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Outline

Provide a framework for estimating key parameters of epidemics

@ Characteristics of the epidemic process
o Constraints imposed by the observation of the epidemic process
@ Simple mechanistic models

© Various mathematical approaches for epidemic spread
o Natural approach: Markov jump process
@ First approximation by ODEs
o Gaussian approximation of the Markov jump process
o Diffusion approximation of the Markov jump process

© Inference for discrete observations of diffusion or Gaussian processes with small
diffusion coefficient
o Contrast processes for fixed or large number of observations
@ Correction of a non asymptotic bias
o Comparison of estimators on simulated epidemics

© Epidemics incompletely observed: partially and integrated diffusion processes (Work
in progress)
o Back to epidemic data
@ Inference approach: Work in progress
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@ Characteristics of the epidemic process
o Constraints imposed by the observation of the epidemic process
o Simple mechanistic models
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s of the epidemic process

Constraints imposed by the observation of the epidemic process
Simple mechanistic models

5. i r, § Different dynamics framework
Ind 1 : ]
/}’\ 1 i Ex.: Influenza like illness cases (Sentinelles
Ind 2 / I surveillance network)
s Invidal o, T3 One outbreak study
period |
i 5, | r
Ind 4 H B 4
A A A
! i * R breaks stud
Individual Tracking | {Ind1,Ind 2} | {9 é')'”d 2 {Ind 4y EENTETE GUITERRS Sl
Number of 2 3 1 |
Infected
Incidence (new 2 1 1 i | | [ -\
infected) | { | { bl g
1L AL AL i
Imperfect data Main goal: key parameter estimation
o i o o
Incomplete observations o Basic reproduction number, Ry (nb. of
o Temporally aggregated secondary cases generated by one primary

o Sampling & reporting error case in an entirely susceptible population)

o Average infectious time period (d)

@ Unobserved cases
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Characteristics of the epidemic process

Constraints imposed by the observation of the epidemic process
Simple mechanistic models

Compartmental representation of the population dynamics

Define: Nb. of health states, possible transitions and associated rates Notations N :
population size, A : transmission rate, 7y : recovery rate
S,1, R : numbers of susceptible, infected, removed individuals

One of the simplest model: SIR

Convenient to study one epidemics

AN
S I Y

Closed population = N=S + 1/ + R ) A .
Well-mixing population ey perameieis = v’ o=

A 1
5
= (S,1) A51{"’(5—1,/-4—1)

4

Summary: coefficients oy

(1) = (S—1,1+1)=(S,1) +(—1,1) at rate a_q,1)(S,/) = AS; and
(S, 1) = (S,1—1)=(S,1) + (0,-1) at rate o, _1)(S, /) =/
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Characteristics of the epidemic process

Constraints imposed by the observation of the epidemic process
Simple mechanistic models

Natural extensions of the SIR model

@ Increase the number of health states : e.g. Exposed Class = SE/IR model
o Additionnal transitions: e.g. (S,/) — (S — 1,1) (vaccination)

Temporal dependence: SIRS with seasonality in transmission and demography
Suited to study recurrent epidemics

Key parameters: Rév"’y = 7+u d=1%
Summary:
d: waning immunity rate (years) a1,(t, S, 1) = Mi)SL
p: demographic renewal rate (decades) ag1,0)(S, 1) = Nu+5(N — S — 1),
A(t) = do(1 + Alsln(27r )) 04(7,1,0)(5» )= pus
A1 = 0 = oscillations vamshes ag,—1)(S, 1) = (p+ 7)1

Infllforl=pidamiclmadalapmithidiffusicn]processes
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Outline

© Various mathematical approaches for epidemic spread
o Natural approach: Markov jump process
o First approximation by ODEs
o Gaussian approximation of the Markov jump process
o Diffusion approximation of the Markov jump process
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Natural approach Markov j jump process
Various mathematical approaches for epidemic spread First approximation by ODE

Gaussian approximation of the Markov j jump process
Diffusion approximation of the Markov jump process

