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Abstract

We propose a new methodology exploring Markov perfect equilibrium
strategies in differential games with regime switching. Specifically, we
develop a general game with two players having two kinds of strategies.
Players choose an action that influences the evolution of a state variable,
and decide on the switching time between alternative and consecutive
regimes. Compared to the optimal control problem with regime switching,
necessary optimality conditions are modified for the first-mover. When
choosing her optimal switching strategy, this player considers her impact
on the other player’s actions and welfare, vice versa. In order to deter-
mine the optimal timing between regime changes, the notion of erroneous
timing is introduced and necessary conditions for a particular timing to
be erroneous are derived. We then apply this original material to an ex-
haustible resource extraction game. Sufficient conditions for the existence
of an interior solution are compared to those characterizing an erroneous
timing. The impact of feedback strategies for adoption time on the equi-
librium depends on conflicting effects: the first mover incurs an indirect
cost due to the future switching of her rival (incentive to delay the switch).
But she is able to affect the other player’s switching decision (incentive to
switch more rapidly). In a particular case with no direct switching cost,
the interplay between the two ensures that the first-mover adopts the
new technology in finite time. Interestingly, this result differs from what
is obtained in a non-game theoretic framework, i.e. immediate adoption.
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1 Introduction

Several optimal decision making problems in economics concern the timing of
switching between alternative and consecutive regimes. Regimes may refer to
technological and/or institutional states of the world. For instance, a firm with
an initial level of technology may find it optimal to either adopt a new technology
or to stick with the old one (Boucekkine, Saglam and Vallée, 2004). Another
example is the decision to phase out existing capital controls in a given economy
(Makris, 2001). In all these examples, the switching decision corresponds to a
trade-off, i.e. adopting a new regime is associated with a cost. Given such,
multi-stage optimization is generally used for the analysis of regime switching
(Tomiyama, 1985). Switching instants between regimes are thus endogenously
determined.

In this article, we consider regime switching strategies in differential games.
Game theoretic settings involving optimal regime switching have been rarely
considered in literature. The first set involves dynamic games of regime change
with no state or stock variable. These models generally assume that the rele-
vant state of the system is the identity of the players which have adopted new
technology. An example is Reinganum (1981)’s study which considered tech-
nological adoption decisions of two ex ante identical firms. She assumed that
firms adopt pre-commitment (open-loop) strategies. That is, it is as if a firm
enters a binding commitment denoting its date of technology switch, knowing
the adoption date of the other firm. Reinganum’s primary finding is that, un-
der open-loop strategy, one firm will innovate first and the other will innovate
at a later date. Fudenberg and Tirole (1985) scrutinized Reinganum’s study
by using the concept of pre-emption equilibrium. Focusing on Markov perfect
equilibrium as the solution concept, they noted that the second-mover may try
to preempt its rival and become the first-mover (see Long, 2010, for a survey of
the literature).

Meanwhile, the other strand of literature pertains to the strategic interac-
tion of agents in relation to the dynamics of a given stock. For instance, Tornell
(1997) presented a model relating economic growth and institutional change.
Infinitely-lived agents solve a differential game over the choice of property-rights
regime, e.g. common or private property, defined over a capital stock. It was
shown that a potential equilibrium of the game involves multiple switching be-
tween regimes. But because only the symmetric equilibrium was considered, it
was observed that players always choose to switch at the same instant. Con-
sequently, the question of the timing between the switching strategies was not
addressed. In addition, even if Tornell explicitly defined the Markov perfect
equilibrium for the class of differential games with regime switching, a rigorous
modelling of these strategies, for switching time, is missing in his analysis. A
more recent example is the analysis by Boucekkine, Krawczyk and Valle (2011).
They analyzed the trade-off between environmental quality and economic per-
formance using a two-player differential game. Assuming that pollution results
from the sum of consumption levels and there is no decay, they have proven the
existence of an open-loop Nash equilibrium. They found out that each player
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chooses the technology without considering the choice made by the other player.
No interior switching instant was derived. At the open-loop Nash equilibrium,
either a player adopts technology immediately, or he sticks to the old one.

Nevertheless, to the authors’ knowledge, there seems to be no existing study
which explicitly discusses and models feedback Nash or Markov perfect equilib-
rium strategies in differential games with regime switching. This is where the
first theoretical contribution of this paper lies. We develop a general differential
game with two players having two kinds of strategies. First, players have to
choose at each point in time an action that influences the evolution of a state
variable. Second, they may decide on the timing of switching between alter-
native and consecutive regimes that differ both in terms of the payoff function
and the state equation. For simplicity, we assume that each player can affect a
regime change only once. At a feedback Nash equilibrium, we define the switch-
ing or timing strategy as a function of the state of the system. The relevant
level of the state variable on which the strategy is based is the one correspond-
ing to the instant when the switching problem arises. For instance, consider
a timing where player i switches first, followed by player j. Then, player i’s
switching strategy is defined over the initial stock, whereas player j’s strategy
depends on the level of the state at which player i has decided to switch. For
any of the two possible general timings, we characterize the necessary optimal-
ity conditions for switching times, both for interior and corner solutions. One
interesting finding is that, compared to the standard optimal control problem
with regime switching, necessary optimality conditions are modified only for the
player who finds it optimal to move first. Indeed, when choosing the optimal
date and level of the state variable for switching, this player must take into
account that (i) her decision will influence the other player’s switching strategy
and (ii) the other player’s switch will impact on her own welfare. Therefore,
this player will adapt her strategy. Depending on the particular economic prob-
lem at hand, the interaction through switching times may be an incentive to
either postpone or expedite regime switching. Another important issue is how
to determine the optimal timing at the Markov perfect equilibrium. This issue
is solved by providing necessary conditions for a particular timing to be erro-
neous. By erroneous we mean that at least one player would prefer lying in the
other timing.

