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Incomplete Data

Imperfect data

Incomplete observations

Temporally aggregated

Sampling & reporting error

Unobserved cases

Di�erent dynamics framework

Ex.: In�uenza like illness cases (Sentinelles

surveillance network)

One outbreak study

Recurrent oubreaks study

Main goal: key parameter estimation

Basic reproduction number, R0 (nb. of
secondary cases generated by one primary
case in an entirely susceptible population)

Average infectious time period (d)

4/33 Romain GUY1,2 Joint work with C. Larédo1,2 and E. Vergu1 Inf. for epidemic models with di�usion processes



Characteristics of the epidemic process
Various mathematical approaches for epidemic spread

Inference for discrete observations of di�usion or Gaussian processes with small di�usion coe�cient
Epidemics incompletely observed: partially and integrated di�usion processes (Work in progress)

Constraints imposed by the observation of the epidemic process
Simple mechanistic models

Compartmental representation of the population dynamics

De�ne: Nb. of health states, possible transitions and associated rates Notations N :
population size, λ : transmission rate, γ : recovery rate
S , I ,R : numbers of susceptible, infected, removed individuals

One of the simplest model: SIR

Closed population ⇒ N=S + I + R

Well-mixing population

⇒ (S, I )
λSI/N→ (S − 1, I + 1)

Convenient to study one epidemics

Key parameters: R0 = λ
γ
, d = 1

γ

Summary: coe�cients αL

(S, I )→ (S − 1, I + 1) = (S, I ) + (−1, 1) at rate α(−1,1)(S, I ) = λS I
N

and
(S, I )→ (S , I − 1) = (S, I ) + (0,−1) at rate α(0,−1)(S, I ) = γI
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Natural extensions of the SIR model

Increase the number of health states : e.g. Exposed Class ⇒ SEIR model

Additionnal transitions: e.g. (S, I )→ (S − 1, I ) (vaccination)

Temporal dependence: SIRS with seasonality in transmission and demography

δ: waning immunity rate (years)
µ: demographic renewal rate (decades)
λ(t) = λ0(1 + λ1sin(2π t

Tper
))

λ1 = 0 ⇒ oscillations vanishes

Suited to study recurrent epidemics

Key parameters: RMoy
0

= λ0
γ+µ

, d = 1

γ

Summary:

α(−1,1)(t, S, I ) = λ(t)S I
N

,
α(1,0)(S , I ) = Nµ+ δ(N − S − I ),
α(−1,0)(S, I ) = µS
α(0,−1)(S, I ) = (µ+ γ)I
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Markov jump process

α(−1,1)(S , I ) = λS I
N
, α(0,−1)(S , I ) = γI

Notations:

E = {0, ..,N}d

∀L ∈ E− = {−N, ..,N}d , we de�ne αL(·) : E → [0,+∞[
We de�ne (Zt) the Markov jump process on E with Q-matrix: qX,Y = αY−X (X )

Assume α(X ) =
∑

L∈E−
αL(X ) < +∞ ⇒ Sojourn time Exp(α(X ))

Easily simulated (using Gillespie algorithm)

3 realizations for N = 10000, λ = 0.5, γ = 1/3, (S0, I0) = (9990, 10)
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Interest of the deterministic approach

λ(t) = λ0(1 + λ1sin(2πt/Tper )

Some trajectories of the SIRS Markov proc. :

N = 105,R0 = 1.5, d = 3, 1
δTper

= 2, 1
µTper

= 50

Drawbacks of the Markov jump approach

N = 107 :more than 105 events in one
week (MLE: observation of all the jumps
required)

Extinction probability non negligible

SIRS ODE solution
ds
dt

= µ(1− s) + δ(1− s − i)− λ(t)si
di
dt

= λ(t)si − (µ+ γ)i
λ(t) = λ0(1 + λ1sin(2πt/T )

(s(0), i(0)) = Z0
N

ODE trajectory

Link between the two approaches

As N → +∞ we have Zt
N
−→
N→∞

x(t), where

x(t) is the deterministic solution of the ODE:
dx(t)
dt

= b(x(t))
Function b is explicit
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Beyond deterministic limit : Gaussian process

Additionnal assumption: smooth version of αL, βL

We have αL : E → (0,+∞) transition rate : X
αL(X )
→ X + l

Assume βL : [0, 1]d → [0,+∞[ well de�ne and regular :