Markov jump process

M/N v n a11)(S, 1) = AS gy, a,—1)(S, 1) =

Notations:
E={0,.,N}!
VL e E™ ={=N,..,N}¥, we define ar(-) : E — [0, +00]
We define (Z¢) the Markov jump process on E with Q-matrix: gx,y = ay_x(X)
Assume a(X) = Z arp(X) < 400 = Sojourn time Exp(a(X))
LeE—

Easily simulated (using Gillespie algorithm)
3 realizations for N = 10000, A = 0.5,y =1/3, (So, lo) = (9990, 10)

Number of infected
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Natural approach Markov jump process
Various mathematical approaches for epidemic spread First approximation by ODEs

Gaussian approximation of the Markov j jump process
Diffusion approximation of the Markov jump process

Interest of the deterministic approach

A(t) = Ao(L + Arsin(2mt/ Tper) w
—_u(l s)+6(1 —s—1i)— A(t)si
ﬂ = A(t)si — (p+7)i

5(6) = Ao(1 + Axsin(2mt/T)
(5(0),i(0)) = %

ODE trajectory

Some trajectories of the SIRS Markov proc. :

N =10%,Ry =1.5,d = 3, :2,%:50

STper Tpe,

Link between the two approaches

1:\ ’\ h A A A \
J \___.;\\.J' AW, \ (A AN . As N — 400 we have % —_ X(t), where
- N— oo
x(t) is the deterministic solution of the ODE:
Drawbacks of the Markov jump approach dX(f = b(x (t))

o N =107 :more than 10 events in one Functlon b is explicit

week (MLE: observation of all the jumps
required)

o Extinction probability non negligible
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Natural approach Markov jump process

Various mathematical approaches for epidemic spread First approximation by ODEs
Gaussian approximation of the Markov j jump process
Diffusion approximation of the Markov jump process

Beyond deterministic limit : Gaussian process

10/33]

Additionnal assumption: smooth version of oy, 81
)

We have o : E — (0, +00) transition rate : X L( X +1
Assume 3. : [0, l]d — [0, +oo[ well define and regular :
vx €[0,1]7, Lar(|Nx]) — BiL(x)
N— oo
SIR: a(_1,1)(S, 1) = AS % = B(—1,1y(x) = Axaxz, o0,1)(S, 1) = v = B(o,—1)(x) = x2

Definition of function b (dx(” b(x(t)))

b(x) = 57 Lu(x), SIR: B((A, ), (5,1) = (‘11) Asi + ((1)) il = (/\S_,.f;i)

LEE—

ODE approximation : no longer dependance w.r.t. N

Asymptotic expansion w.r.t. N : Gaussian process

VN (Q - x(t)) e g(t) where g(t) centered Gaussian process:
dg(t) = 28 (x(t))g(t)dt + o(x(t))dBe, where o 'o(x) = X(x) = > LLBL(x
LEE—
SIR: £((A,7), (s, 1)) = Asi <_11> (=1 1) +~i (2) (0 1)= <:\>fls, )\;f’ﬁ)
. [ VAsi 0
Cholesky algorithm = o(x) = (_m \/’W)
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Natural approach Markov jump process
Various mathematical approaches for epidemic spread First approximation by ODEs
Gaussian approxi on of the Markov j jump process

Diffusion approximation of the Markov jump process

Infinitesimal generator approach: diffusion approximation

Renormalized version of the Markov jump process (Z;):

(Z) Markov jump process on E with transition rates gx,y = N8y _x(X)

Zy = % normalized process

Asymptotic development of the infinitesimal generator o (Ethier & Kurtz (86))

Generator of Z;: Af(x) = Z NLBL(x) (F(x + L) — f(x))
LeE—
d & 1

7. 1 — 1 . —
= Generator of Z;: Af(x) = b(x). v f(x) + W"lgz:lzw(x) o (x) + O( N2)
Dropping negligible terms leads to the generator of a diffusion process:
dXe = b(Xe)dt + J50(Xe)dBe, where b(x) = ST LBL(x), T(x) = > LLBL(x)

lcE— LeE—

Temporal dependence 3 (t, x): generator approach no longer available

Decomposition of the diffusion process using Gaussian process (¢ = —L-)