The second contribution of this paper is the application of this new game the-
oretic material to address the tragedy of the commons. A game of exhaustible
resource extraction is considered. At a given cost, players have the option to
have more efficient extraction technology. Not only do players choose their con-
sumption levels, they also decide whether to adopt new technology and when. To
date, only few have studied the relationship between natural resource exploita-
tion and the timing of technology adoption. With a finite horizon two-stage
optimal control problem, Amit (1986) explored the case of a petroleum pro-
ducer who considers switching from primary to secondary recovery process. He
observed that a technological switch occurs if the desired extraction rate is larger
than can be obtained by the natural drive, or when the desired final output is
more than can be obtained using the primary process. In a more recent paper,

3



Valente (2011) analyzed a two-phase endogenous growth model which concerns
a switch from an exhaustible resource input into a backstop technology. Adop-
tion of new technology implies sudden decline in consumption, but an increase
in the growth rate. Finally, Boucekkine, Pommeret, and Prieur (2012) explored
a general control problem with both technological and ecological regime switch.
They applied it to address the issue of optimal resource extraction under eco-
logical irreversibility, and with the possibility to adopt backstop technology.
It was observed that the opportunity to switch to a backstop technology may
lead to an irreversible ecological regime. Overall, while the above-mentioned
studies have explored resource management and regime switching, they only
do so using optimal single-agent optimization programs. None have conducted
an analysis using a differential game theoretic approach. Indeed, Section 4’s
resource extraction game tries to fill this gap in literature. It is assumed that
heterogenous players start with a less efficient extraction technology and have
to decide: (i) whether to switch to a more efficient technology, and (ii) when,
given that switching involves a direct cost that depends on both the switching
date and the level of the state variable.

Our main findings can be summarized as follows. We first identify a mean-
ingful sufficient condition for a particular timing to be erroneous. This condition
contrasts the difference of players’ switching costs with the difference in tech-
nological gains from switching. Indeed, it is possible that both players find the
timing erroneous. This happens when the player who is supposed to be the first
to adopt has a relative disadvantage in adoption costs that is not compensated
by any relative technological advantage. This notably encompasses the obvious
situation in which the first mover incurs the higher switching cost and, at the
same time, is the one who benefits the less from adoption. The opposite of this
condition is necessary for the timing to be optimal. We then provide sufficient
conditions for the existence of an interior solution where both players adopt the
new technology in finite time and investigate the impact of feedback strategies
for switching time on the first-mover own switching strategy (compared to the
single-agent case). We emphasize the interplay between two opposite effects.
First, in our application, the switch of the second mover is costly for the first
mover because it implies a drop in her consumption of the resource. The switch-
ing cost of the latter is thus augmented by this term which is an incentive, other
things equal, to delay the switch. At the same time, however, it turns out that
the length of time between the two switches is increasing in the level of the
state variable. From the point of view of the first mover, who controls this level,
switching at a relatively abundant stock of resource is a means to postpone the
switch of the other. Because of discounting, delaying the switch of the other
player will allow the first-mover to incur a lower cost. This is an incentive to
switch at an earlier date. In the particular case where the first player does not
bear a direct switching cost, we show that she finds it worthwhile to adopt the
new technology at finite and positive date. Indeed, this result differs from what
one would obtain in the absence of interaction between players, i.e., immediate
adoption.

The plan of the paper is as follows. Section 2 describes the main assumptions
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of the general differential game with regime switching. Section 3 analyzes the
optimality conditions that characterize a Markov perfect equilibrium. Section 4
applies these theoretical findings to a game of exhaustible resource extraction.
Section 5 provides a brief discussion of the results, and Section 6 concludes.

2 The general problem

We consider a two-player differential game in which the instantaneous payoff of
each player and the differential equation describing the stock dynamics depend
on what regime the system is in. There are a finite number of regimes, and
we assume that under certain conditions, the players are able to take action (at
some cost) to affect a change of regime. Let Xi be the set of regimes that can be
changed by player i only, Y be the set of regimes that both players can change,
and Z the set of regimes that neither can change.

For simplicity, we assume that each player can affect a regime change only
once. In particular, this implies that regime changes are irreversible.

Consider a simple model where there are four possible regimes, denoted by
α, β, γ and δ. (An alternative notation is 11 for regime α, 21 for regime β, 12
for regime γ, and 22 for regime δ.)