∀x ∈ [0, 1]d , 1
NαL(bNxc) −→

N→∞
βL(x)

SIR: α(−1,1)(S, I ) = λS I
N ⇒ β(−1,1)(x) = λx1x2, α(0,1)(S, I ) = γI ⇒ β(0,−1)(x) = γx2

De�nition of function b ( dx(t)

dt
= b(x(t)))

b(x) =
∑

L∈E−
LβL(x), SIR: b((λ, γ), (s, i)) =

(
−1
1

)
λsi +

(
0
1

)
γi =

(
−λsi
λsi + γi

)

ODE approximation : no longer dependance w.r.t. N

Asymptotic expansion w.r.t. N : Gaussian process

√
N
(
Zt
N − x(t)

)
−→
N→∞

g(t) where g(t) centered Gaussian process:

dg(t) = ∂b
∂x (x(t))g(t)dt + σ(x(t))dBt , where σ

tσ(x) = Σ(x) =
∑

L∈E−
L
t
LβL(x)

SIR: Σ((λ, γ), (s, i)) = λsi

(
−1
1

)(
−1 1

)
+ γi

(
0
1

)(
0 1

)
=

(
λsi −λsi
−λsi λsi + γi

)
Cholesky algorithm ⇒ σ(x) =

( √
λsi 0

−
√
λsi

√
γi

)
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In�nitesimal generator approach: di�usion approximation

Renormalized version of the Markov jump process (Z̃t):

(Z̃t) Markov jump process on E with transition rates qX,Y = NβY−X (X )

Z̄t = Z̃t
N normalized process

Asymptotic development of the in�nitesimal generator of Zt (Ethier & Kurtz (86))

Generator of Z̃t : Af (x) =
∑

L∈E−
NLβL(x) (f (x + L)− f (x))

⇒ Generator of Z̄t : Āf (x) = b(x).5 f (x) + 1
N

d∑
i,j=1

Σi,j (x)
∂2f

∂xi∂xj
(x) + O(

1

N2
)

Dropping negligible terms leads to the generator of a di�usion process:

dXt = b(Xt)dt + 1√
N
σ(Xt)dBt , where b(x) =

∑
l∈E−

LβL(x), Σ(x) =
∑

L∈E−
L
t
LβL(x)

Temporal dependence βL(t, x): generator approach no longer available

Decomposition of the di�usion process using Gaussian process (ε = 1√
N
)

Taylor's stochastic formula (Wentzell-Freidlin(79), Azencott (82))
Let dXt = b(Xt)dt + εσ(Xt)dBt ,X0 = x0

Then, under regularity assumptions, Xt = x(t) + εg(t) + OP(ε2)
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Links between approximations

Zt Markov jump process on E with transition qX ,Y = αY−X (X )

Z̄t Markov jump process on E/N with transition qx,y = NβbNxc−bNyc(x)

Z̄t ∼ x(t) + 1√
N
g(t) with x(·) the ODE solution and g a Gaussian process

Xt : dXt = b(x(t))dt + 1√
N
σ(x(t))dBt di�usion with small di�usion coe�cient

and P{ sup
0≤t≤T

‖Z̄t − Xt‖ > CT
log(N)

N
} −→
N→∞

0

Xt = x(t) + 1√
N
g(t) +OP( 1

N
)

→ Di�usion approximation
→ Expansion in N of the process
→ Taylor's stochastic expansion

Important : All mathematical representations completely de�ned by (αL)
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Classical Estimators

Maximum likelihood estimation for the SIR Markov Jump process (Andersson &
Britton (00))

Observation of all jumps

Analytic expression of the estimators for SIR model:
λ̂ = N

S(0)−S(T )∫ T

0
S(t)I (t)dt

, γ̂ = S(0)+I (0)−S(T )−I (T )∫ T

0
I (t)dt

√
N(θ̂MLE − θ0) −→

N→∞
N
(
0, I−1

b
(θ0)

)
, where

I−1
b

((λ0, γ0)) =

 λ20
s(0)−s(T ) 0

0
γ20

s(0)+i (0)−s(T )−i (T )



Maximum likelihood estimation for homoscedastic observations of the ODE

n observations at n discrete times tk of xθ(tk) + ξk , with ξk ∼ N (0,CN(θ0)Id )

