar to selection of drug resistant bacteria by antibiotics

resistant bacterium

Processed cured meat

Freeze-dried oxidized cooked ham

given to initiated rats promotes precancer MDF and increases markers of lipoperoxidation & cytotoxicity

Pierre et al., Nutr.& Cancer, 2010

Design of a short-term study in rats given 16 models of cured meat

Short-term study of 2x2x2x2 factors = 16 models of cured meat. End-points: Early fecal and urinary biomarkers used as screening tools **Principal component analysis** of biomarker data,

- to choose 4 cured meat models
- \rightarrow 100 d carcinogenesis study

Dark Cooked Nitrited Oxidized = DCNO Dark Raw Zero-Nitrite Oxidized = DCZO Dark Raw Zero-Nitrite Anaerobic = DRZA Dark Cooked Nitrited Anaerobic = DCNA **Given for 100 days to carcinogen-initiated rats**

Meat Processing and Colon Carcinogenesis: Cooked, Prevention Nitrite-Treated, and Oxidized High-Heme Cured Meat Research **Promotes Mucin-Depleted Foci in Rats**

Raphaëlle L. Santarelli^{1,2}, Jean-Luc Vendeuvre², Nathalie Naud¹, Sylviane Taché¹, Françoise Guéraud¹, Michelle Viau³, Claude Genot³, Denis E. Corpet¹, and Fabrice H.F. Pierre¹

DCNO model cured meat (Dark, Cooked, Nitrite-treated and Oxidized high-heme meat) promotes colon carcinogenesis and increases fecal end products of lipid peroxidation in rats (Santarelli et al., Cancer Prevention Research, 2010).

But if No Oxygen or No Nitrite DCNA & DCZO \rightarrow No promotion

N-nitrosated compounds (NOCs): Fecal **NOCs** associated with promotion

Cancer

Effect of a cured meat diet on MDF and NOC formation in the colon of rats 106 days after carcinogen injection (values are means \pm SD, n = 10. * significantly different from control P < 0.05)

Dinitrosyl iron complex

S-nitrosothiols (e.g., S-nitrosocysteine)

H2: N-nitroso-compounds, NOC in vivo studies

- Volunteers given red meat have more faecal NOC Sheila Bingham 1996, Hugues 2001 : MRC Dunn, Cambridge, UK
- Haem is the NOC-inducing agent (Cross & Bingham 2002)
- Rodents given hot-dog : more faecal NOC (Mirvish 2002)
- Ileostomised study shows that NOCs are (*Kuhnle 2007*)
 - Nitrosothiols, formed in the acidic stomach \int
 - Nitrosyl Haem formed in the anaerobic colon
- None is carcinogenic (?), but they can "Nitrosate" (transmit =NO to produce carcinogenic Nitrosamines)

Unpublished Prevention Study in Rats and Humans

- **Aim:** to **prevent** the promoting and pro-oxidant effects of cured meat with a heme iron binding-additive or an antioxidant-additive.
- **Calcium** carbonate (150µmol/g) or α**-tocopherol** (0.05%) added to the model cured meat diet DCNO, and given for 100 days to rats pretreated with a carcinogen. Colons were scored for preneoplastic MDF.

Results 1: Prevention of Cured Meat MDF Promotion in Rats

In rats, cured meat DCNO increased the number of MDF/colon after feeding for 100d (p=0.01)

Calcium and α-tocopherol fully normalized the number of MDF/colon (p=0.01) Data shown in Stockholm KSLA clearly show that DCNO ham promoted MDF, but adding calcium or alpha-tocopherol to the diet fully prevented promotion by DCNO. Data removed because they are not yet published.

Effect of cured meat diets on MDF formation in the colon of rats 99 days after the injection of 1,2dimethylhydrazine, (values are means \pm SD, n = 10) * Significantly different from CON diet (P = 0.01) # Significantly different from DCNO diet (P = 0.01)

Results 2: Prevention of Cured Meat-Induced Biochemical markers in Rats

In rats, cured meat increased fecal NOCs and TBARs (fat peroxides) Calcium, but not tocopherol, reduced fecal TBARs, NOCs & cytotoxicity, and urinary DHN-MA, in cured meat-fed rats

(only TBARs data are shown)

Data shown in Stockholm KSLA clearly show that DCNO ham Increased fecal NOCs and TBARs, but adding calcium to the diet fully prevented these DCNO effects. Data removed because they are not yet published.