We assume that the system is initially in regime α. Player 1 (which we
will refer to as HE) can take a “regime change action” to switch the system
from regime α to regime β, if player 2 (which we will refer to as SHE) has not
taken her regime change action before him. Once the system is in regime β,
only player 2 can take a regime change action, and this switches the system to
regime δ. From regime α, player 2 can switch to regime γ (if player 1 has not
taken his regime change before her). From regime γ, only player 1 can make
a regime change, and this switches the system to regime δ. If the system is
in regime α and players 1 and 2 take regime change action simultaneously, the
regime will be switched to δ. (In this example, X1 = {γ}, X2 = {β}, Y = {α},
and Z = {δ}).

More generally, we can write a “transition matrix” and specify in each box
what action is required to affect a change from one regime to another:

α β γ δ
α (0, 0) (1, 0) (0, 1) (1, 1)
β ∗ (0, 0) ∗ (0, 1)
γ ∗ ∗ (0, 0) (1, 0)
δ ∗ ∗ ∗ (0, 0)


In this matrix, an entry ∗ means the indicated change is not possible: e.g.

from regime β, it is not possible to switch to α. An entry (0, 0) means neither
agent takes a regime change action. (1, 0) means player 1 takes a regime change
action while player 2 does not. An entry (1, 1) means both players take their
regime change action at the same point of time (simultaneously).

At each instant, each player also chooses an action Ci, for instance a con-
sumption level, that affects the evolution of the state variable K. The instanta-
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neous payoff to player i at time t when the system is in regime r where r = α, β, γ
or δ is

F ri (Ci(t), C−i(t),K(t))

If player i takes a regime change action at time Ti, he/she incurs a lumpy cost
Ωi(K(Ti), Ti).

Then, if T2 > T1, the total payoff for player 1 is∫ T1

0

Fα1 (C1, C2,K)e−ρtdt+

∫ T2

T1

F β1 (C1, C2,K)e−ρtdt

+

∫ ∞
T2

F δ1 (C1, C2,K)e−ρtdt− Ω1(K(T1), T1)

with ρ the discount rate.
If T2 < T1, the total payoff for player 1 is∫ T2

0

Fα1 (C1, C2,K)e−ρtdt+

∫ T1

T2

F γ1 (C1, C2,K)e−ρtdt

+

∫ ∞
T1

F δ1 (C1, C2,K)e−ρtdt− Ω1(K(T1), T1)

And if T1 = T2 = T , the total payoff for player 1 is∫ T

0

Fα1 (C1, C2,K)e−ρtdt+

∫ ∞
T

F δ1 (C1, C2,K)e−ρtdt− Ω1(K(T ), T )

The differential equation describing the evolution of the state variable K in
regime r (where r = α, β, γ or δ) is

K̇ = fr(C1, C2,K)

In the subsequent analysis, we use Markov perfect equilibrium (MPE) as
the solution concept. As illustrated by the decomposition above, the game,
that corresponds for instance to timing 0 5 T1 5 T2 5 ∞, can be divided into
three sub-games, each being associated with a particular regime. Indeed, for
the timing considered, the sequence of regimes is: α, β and δ (or 11, 21 and
22). A natural way to proceed, for determining a MPE of this game, is to solve
the problem recursively, starting from the regime arising after the last regime
switching, here δ or 22. This is a natural extension of the method originally
developed by Tomiyama (1985) and Amit (1986) to solve their two-stage optimal
control problems.

The next assumption ensures that our problem, seen as a sequence of three
sub-games, is well-behaved.

Assumption 1 • The functions F ri (.) and fr(.), for any regime r = lk,
l, k = 1, 2, belong to the class C1.

• The sub-game obtained by restricting the general problem to any regime r,
satisfies the Arrow-Kurz’s sufficiency conditions.
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These conditions will allow us to use some envelope properties that requires
the differentiability of the value function (see Boucekkine, Pommeret and Prieur,
2012, for a detailed discussion).

Let us now define what is a MPE strategy in our model. A MPE strategy
consists of a consumption policy and a switching rule describing the actions
undertaken by each player at every possible state of the system.

To formulate player 1’s maximization problem, we must then specify what
knowledge he has about player 2’s behavior. We focus on the case where each
player has a consumption strategy which specifies consumption at time t as
dependent only on (i) the current stock level, K(t), and (ii) the current regime.
Thus player 1 thinks that player 2’s consumption strategy as a list of four
functions : Φα2 (K), Φβ2 (K), Φγ2(K) and Φδ2(K).

What does player 1 know about player 2’s switching strategy?
Suppose player 1 thinks that if player 2 finds herself in regime β at date t

(which implies that he switched at an earlier date T1 < t), she will make a switch
at a date T2 ≥ t. Then player 1 should think that the interval of time between
the two switches, T2−T1, is a function of the state of the system. The state of the
system is defined in terms of the regime and the level of the state variable that
are relevant for the switching problem of player 2. The relevant regime is the
one that holds after T1. Moreover, it is clear that T2−T1 will not depend on any
state level K because, in contrast to the consumption decision, it is a discrete
choice. Because, player 2’s switching problem arises once player 1 has switched,
the level of the state that matters is K(T1) = K1. Thus, player 1 thinks that

player 2’s switching strategy takes the following form: T2 − T1 = θβ2 (K1). In a
more general formulation, we could admit the case where player 1 thinks that if
player 2 finds herself in regime α, she will make a switch at T2 = T0 + θα2 (K0).