MLE=LSE
√
n
(
θ̂LSE − θ0

)
−→
n→∞

N (0, IN(θ0))
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Speci�cities of the statistical framework

Model:

We de�ne Xt : dXt = b(θ1,Xt)dt + εσ(θ2,Xt)dBt ,X0 = x0 ∈ Rd

⇒ separation of the parameters θ1, θ2 required (not estimated at the same rate)

Continuous observation of the di�usion on [0,T ] (Kutoyants (80))

MLE : ε−1
(
θMLE
1 − θ01

)
→ N

(
0, Ib(θ01 , θ

0
2)−1

)
Existing discrete observation results : estimation of θ2 at rate

√
n

Observations:
We observe Xtk

for tk = k∆, k ∈ {0, .., n}, tk ∈ [0,T ] (n∆ = T ), T is �xed

Two di�erent asymptotics: ε→ 0 & n (∆) is �xed // ε→ 0 & n→∞ (∆→ 0)

Notation: η = (θ1, θ2)

SIR: ε = 1√
N
, θ1 = θ2 = θ = (λ, γ), and Ib(θ01 , θ

0
2) equals the Markov jump process Fisher

Information matrix
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Main idea: study of gη(t) (Multidimensionnal generalization of Genon-Catalot(90))

Gaussian process: Yt = xθ1 (t) + εgη(t), n obs. at regular time intervals tk = k∆, for
k = 1, .., n.
De�nition : Resolvent matrix of the linearized ODE system Φθ1
Let Φθ1 be the invertible matrix solution of
dΦθ1
dt

(t, t0) = ∂b
∂x

(xθ1 (t))Φθ1 (t, t0), with Φθ1 (t0, t0) = Id .

Important property of gη

gη(tk) = Φθ1 (tk , tk−1)gη(tk−1) +
√

∆Z
η
k

(Zη
k

)k∈{1,..,n} independent Gaussian vectors with covriance matrix S
η
k

S
η

k
= 1

∆

∫ tk

tk−1

Φθ1 (tk , s)Σ(θ2, xθ1 (s)) tΦθ1 (tk , s)ds

Function of the observations

Let y ∈ C
(
[0,T ],Rd

)
Nk(θ1, y) = y(tk)− xθ1 (tk)− Φθ1 (tk , tk−1)

[
y(tk−1)− xθ1 (tk−1)

]
(= ε
√

∆Z
η
k

)
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Back to the di�usion process: dXt = b(θ1,Xt)dt + εσ(θ2,Xt)dBt

(Zη
k

) Gaussian familly ⇒ Likelihood tractable:

−L∆,ε(η) = ε2
n∑

k=1

log [det(Sη
k

)] +
1

∆

n∑
k=1

tNk(θ1,Y )(Sη
k

)−1Nk(θ1,Y )

θ̂2 has good properties as ε→ 0, only if ∆→ 0 (n→ +∞)

1. n �xed, ε→ 0: General case (low frequency contrast with θ2 unknown)

Ūε(θ1) = 1

∆

n∑
k=1

tNk(θ1,X )Nk(θ1,X )⇒ Associated MCE θ̄1,ε = argmin
θ1∈Θ

Ūε(θ1)

2. n �xed, ε→ 0 : Case θ2 = f (θ1) (low frequency contrast with information on θ2)

Ũε(θ1) = 1

∆

n∑
k=1

tNk(θ1,X )(S̃
θ1,f (θ1)
k

)−1Nk(θ1,X )⇒ θ̃1,ε = argmin
θ1∈Θ

Ũε(θ1)

3. n→∞, ε→ 0 (high frequency contrast)

Ǔ∆,ε(θ1, θ2) = ε2
n∑

k=1

log [det(Σ(θ2,Xtk−1
))] +

1

∆

n∑
k=1

t
Nk (θ1,X )Σ−1(θ2,Xtk−1

)Nk (θ1,X )

⇒ θ̌1,ε,∆, θ̌2,ε,∆ = argmin
η∈Θ

Ūε,∆(η)

17/33 Romain GUY1,2 Joint work with C. Larédo1,2 and E. Vergu1 Inf. for epidemic models with di�usion processes



Characteristics of the epidemic process
Various mathematical approaches for epidemic spread

Inference for discrete observations of di�usion or Gaussian processes with small di�usion coe�cient
Epidemics incompletely observed: partially and integrated di�usion processes (Work in progress)