Effect of cured meat diets on fecal peroxidation biomarkers (TBARs) in rats after 80 days on experimental diets (values are means \pm SD, n = 5) * Significantly different from CON diet, P = 0.01# Significantly different from DCNO diet (P = 0.01)

Results 3 : Human volunteers' data fit rats data

TBARs & NOCs increased

in stools of 17 volunteers given cured meat compared with meat-free period (Wilcoxon P<0.05).

Calcium supplementation normalized fecal TBARs and NOCs in volunteers given cured meat (P<0.05), but α -tocopherol normalized TBARs only. Data shown in Stockholm KSLA clearly show that DCNO ham Increased fecal NOCs and TBARs, in volunteers, but adding calcium to the diet fully prevented this DCNO effect. Data removed because they are not yet published.

Effect of cured meat diets on fecal biomarkers (TBARs) in stools of **volunteers** after 4 days on experimental diets (values are means \pm SEM, n = 17)

* Significantly different from meat free period, P < 0.05 ° Significantly different from DCNO period, P < 0.05

H3: Heterocyclic Aromatic Amines.

Takashi Sugimura 1977 (Tokyo, Japan) ... Rashmi Sinha (NCI, Bethesda, MD)

More than 20 HCA, e.g., MeIQx

- Origin: t°C+AA+ creatine+ sugar
- Very potent mutagens /bacteria
- Carcinogenic in animals: high dose induces colon & mammary tumors
- Extrapolating dose from rodents to people MelQx Human risk seems very low (2 CRC/10 000)
- Roasted chicken, a major provider of PhIP, is **not** associated with colon cancer risk
- Only diMeIQx from beef meat would play a role

NH,

CH

H3- Meat cooking, phenotypes & colorectal cancer in Hawaï

H4- Is Dietary Fat pro-cancer?

- Insulin resistance (long-term energy imbalance)
 - Promoting factors in blood (IGF-1, insulin, glucose, fatty acids)
 - Obesity: fatty cells aromatase=> more estrogens
- Secondary bile acids (e.g., Lithocholic acid) are aggressive detergents toward colon mucosa
- Oxidized fats are genotoxic
 Fat PUFA + O₂ (+ heme) => MDA => DNA adducts BUT
- Meta-analysis: animal fat intake **not** a risk factor for CRC
- Intervention studies in humans: No reduction in adenoma recurrence or CRC incidence with low-fat diet

D.E. Corpet - KSLA - Stockholm - 2012

• \rightarrow Fat not a major factor in CRC risk

Conclusion on the Hypotheses

- Heme iron in red meat can promote cancer, via two pathways:
 - Fat peroxidation (produces cytotoxic alkenals)
 - Nitrosation (produces potentially carcinogenic NOCs)
- Nitrosation & NOCs: important role in cured meat
- **Heterocyclic amines** (HCAs, surface of well-done meat), probably cause CRC in people with genetic predisposition.
- HCAs, Heme and Nitrite of similar importance on CRC burden, according to 3 observationnal studies
- But our experimental studies in rodents points towards heme as a major player in CRC etiology

D.E. Corpet - KSLA - Stockholm - 2012

Fin

Conclusion of our prevention studies

- Promotion of colon carcinogenesis in rats by cured meat suppressed by diet calcium and by α -tocopherol.
- Calcium (and tocopherol) normalized associated fecal and urinary biomarkers in rats and in human volunteers given cured meat.
- Ongoing studies in my lab: prevention by polyphenols
- Many people are reluctant to change their diet: the advice "*avoid processed meat*" is badly adhered to, particularly by poor people. The addition of specific agents to cured meat may provide a new way to prevent colorectal cancer...

... and to move towards a fair society ?

Life Expectancy at Birth, and Disability-Free Life Expectancy (DFLE)

by Neighbourhood Income Deprivation, England, 1999-2003

Age adjusted incidence of Colon cancers among male Finns

aged 45–64 at the beginning of each 5-years period between 1971–1995

Health inequalities

- The poor live shorter lives in good health than the rich. Colorectal cancer is a part of the inequality burden. Red meat & cured meat are a part of the colorectal cancer burden.
- Less educated people do not follow advices about smoking, exercise, sensible drinking and healthy eating.
- But are they really free to do so? No, according to sir Michael Marmot (Marmot, 2010)
- Responsibility of agro-industry is to make a safer meat:
 More ethical, an easier, to change the food than to change the consumer

Eating Meat Promotes Cancer

Go vegan ... or make your meat safer! Potential paths for a safer cured meat:

- Change diet (e.g., less meat, more calcium)
- Change process (e.g., without O₂ or NO₃)
- Use new additives (e.g., calcium, tocopherol)