VN

Taylor’s stochastic formula (Wentzell-Freidlin(79), Azencott (82))
Let dXe = b(Xe)dt + e€o(Xe)dBe, Xo = xo
Then, under regularity assumptions, Xe = x(t) + eg(t) + Op(€?)
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Natural approach: Markov jump process
Various mathematical approaches for epidemic spread First approximation by ODEs
ssian approximation of the Markov j jump process

Ga
Diffusion approximation of the Markov jump process

Links between approximations

o Z: Markov jump process on E with transition gx y = ay_x(X)

o Z; Markov jump process on E/N with transition gx , = NB| nx | — [ ny ) (%)

Ze ~ x(t) + ﬁg(t) with x(-) the ODE solution and g a Gaussian process
o Xi: dX: = b(x(t))dt + \ima(x(t))dBt diffusion with small diffusion coefficient
and P{ sup ||Z: — X¢|| > Cr &My 5 o

0<t<T N—o0

Zt < - xw
\\ —» Diffusion approximation
\ — Expansion in N of the process
\ Taylor’s stochastic expansion
X, > gl

Important : All mathematical representations completely defined by (o)
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Contrast processes for fixed or large number of observations
Correction of a non asymptotic bias
omparison of estimators on simulated epidemics

Inference for discrete observations of diffusion or Gaussian processe

Outline

© Inference for discrete observations of diffusion or Gaussian processes with small
diffusion coefficient
o Contrast processes for fixed or large number of observations
o Correction of a non asymptotic bias
o Comparison of estimators on simulated epidemics
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Contrast processes for fixed or large number of observations
Correction of a non asymptotic bias

Inference for discrete observations of diffusion or Gaussian processe s . . . .
Comparison of estimators on simulated epidemics

Classical Estimators

Maximum likelihood estimati r the SIR Markov Jump
Britton (00))

o Observation of all jumps

@ Analytic expression of the estimators for SIR model:
=N f_(o)*s('r) s — S(0)+1(0)—S(T)—I(T)

Y=
S(t)I(t)dt /Tl(t)dt
o

o \/N(éMLE — 90) — N (O, Ib_l(eo)>, where
N— oo

A2 0
17 (Mo 70)) = S0)—s(T) 2
© SO0 —s(T)—i(T)

v

Maximum likelihood estimation for homoscedastic observations of the ODE

@ n observations at n discrete times t; of xg(&x) + &k, with & ~ N(0, Cn(60)ly)
e MLE=LSE

-] \/E <0ALSE = 90) n:zo ./\/'(07 /N(Go))
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Contrast processes for fixed or large number of observations
Correction of a non asymptotic bias

Inference for discrete observations of diffusion or Gaussian processe s . . . .
Comparison of estimators on simulated epidemics

Specificities of the statistical framework

Model:
We define X¢: dXe = b(01, Xe)dt + €o (02, Xe)dBe, Xo = X0 € RY
= separation of the parameters 01, 0> required (not estimated at the same rate)

Continuous observation of the diffusion on [0, T] (Kutoyants (80))

MLE : 1 (0{‘“5 - 92) — N (0, 1,(69,69)71)

Existing discrete observation results : estimation of 6, at rate /n

Observations:
We observe X, for t, = kA, k € {0,..,n}, t, €0, T] (nA =T), T is fixed

Two different asymptotics: € — 0 & n (A) is fixed // ¢ - 0 & n — co (A — 0)

Notation: n = (61, 62)

SIR: € = ﬁ, 61 =02 = 6 = (X\,7), and I,(69, 62) equals the Markov jump process Fisher
Information matrix
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Contrast processes for fixed or large number of observations
Correction of a non asymptotic bias

Inference for discrete observations of diffusion or Gaussian processe s . . . .
Comparison of estimators on simulated epidemics

Main idea: study of g, (t) (Multidimensionnal generalization of Genon-Catalot(90))

Gaussian process: Y: = xp, (t) + egp(t), n obs. at regular time intervals t, = kA, for
k=1,..,n