Contrast processes for �xed or large number of observations
Correction of a non asymptotic bias
Comparison of estimators on simulated epidemics

What kind of distance is minimized: comparison with Least squares

Nk(θ1, y) = y(tk)− xθ1 (tk)− Φθ1 (tk , tk−1)
[
y(tk−1)− xθ1 (tk−1)

]

N = 1000, R0 = 1.5, d = 3 days, 1 obs/day, T = 50 days

Figure: Di�usion (blue), xθ1 (t) (green)
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What kind of distance is minimized: comparison with Least squares

Zoom between t = 5 and t = 6
gη(tk) = Φθ1 (tk , tk−1)gη(tk−1) +

√
∆Z

η
k
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√
∆Z

η
k

20/33 Romain GUY1,2 Joint work with C. Larédo1,2 and E. Vergu1 Inf. for epidemic models with di�usion processes



Characteristics of the epidemic process
Various mathematical approaches for epidemic spread

Inference for discrete observations of di�usion or Gaussian processes with small di�usion coe�cient
Epidemics incompletely observed: partially and integrated di�usion processes (Work in progress)

Contrast processes for �xed or large number of observations
Correction of a non asymptotic bias
Comparison of estimators on simulated epidemics

What kind of distance is minimized: comparison with Least square

Figure: Distance to the deterministic model

Figure: Comparison: Nk (X , θ1) (blue) and Xtk
− xθ1 (tk ) (green)
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Results about dXt = b(θ1,Xt)dt + εσ(θ2,Xt)dBt

Under classical regularity assumptions on b and σ, we proved

n �xed, ε→ 0, low frequency contrast

Identi�ability assumption: θ1 6= θ′
1
⇒ {∃k, 1 ≤ k ≤ n, xθ1 (tk) 6= xθ′1

(tk)}.

1. General case (no information on θ2)

ε−1
(
θ̄1ε − θ01

)
−→
ε→0

N (0, J−1∆ (θ0
1
, θ0

2
))

2. case θ2 = f (θ1) (with information on θ2)

ε−1
(
θ̃1ε − θ01

)
−→
ε→0

N (0, I−1∆ (θ0
1
, θ0

2
))

3. n→∞ ε→ 0: high frequency contrast(
ε−1(θ̌1ε,∆ − θ01)√
n(θ̌2ε,∆ − θ02)

)
−→

n→∞,ε→0

N

(
0,

(
I−1
b

(θ0
1
, θ0

2
) 0

0 I−1σ (θ0
1
, θ0

2
)

))

Remarks

Epidemics: ε = 1√
N
, θ = θ1 = θ2, then for contrast 3: Ib is the same as for the

Markov jump process (all jumps observed)

J∆ is not optimal, but I∆ is, in the sense that I∆(θ1, θ2) −→
∆→0

Ib(θ1, θ2)
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Epidemics incompletely observed: partially and integrated di�usion processes (Work in progress)

Contrast processes for �xed or large number of observations
Correction of a non asymptotic bias
Comparison of estimators on simulated epidemics

Results on SIR for N = 10000, empirical mean estimators on 1000 runs and 95% theoretical CI
(R0 = 1.2, d = 3)

Figure: 0: MLE, 1: θ̄1ε low frequency MCE (general case), 2: θ̃1ε low frequency MCE
(θ1 = θ2), 3: θ̌1ε,∆ high frequency MCE

About unpresented results

Good results even for N = 100 (our methods seem more robust than MLE)

Similar performance (w.r.t. MLE) on more sophisticated models
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About θ̃1ε (Low frequency with information on θ2)

θ2 unknown

1.Ūε (θ1) = 1

∆

n∑
k=1

tNk(θ1,X )Nk(θ1,X )

Figure: Comparison between Data and ODE
(xθ̃1

(t))

Not good �t of the data

With information on θ2

2.Ũε (θ1) = 1

∆

n∑
k=1

tNk(θ1,X )(S̃θ1
k

)−1Nk(θ1,X )

Figure: Evolution of det
(

Σ−1(θ01 , xθ01
(t))
)

Too much weight on the boundaries
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About θ̃1ε (Low frequency with information on θ2)

Comparing to high frequency contrast

3.Ǔ∆,ε(θ1, θ2)) = ε2
n∑

k=1

log [det (Σk )]