Then we say that

Definition 1 • Player 2’s strategy (as guessed by player 1) is a t−uple

ψ2 ≡
(

Φα2 ,Φ
β
2 ,Φ

γ
2 ,Φ

δ
2, θ

β
2 , θ

α
2

)
.

• Player 1’s strategy (as guessed by player 2) is represented by a t−uple,

ψ1 ≡
(

Φα1 ,Φ
β
1 ,Φ

γ
1 ,Φ

δ
1, θ

γ
1 , θ

α
1

)
.

• A Markov perfect equilibrium is a pair (ψ1, ψ2) such that ψ1 is a best reply
to ψ2, for each possible initial condition and initial time.

The next section presents the set of necessary optimality conditions that
characterize a MPE of our differential game with regime switching.

3 Necessary Conditions

In the following analysis, player i’s present value Hamiltonian and co-state vari-
able in any regime lk are denoted respectively by H lk

i and λlki . The results
are presented for a particular timing: 0 5 T1 5 T2 5 ∞, which allows us to
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dispense with some notations: we do not have to make explicit the dependance
of switching strategies on the regime. Necessary optimality conditions for the
other general timing, 0 5 T2 5 T1 5 ∞, can easily be derived by symmetry.
Finally note that in the theorem below, attention is paid only to the necessary
optimality conditions related to the switching problem. Actually, deriving the
optimality conditions for the consumption policies is pretty standard whereas
the novelty of our analysis refers to switching rules.

Theorem 1 1. The necessary optimality conditions for the existence of a
MPE featuring the timing 0 < T ∗1 < T ∗2 <∞ are:

• For player 2:

H21∗
2 (T ∗2 )− ∂Ω2(K∗

2 ,T
∗
2 )

∂T2
= H22∗

2 (T ∗2 )

λ21∗
2 (T ∗2 ) +

∂Ω2(K∗
2 ,T

∗
2 )

∂K2
= λ22∗

2 (T ∗2 ).
(1)

• For player 1:

H11∗
1 (T ∗1 )− ∂Ω1(K∗

1 ,T
∗
1 )

∂T1
= H21∗

1 (T ∗1 )− [H21∗
1 (T ∗2 )−H22∗

1 (T ∗2 )]

λ11∗
1 (T ∗1 ) +

∂Ω1(K∗
1 ,T

∗
1 )

∂K1
= θ′2(K∗1 )[H21∗

1 (T ∗2 )−H22∗
1 (T ∗2 )] + λ21∗

1 (T ∗1 ),

(2)

2. Suppose player 1’s switching problem has a solution (T ∗1 ,K
∗
1 ).

• A necessary condition for a corner solution with immediate switching
T ∗1 = T ∗2 is

H21∗
2 (T ∗2 )− ∂Ω2(K∗2 , T

∗
2 )

∂T2
≤ H22∗

2 (T ∗2 ) if T ∗1 = T ∗2 <∞ (3)

• A necessary condition for a corner solution of the never switching type
T ∗2 =∞ is

H21∗
2 (T ∗2 )− ∂Ω2(K∗2 , T

∗
2 )

∂T2
≥ H22∗

2 (T ∗2 ) for any T ∗2 ≥ T ∗1 (4)

3. Suppose player 2’s switching problem has a solution (T ∗2 ,K
∗
2 ).

• A necessary condition for a corner solution with immediate switching
0 = T ∗1 is

H11∗
1 (T ∗1 )−∂Ω1(K∗1 , T

∗
1 )

∂T1
≤ H21∗

1 (T ∗1 )−[H21∗
1 (T ∗2 )−H22∗

1 (T ∗2 )] if 0 = T ∗1 < T ∗2

(5)

• A necessary condition for a corner solution of the never switching type
T ∗1 = T ∗2 is

H11∗
1 (T ∗1 )−∂Ω1(K∗1 , T

∗
1 )

∂T1
≥ H21∗

1 (T ∗1 )−[H21∗
1 (T ∗2 )−H22∗

1 (T ∗2 )] if 0 < T ∗1 = T ∗2

(6)
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4. Suppose that it is optimal for the two players to switch at the same date
T ∗ = T1 = T2, for the same level of the state K∗ = K1 = K2, then the
following conditions must hold:

H11∗
2 (T ∗)− ∂Ω2(K∗,T∗)

∂T2
= H22∗

2 (T ∗)

H11∗
1 (T ∗)− ∂Ω1(K∗,T∗)

∂T1
= H22∗

1 (T ∗)

λ11∗
2 (T ∗) + ∂Ω2(K∗,T∗)

∂K2
= λ22∗

2 (T ∗)

λ11∗
1 (T ∗) + ∂Ω1(K∗,T∗)

∂K1
= λ22∗

1 (T ∗)

(7)

Proof. See the appendix A.