Definition : Resolvent matrix of the linearized ODE system &g,

Let ®g, be the invertible matrix solution of

(0]
222 (£, t0) = 22 (xg, (1)) P, (, t0), with @y, (to, to) = Iy

Important property of g,

gn(tk) = Yo, (tic, tr—1)gn(tk—1) + VAZ]
(Z])keqa,..,n} independent Gaussian vectors with covriance matrix S

t
k
sp = %/ oy (14, 5)Z (02, xp, (5)) Doy (14, 5)ds

fe_1

Function of the observations
Let y € C ([0, T],RY)
Ni(01, ) = y(tk) — Xpy (tk) — Doy (th, th—1) [y(tk—1) — X0, (t—1)] (= eVAZ])
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Contrast processes for fixed or large number of observations
Correction of a non asymptotic bias
Comparison of estimators on simulated epidemics

Inference for discrete observations of diffusion or Gaussian processe

Back to the diffusion process: dX¢ = b(01, X¢)dt + co(62, X¢)dBe

(Z) Gaussian familly = Likelihood tractable:

1 _
—Lae(n) = 62Z/og[det(5")] Z Ny (61, Y)(S¢) ™ Nk (61, Y)
k=1 A
0> has good properties as € — 0, only if A — 0 (n — +o0)

1. nfixed, e — 0: General case (low frequency contrast with 62 unknown)

U€(91 4 Z tNk (01, X)N(01,X) = Associated MCE 01 = aggre‘nemUE(Ol)
k=1 1

2. nfixed, e — 0 : Case 0 = f(01) (low frequency contrast with information on 6>)

Uc(61) = AZ‘Nk (01, X)(3 )1, (01, X) = by, = argménUg(Ol)

k=1
4

3. n — o0, € — 0 (high frequency contrast)

Un,c(61,02) —ezz/og[det(zwz,x.k DN+ Z'Nk(01,X)Z (02, Xe, _, INK (01, X)
k=1 k 1

= 917€’A,9275,A = argminUeyA(n)
neoe
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Contrast processes for fixed or large number of observations

H . eee s . Correction of a non asymptotic bias
Inference for discrete observations of diffusion or Gaussian processe i . . .
Compa n of estimators on simulated epidemics

What kind of distance is minimized: comparison with Least squares

Nie(01,y) = y (i) — Xoy (ti) — Poy (b, tr—1) [y (tk—1) — Xo, (tk—1)]

N =1000, Rp = 1.5, d = 3 days, 1 obs/day, T = 50 days

T

Propartion of susceptible
T T

Proportion of infected

Figure: Diffusion (blue), xg, (t) (green)
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Contrast processes for fixed or large number of observations
Correction of a non asymptotic bias

Inference for discrete observations of diffusion or Gaussian processe . . . .
Comparison of estimators on simulated epidemics

What kind of distance is minimized: comparison with Least squares

Zoom between t =5and t =6
gn(tk) = Yo, (ti, tr—1)gn(tk—1) + VAZ]

H I I

gur

¢ |eglss)

i

s -

Ll

]

co- S5 _

3 €9, ()

0oyl —

b

g

a

H i §i i §

S 6
16

1

y

!

U

g

4

£

.

i

:

H

1

0 .

L0

8

L

Time

CYEY]  Romain GUY1:2 Joint work with C. Laredo1:2 and E. Vergul idemic models with diffusion processes




Contrast processes for fixed or large number of observations
Correction of a non asymptotic bias
Comparison of estimators on simulated epidemics

Inference for discrete observations of diffusion or Gaussian processe

What kind of distance is minimized: comparison with Least squares

Zoom between t =5and t =6
gn(tk) = Doy (tic, t—1)gn(t—1) + VAZ]

Froportion of susceptible

Proportion of infected

Tine
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Contrast processes for fixed or large number of observations
H . eee s . Correction of a non asymptotic bias
Inference for discrete observations of diffusion or Gaussian processe i . . .
Compa n of estimators on simulated epidemics

What kind of distance is minimized: comparison with Least square

Figure: Distance to the deterministic model

Proportion of susceptible

Proportion of infected
3
T

Enorfors

| Lo

- - ,___A_\
fmaa ey rvnuie iy e

Figure: Comparison: Ny (X, 61) (blue) and Xe, — xo, (tx) (green)

2 and E. Vergu® idemic models with diffusion processes
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Contrast processes for fixed or large number of observations
Correction of a non asymptotic bias
Comparison of estimators on simulated epidemics

Inference for discrete observations of diffusion or Gaussian processe

Results about dX¢ = b(01, Xe)dt + eo (02, Xe)dBe

Under classical regularity assumptions on b and o, we proved

n fixed, € — 0, low frequency contrast

Identifiability assumption: 61 # 07 = {3k, 1<k <n, xp,(tx)# Xgi(tk)}.