+ 1
∆

n∑
k=1

t
Nk (θ1)Σ−1

k
Nk (θ1)

where Σk = Σ(θ2,Xtk−1
)

Figure: Previous results

Corrected contrast with information on θ2

2′.Ũcor
ε (α) = ε2

n∑
k=1

log
[
det(S̃

θ1
k

)
]

+ 1
∆

n∑
k=1

t
Nk (θ1)

(
S̃
θ1
k

)−1
Nk (θ1)

Figure: Corrected results
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Di�erent shapes of the con�dence ellipsoids

SIR Model con�dence ellipsoids for the corrected contrast

N = 1000, (R0, d) = {(1.5, 3), (1.5, 7), (5, 3), (5, 7)}
Number of observations: n = 10 (blue), n = 1obs/day ≈40 d.(green), n = 2000
(black), MLE CR (red) (Theoretical limit)
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Bias of MLE (N = 400; R0 = 1.5; d = {3, 7}; (s0, i0) = (0.99, 0.01))

Too much variability

Figure: Trajectories for d=3

Need of an empiric threshold: 5% of infected

Estimation results (d = 3)

Other values of d were investigated

Other thresholds: time of extinction, number max of

infected

Results (d = 7, time of extinction)

Zoom on the red trajectory (see Figure)
(R0, d)MLE = (0.8749, 2.9945)
(R0, d)LSE = (0.94, 2.5794)
(R0, d)cont = (1.01, 3.0973)
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Temporal dependence (SIRS) : λ1 di�cult to estimate

SIRS with constant immigration in I class

λ(t) = λ0(1 + λ1sin(2πt/T ))

Values
R0 = 1.5; d = 3d; 1

δTper
= 2y,

λ1 = {0.05, 0.15}
Fixed: Tper = 365, µ = 1/50Tper , ζ = 10

N
,

N = 107, 1 obs/day(week) for 20 years

Term for λ1 in Ib(θ0) very small ⇒
N > 105 for satisfactory CI

λ1 bifurcation parameter for the ODE

λ1 = 0.05 (weak seasonality)

λ1 = 0.15 (stronger seasonality)

Detailed results not shown

Main idea: R0, d , δ well estimated
λ1: biased (often estimated to 0)
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Outline

1 Characteristics of the epidemic process
Constraints imposed by the observation of the epidemic process
Simple mechanistic models

2 Various mathematical approaches for epidemic spread
Natural approach: Markov jump process
First approximation by ODEs
Gaussian approximation of the Markov jump process
Di�usion approximation of the Markov jump process

3 Inference for discrete observations of di�usion or Gaussian processes with small
di�usion coe�cient
Contrast processes for �xed or large number of observations
Correction of a non asymptotic bias
Comparison of estimators on simulated epidemics

4 Epidemics incompletely observed: partially and integrated di�usion processes (Work
in progress)
Back to epidemic data
Inference approach: Work in progress
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Incidence for SIR models

Discrete observation of all the coordinates

Con�ned studies

Childhood diseases

SIR Model:

Incidence at t2:

∫ t2

t1

λS(t)
I (t)

N
dt

High frequency data ≈ λS(t2)
I (t2)
N

d small : new infected ≈ new removed,∫ t2

t1

γI (t)dt = R(t2)− R(t1)

Di�usion perspectives

Partial and discrete obs. of the di�usion
process (Itô's formula)

Partial and Integrated discrete obs.
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Partially observed di�usion process: initial idea

Previous main idea not directly applicable:

i(t)

s(t)

S_5S_5

S_6

I_5

I_6

εg i(t5)

εg i(t 6)

εgs( t6)

εgs( t5)

Φi , i(t 6, t5)εgi( t5)

Φs ,i( t6, t 5)ε gs (t5)

ε√Δ Z6
i
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Partially observed di�usion process: initial idea

No good properties for n �xed, ε→ 0.
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Partially observed di�usion process: initial idea

Use that Φθ1 (t + ∆, t) ≈ Id as ∆→ 0

Function of the observations : Itk − i(tk)− Itk−1 + i(tk−1)

Integrated di�usion process

Integration of the relation : gη(tk) = Φθ1 (tk , tk−1)gη(tk−1) +
√

∆Z
η
k

⇒ link between g and the integrated process : similar to Kalman �ltering techniques
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