Theorem 1 exhibits the necessary conditions for the existence of potential
interior and corner solutions. Let us first analyze the switching conditions for
an interior solution. Of particular importance is the difference between the op-
timality conditions of the first-mover (player 1) and the second-mover (player
2). Player 2’s conditions (1) are similar to the ones derived in multi-stage
optimal control literature (Tomiyama (1985) and Amit (1986)). The first con-
dition states that it is optimal to switch from the penultimate to the final
regime when the marginal gain of delaying the switch, given by the difference

H21∗
2 (.) −H22∗

2 (.), is equal to the marginal cost of switching,
∂Ω2(K∗

2 ,T
∗
2 )

∂T2
. The

second condition equalizes the marginal benefit from an extra unit of the state
variable K2 with the corresponding marginal cost. It basically says that the
value of the co-state, when approached from the intermediate regime, plus the
incremental switching cost must just equal the value of the co-state, approached
from the last regime. Hence, as long as a player finds it optimal to be the second
mover, her optimality conditions are similar to the standard switching condi-
tions of an optimal control problem.

The original part of the analysis stems from the problem faced by the player
who opts to adopt first. Indeed, player 1’s optimality conditions are modified.
The first condition in (2) implies that player 1 also takes into account how her
situation changes as a consequence of a switch of player 2. Player 1 decides on its
optimal switching time by equalizing the marginal gain of delaying the switch,
which is given by the difference H11∗

1 (.)−H21∗
1 (.) to the marginal switching cost,

∂Ω1(K∗
1 ,T

∗
1 )

∂T1
− [H21∗

1 (T ∗2 )−H22∗
1 (T ∗2 )]. The extra-term [H21∗

1 (T ∗2 )−H22∗
1 (T ∗2 )] is

the marginal impact of player 2’s switch on player 1. Depending on the nature
of the problem, it can either be positive or negative. The second optimality
condition is also modified. The cost of a marginal increase in K1 now includes
an extra-term: θ′2(K∗1 )[H21∗

1 (T ∗2 ) −H22∗
1 (T ∗2 )]. This term reflects the fact that

player 1 takes into account the impact of the choice of his switching level K∗1 on
player 2’s timing strategy. Put differently, player 1 knows that modifying K∗1 is
a means to delay or accelerate player 2’s regime switching.

Indeed, it can be inferred that adopting first may entail a leadership role for
player 1. Being the first-mover allows her to influence the player 2’s strategy.
Furthermore, through the anticipation of the second-mover’s reaction, she can
adapt her own strategy.
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We now turn to the necessary conditions for the corner solutions. In doing
so, a distinction should be made between different cases. The corner situations
T ∗1 = 0 and T ∗2 = ∞ have been studied in literature (Boucekkine, Krawczyk,
Vallée, 2011). At T ∗1 = 0, player 1 disregards the first optimization phase, i.e.
the one when she lies in regime 11. This is because a delay in switching yields
a marginal gain that is not greater than the marginal loss of foregoing for an
instant the benefit of the new regime, for player 1. Similarly, if player 2 were
to adopt a never switching strategy then it would mean that for all T2 ≥ T ∗1 ,
sticking to regime 21 offers a (marginal) reward, H21∗

2 (.) − H22∗
2 (.), which is

lower than or equal to ∂Ω2(.,.)
∂T2

, the switching cost.
Of further interest is the interpretation of the corner solutions T ∗1 = T ∗2 ,

mentioned in the items 2 and 3 of Theorem 1. The switching conditions are of
the same meaning as before. If player 2 chooses the corner T ∗2 = T ∗1 it must
mean that at T ∗1 delaying the switch is associated with a marginal gain that is
not greater than the marginal loss of foregoing for an instant the benefit of the
new regime, H22

2 (T ∗1 ). Condition in (6) is the corner optimum for player 1: if
he chooses the corner T ∗1 = T ∗2 , it must be true that at T ∗2 a delay in switching
by player 1 yields a marginal gain that is at least as high as the marginal loss
of foregoing for an instant the benefit of new regime, H22

1 (T ∗2 ).
To analyze player 1’s switching problem, we have assumed that player 1 is

subject to the constraint T1 ≤ T ∗2 , with T ∗2 fixed. Then, using the tools origi-
nally developed by Tomiyama (1985) and Amit (1986), the corresponding finite
horizon switching problem was solved. However, because the current analysis
pertains to a differential game, Condition (6) cannot simply be interpreted as a
necessary condition for having a corner solution T ∗1 = T ∗2 . Rather, this condition
is necessary for the timing 0 5 T1 5 T2 5 ∞ to be erroneous. Indeed, under
(6), Player 1 would prefer switching at a later date than T ∗2 . This is feasible
because T ∗2 is not fixed. Thus, (6) is also a sufficient condition for the optimal
timing to be 0 5 T2 5 T1 5∞.