1. General case (no information on 6>)

1 (G — 03) —3 N(0,J5(62,09)) et (e —09) —5 N0, 17(63,03)

2. case 0y = f(01) (with information on 62)

3. n — o0 € — 0: high frequency contrast
(O1c.n — 69) 17109, 09) 0
€ N(o ('p V1272
(f(eze A —09) 0,60 ’ 0 I51(69,09)

Remarks

o Epidemics: € = 6 = 01 = 0, then for contrast 3: I, is the same as for the

\/77
Markov jump process (all jumps observed)

@ Jp is not optimal, but /a is, in the sense that Ia(61,02) Q} Ip(61,62)

22/33 G L) A work with C. Larédo?:2 and E. Vergul Inf. for epidemic models with diffusion processes




Contrast processes for fixed or large number of observations
H . eee s . Correction of a non asymptotic bias
Inference for discrete observations of diffusion or Gaussian processe s i . . .
Comparison of estimators on simulated epidemics

Results on SIR for N = 10000, empirical mean estimators on 1000 runs and 95% theoretical Cl
(Ro=1.2,d=23)

Figure: 0: MLE, 1: 1. low frequency MCE (general case), 2: 61, low frequency MCE
(61 = 62), 3: 61, A high frequency MCE

L

4 il 2 oy
il It

128 1£3 123
-1 TT
u lIL L

Parameter Value

\f\'_x;f_io

Number of observations

About unpresented results

o Good results even for N = 100 (our methods seem more robust than MLE)

@ Similar performance (w.r.t. MLE) on more sophisticated models

k¥EE]  Romain GUY1:2 Joint work with C. Laredol:2 and E. Vergul
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Contrast processes for fixed or large number of observations
Inference for discrete observations of diffusion or Gaussian processe (CeaEitn of a Gt OO =l . .
Comparison of estimators on simulated epidemics

About 6~1E (Low frequency with information on 63)

62 unknown

With information on 0>

n n
1.0 (01) = %> Nie(61, X)Nie(61, X) 2.0 (61) = 5> "Nie(01, X)(5.*) ' Ny (61, X)
k=1 k=1
Figure: Comparison between Data and ODE Figure: Evolution of det (Zfl(ef,xeo(t)))
(x3, () 1

Determinant value

Proportion of Infected

Time
Time

Too much weight on the boundaries
Not good fit of the data

Romain GUY1:2 Joint work with C. Laredo?:2 and E. Vergu®
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Contrast processes for fixed or large number of observations
Correction of a non asymptoti

Inference for discrete observations of diffusion or Gaussian processe s £ esti : . .
omparison of estimators on simulated epidemics

About 6~1E (Low frequency with information on 63)

Comparing to high frequency contrast Corrected contrast with information on 6>
n n
3.0a.c(01,02)) = EZZIog [det (Zy)] 2.0 (a) = ezzlog [det(gzl )]
k=1 k=1
n _ n 5 1
+ 2> N(01)T T N (6) + A N(6a) (Sfl) Ni(61)
k=1 k=1
where T =3(02, Xe, ) J

123 123

Parameter Value

Parameter Value

Number of observations.

Number of observations

Figure: Corrected results

Figure: Previous results
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Contrast processes for fixed or large number of observations
Inference for discrete observations of diffusion or Gaussian processe e of'fa LoD PTG LD . .
omparison of estimators on simulated epidemics

Different shapes of the confidence ellipsoids

SIR Model confidence ellipsoids for the corrected contrast

N = 1000, (R07 d) = {(157 3)7 (157 7)= (51 3)1 (57 7)}
Number of observations: n = 10 (blue), , n = 2000
(black), MLE CR (red) (Theoretical limit)

8

(P

YYEE]  Romain GUY1:2 Joint work with C. Laredol:2 and E. Vergul
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Contrast processes for fixed or large number of observations
Correction of a non asymptotic bias
Comparison of estimators on simulated epidemics