The analysis of these erroneous timing situations will be crucial in the fol-
lowing section, an application of the theory to an exhaustible resource problem.
It points out the conditions under which one player will optimally accept to
adopt first, while the other will choose to be the second-mover. Such would
allow the reduction of the set of MPE candidates. In our problem, there are a
priori fifteen possible timings corresponding to the set of possible combinations
between T1 and T2.1 But, it is highly unlikely that heterogenous players decide
on the same switching time. So, the timings 0 5 T1 = T2 <∞ should not give
MPE candidates. Logically, one could expect that several cases are mutually
exclusive. Analyzing the erroneous timing conditions, (5)-(6) and the ones ob-
tained when analyzing the other timing, should be a means to understand which
timing, between 0 < T1 < T2 5 ∞ and 0 < T2 < T1 5 ∞, contains the MPEs.
Nonetheless, at this stage, we cannot rule out the existence of multiple MPEs.

1Of course, the same kind of switching conditions can be derived, by symmetry, for the
other general timing 0 5 T2 5 T1 5∞.
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To conclude, we now consider the particular cases where the state variable
follows a monotonic trajectory. This analysis is of particular use to applications
involving the management of exhaustible resources. In this case, the path fol-
lowed by the state variable is monotone non-increasing. Additional constraints
on the switching level must be taken into account: K0 ≥ K1 ≥ K2(≥ 0).

Corollary 1 • Sufficient conditions for the corner T ∗1 = T ∗2 are (3) and

λ21∗
2 (T ∗2 ) +

∂Ω2(K∗2 , T
∗
2 )

∂K2
≤ λ22∗

2 (T ∗2 ). (8)

• Sufficient conditions for the corner 0 = T ∗1 are (5) and

λ11∗
1 (T ∗1 )+

∂Ω1(K∗1 , T
∗
1 )

∂K1
≤ θ′2(K∗1 )[H21∗

1 (T ∗2 )−H22∗
1 (T ∗2 )]+λ21∗

1 (T ∗1 ) (9)

• Sufficient conditions for the corner T ∗1 = T ∗2 are (6) and

λ11∗
1 (T ∗1 )+

∂Ω1(K∗1 , T
∗
1 )

∂K1
≥ θ′2(K∗1 )[H21∗

1 (T ∗2 )−H22∗
1 (T ∗2 )]+λ21∗

1 (T ∗1 ) (10)

We observe that introducing these constraints, we are now only able to
provide two conditions that are only sufficient for the necessary condition char-
acterizing a corner solution to hold.

The next section applies these theoretical findings to a game of exhaustible
resource extraction.

4 Application

The concept of the tragedy of the commons has been used to explain a variety
of economic phenomena. Pertinent examples include dynamic games involving
the exploitation of a common property resource (Lane and Tornell, 1996, Ploeg,
2010 and Alvarez-Cuadrado and Long, 2011).2 In general, it has been observed
that the presence of rivalry among multiple agents tend to result to inefficient
outcomes, e.g. overextraction of the natural resource.

Another common feature shared by the above-mentioned models is the as-
sumption that players cannot adopt new technology that will improve their
extraction efficiency. It is usually assumed that consumption is a fixed fraction
of the extraction level. In this section, we relax this assumption and consider the
possibility of technological adoption among players. That is, players not only
choose their consumption. They also decide when to adopt the more efficient
extraction technology. This puts forth another innovative contribution of this
paper.

Indeed, the results of the theoretical analysis in Section 3 are used to study
an exhaustible resource game. As will be discussed in this section, of particular
relevance is the decision of competing agents to adopt new technology.

2For extensive surveys on dynamic games in resource economics, refer to Long (2010, 2011).
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4.1 A resource extraction game

Hereafter we describe the economic environment. There are n = 2 players.
Let Ci(t) denote the consumption level of player i, i = 1, 2, at time t ≥ 0.
Meanwhile, let Ei(t) be player i’s extraction rate from the resource at time
t ≥ 0. Extraction is converted into consumption according to the following

technology: Ci(t) = Ei(t)
γi

, where 1
γi

is a non-negative number that may reflect a
player’s degree of efficiency in transforming the extracted natural resource into
a consumption good.

Two production technologies, described only by the parameter γi, are avail-
able to player i from t = 0. Because players’ technological menus may differ,
one needs to introduce another index for the regime. It is assumed that player
1 starts with technology l = 1 and has to decide: (i) whether she switches to
technology l = 2, and (ii) when.3 The ranking between the parameters satisfies:
γ1

1 > γ2
2 , which means that the second new technology is more efficient than

the old one. Technological gain from adoption is thus measured by the ratio
γ2
1

γ1
1
∈ (0, 1).

Let K(t) be the stock of the exhaustible resource, with the initial stock K0

given. As in section 2, T1 and T2 are the switching times. Suppose 0 < T1 < T2,
then the evolution of the stock is given by the following differential equation:4

K̇ =

 −γ
1
1C1 − γ1

2C2 if t ∈ [0, T1]
−γ2

1C1 − γ1
2C2 if t ∈ [T1, T2]

−γ2
1C1 − γ2

2C2 if t ∈ [T2,∞)
(11)

At the switching time, if any, player i incurs a cost that is defined in terms
of the level of the state variable at which the cost occurs. Let Si(K(Ti)) be this
cost, with S′i(.) ≥ 0. The direct switching cost is discounted at rate ρ. As seen
from the initial period, if a switch occurs at Ti, the discounted cost amounts
to e−ρTiSi[K(Ti)]. It takes the following form: Si[K(Ti)] = χi + βiK(Ti), χi >
0 and βi ≥ 0. χi is the fixed cost related to technology investment. These may
include initial outlay for machinery, etc. On the other hand, βi represents the
sensitivity of adoption cost on the level of the exhaustible resource at the instant
of switch. It is assumed that the cost of adopting new technology is increasing
in K(Ti) = Ki and decreasing in Ti. This assumption can be attributed to
learning.

Finally, each player’s gross utility function U(Ci) is increasing in her own
consumption level, Ci. It is continuous and strictly concave. In the next sub-
section, we assume that it takes the logarithmic form: U(Ci) = ln(Ci).

Attention is first paid to the interior solution. Analysis of the corner solutions
is postponed to the next subsection.

3The state of technology of the other player, 2, is labelled as k.
4In what follows, we will omit the time index for simplicity of notation. In addition, the

regime index (l, k) will only be used when characterizing the solution valid in this particular
regime.
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4.2 Interior solution

We now analyze the above-mentioned differential game with two players. To
allow for different switching instants, we consider the case where the players are
heterogeneous in terms of both switching costs and technological menus.

From now on, consider the particular timing: 0 < T1 < T2 < ∞. In other
words, attention is paid to the interior solution where player 1 is supposed to
adopt before player 2. Each player solves:

max{Ci},Ti

∫ ∞
0

e−ρt ln(Ci)dt− e−ρTiSi(Ki)

subject to (11), K0 being given. This problem is solved by backward induction,
starting from the game valid after the last switch.

4.2.1 Last period problem

The optimization program is identical for each player. For instance, player 1’s
problem is to maximize its present value of consumption flow given the dynamics
of the resource, and a guess about player 2’s consumption. Let us assume that
C2(K) = b22K. Then,

max
{C2}

∫ ∞
T2

e−ρt ln(C1)dt

subject to
K̇ = −γ2

1C1 − γ2
2b

2
2K

with K(T2) = K2 given.
Writing the first order conditions and making the same guess, for player 1,

we obtain:

γ2
1C

22
1 (K) = γ2

2C
22
2 (K) = ρK and K(t) = K2e

−2ρ(t−T2) (12)

and the value function is

V 22
i (K2, T2) =

e−ρT2

ρ

[
ln(K2) + ln(ρ)− ln(γ2

i )− 2
]

= e−ρT2v22
i (K2) (13)

The following subsections analyze the two sub-games where players also have
to decide on the instant to adopt the new technology. This introduces another
source of interaction between players. We have now to characterize the timing
strategies, together with the consumption strategies, at a MPE. Solving recur-
sively for the timing 0 < T1 < T2 <∞, we first study the switching problem of
player 2, i.e. of the last adopter.

4.2.2 Second period problem

Guessing linear feedback strategies, player 2’s optimization program in this
regime is:

max
{C2},T2

V 21
2 (.) =

∫ T2

T1

e−ρt ln(C2)dt− e−ρT2S2(K2) + V 22
2 (K2, T2)
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subject to
K̇ = −γ2

1(a1 + b1K)− γ1
2C2

with K(T1) = K1 given, but free K2.

During this period, player 1 has to make a guess for the switching date of
player 2. But he takes both the date and the resource level at which player 2’s
switching problem starts as given. When going back to the first period problem,
these two elements will be endogenized. At the moment, player 1 solves

max
{C21

1 }
V 21

1 (.) =

∫ T1+θ2[K(T1)]

T1

e−ρt ln(C21
1 )dt+ V 22

1 (K2, T2)

subject to
K̇ = −γ2

1C
21
1 − γ1

2(a2 + b2K)

with K(T1) = K1, T1 and K2 given.
We can determine the MPE in consumption strategies valid in regime (2, 1).

We also characterize the instant and the level of resource at which it is optimal
for Player 2 to switch. The results are summarized in the proposition below.
Recall that we work with T1 and K1 fixed.

Proposition 1 • In regime (2, 1) the consumptions strategies are given by

γ2
1C

21
1 (K) = γ1

2C
21
2 (K) =

ρ2β2(K∗2 )2

1− β2ρK∗2
+ ρK. (14)

• The optimal level of the resource stock for switching, K∗2 , is defined by

ρS2(K∗2 ) + ln

[
γ2

2

γ1
2

]
= ln(1− β2ρK

∗
2 ). (15)

If the switching level of player 1 (defined in the next section) satisfies
K1 ≥ (ρβ2)−1, then a sufficient condition for the existence of a unique
K∗2 is:

ln

[
γ1

2

γ2
2

]
> ρχ2. (16)

Otherwise, another sufficient existence condition is

ρS2(K1) + ln

[
γ2

2

γ1
2

]
> ln(1− β2ρK1) (17)

• The optimal switching date is T ∗2 = T1 + θ2(K1) with

θ∗2(K1) =
1

2ρ
ln

[
(1− ρβ2K

∗
2 )
K1

K∗2
+ ρβ2K

∗
2

]
=

1

2ρ
ln

[
C21
i (K1)

C21
i (K∗2 )

]
. (18)
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Proof. See the appendix B.2.