Bias of MLE (N = 400; Ro = 1.5; d = {3, 7}; (S0, io) = (0.99,0.01))

Inference for discrete observations of diffusion or Gaussian processe

Too much variability Other values of d were investigated
Other thresholds: time of extinction, number max of
infected

Results (d = 7, time of extinction)

L [MPOp,RO,4,T]=400 1.5 7 100 : red = initLE, green=1obs/day, blue: n=10, black n=5
9

W
= i : 85
Figure: Trajectories for d=3 ¢
.. - 75
Need of an empiric threshold: 5% of infected
7 )
Estimation results (d = 3) 55 F
[NpOp,R0,d,Tj=400 1.5 3 40 : red = limitvILE, green=1obs/day, blue: n=10, black n=5 5
5
55
36

e Zoom on the red trajectory (see Figure)

(Ro, d)mLe = (0.8749,2.9945)
(Ro,d)Lse = (0.94,2.5794)
(R07 d)cont = (].017 30973)

11 12 13 14 15 16 17 18 13
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Contrast processes for fixed or large number of observations
H H o e . ol ion of a asy| ic bia
Inference for discrete observations of diffusion or Gaussian processe Correction of a non asymptotic bias

Comparison of estimators on simulated epidemics

Temporal dependence (SIRS) : Ay difficult to estimate

SIRS with constant immigration in / class ° M = 9'05 (weak seasonality)

A(t) = Xo(1 + Aisin(2wt/T))

o
Lo by

uaﬁ”ﬂ,‘ |
kw«w\hﬁjhfﬂ

W

I

iy

@ A1 = 0.15 (stronger seasonality)

|
\

|
«

MO(IIN+Q)

Proporton ofnfctod

y ) | | \ | “
Values i1l w RN
Ro = 15; d = 3d; 51— =2y, : mmnn
A1 = {0.05,0.15} e
Fixed: Tper = 365, 1 =1/50Tper, ¢ = %2, _
N=107,1 obs/day(week) for 20 years Detailed results not shown

o Term for A1 in Ip(60) very small = Main idea: Ro,d,d well estimated

N > 10°® for satisfactory Cl A1: biased (often estimated to 0)

@ )\ bifurcation parameter for the ODE

LYY  Romain GUY1:2 Joint work with C. Laredol:2 and E. Vergul
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Back to epidemic data
Inference approach: Work in progress

Epidemics incompletely observed: partially and integrated diffusion

Outline

© Epidemics incompletely observed: partially and integrated diffusion processes (Work
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Incidence for SIR models

Discrete observation of all the coordinates

o Confined studies
@ Childhood diseases

SIR Model:
5, Ty ts I(t
nd I i @ Incidence at t>: / )\S(t)ﬁdt
[ B P ty N
Ind 2 / = i
=1 | ; I(t2)
Indvicual 5, roll @ High frequency data ~ AS(t2) =42
nd3 infectious | :
" pefiod 4 i @ d small : new infected ~ new removed,
i ] t2
i S | n [t = Ret2) ~ Reea)
' t
ﬁ_/ﬁﬁ%,_J 1
A ' A \ A ’

Diffusion perspectives

Individual Tracking | {Ind 1, Ind 2}
Number of 2 3 1 . . . .
Infected. @ Partial and discrete obs. of the diffusion

“I?v?i é,}lnd 2, {Ind 4}

Infected
Incidence (new 2 1 1 process (Ité's formula)
infected) . )
@ Partial and Integrated discrete obs.
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Partially observed diffusion process: initial idea

31/33]

Previous main idea not directly applicable:

Proportion of susceptible

Proportion of infected

@,i(t5,t)e g, (ts)

l« VA Zg

Time
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Partially observed diffusion process: initial idea

Proportion of infected

Titne
No good properties for n fixed, e — 0.
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Partially observed diffusion process: initial idea

Use that &g, (t+ A, t) = Iy as A — 0

Proportion of infected

Tine
Function of the observations : fy, —i(tx) — I, | +i(tk_1)

”
Integrated diffusion process

Integration of the relation : gy(tx) = Po, (tk, tk—1)&n(tk—1) + \/ZZ,Z7
= link between g and the integrated process : similar to Kalman filtering techniques
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