Based on Proposition 3, several remarks can be made. First, player 2’s
optimal K for switching is independent of player 1’s decisions. Recall that by
definition we have γ1

2 > γ2
2 : switching to the new technology translates into a

more efficient extraction of the resource. Then, the switching level exists and is
unique as long as technology differential (gain from switching) is large enough
compared to the fixed cost of switching.

Second, from equations (12) and (14), one can observe that γ1
2C

21
2 (T−2 ) =

γ2
2C

22
2 (T+

2 ) iff β2 = 0. Thus, players’ resource extraction is not continuous at
the switching date of player 2. This is due to the fact that the direct switching
cost is a function of the level of state variable at the switching date.

Third, the optimal length between two switches, as defined by (18), or the
optimal switching time for player 2, is defined in terms of K1 (the level of
state at the switching date of player 1), the discount rate and some parameters
characterizing regime (2, 1), that players leave, and regime (2, 2), that players
reach. Hence, player 1 is able to affect player 2 switching time T2 and will
take this influence into account in the first period problem. Note also that the
optimal switching date of player 2 is increasing in K1. The larger the resource
stock at which player 1 decides to switch, the later the adoption of player 2. In
other words, switching rapidly for player 1 tends to delay the adoption time of
player 2.

Before analyzing the first period problem, we need to retrieve the value
functions of player 1:

v21
1 (K1, θ2) =

∫ T2

T1

e−ρ(t−T1) ln(C21
1 )dt+ e−ρθ2v22

1 (K∗2 )

After some computations, one has

v21
1 (K1, θ2) =

[(
− lnC21

1 (K1)e−ρθ2

ρ
+ 2e−ρθ2(θ2 +

1

ρ
)

)
−
(
− lnC21

1 (K1)

ρ
+

2

ρ

)]
+e−ρθ2v22

1 (K2)

Using C21
1 (K2) =

γ1
2

γ2
1
C21

2 (K2), v22
1 (K2) = v22

2 (K2) + 1
ρ ln

(
γ2
2

γ2
1

)
and (14), we

obtain

v21
1 (K1, θ2) =

1

ρ

[
ln(C21

1 (K1))− 2 + e−ρθ2
(

ln

(
C21

1 (K2)

C21
1 (K1)

)
+ ln

(
γ2

2

γ1
2

)
+ 2ρθ2 + ρS2(K2)

)]
(19)

Note that using (18), we have ln
(
C21

1 (K2)

C21
1 (K1)

)
= −2ρθ2. Using this, equation

(19) simply becomes

v21
1 (K1, θ2) =

1

ρ

[
ln(C21

1 (K1))− 2 + e−ρθ2
(

ln

(
γ2

2

γ1
2

)
+ ρS2(K2)

)]
(20)
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4.2.3 First period problem

Player 1’s problem deserves further attention because the player who adopts
first has to consider the impact of her switching decision on the other player’s
switching strategy. This is the original part of our analysis and for this reason
most of the resolution appears in the main text. Hereafter, we also focus on the
Markov perfect switching strategy for the latest adopter. This notably implies
that player 1 has to make a guess not only for the consumption strategy of
player 2, but also for its timing strategy.

Assume that player 1 guesses (i) player 2 has in mind an optimal switch
level K2 (not necessarily the same as K∗2 that we found above from the analysis
of player 2’s switching conditions), and that (ii) player 2 has a switching time
strategy θ2(K1) (not necessarily θ∗2(K1) defined by 18). We have to determine
player 1’s MPE strategy for the switching time given these guesses. The rele-
vant level of the state, in the definition of the switching strategy of player 1,
corresponds to the instant when the switching problem arises that is, K0. Note
that his switching time is also dependent on the technological state of the econ-
omy, described by the pair (γl1, γ

h
2 ), l, h = 1, 2, but we do not need to make this

dependence explicit.

Player 1’s optimization program in this first period, i.e. the period that
holds before any switch, is

max
{C1},T1

V 11
1 (.) =

∫ T1

0

e−ρt ln(C1)dt− e−ρT1S1(K1) + e−ρT1v21
1 [K1, θ2(K1)]

subject to,
K̇ = −γ1

1C1 − γ1
2(a2 + b2K)

with K(0) = K0 given, and free K1.
Following the same methodology as in the second period, first we can write

the switching conditions. Taking the derivative of the value function with re-
spect to K1, one obtains (the necessary condition for an interior K∗1 < K0)

−λ1(T−1 )− e−ρT1S′1(K1) + e−ρT1

[
∂v21

1

∂K1
+
∂v21

1

∂θ2
θ′2(K1)

]
= 0 (21)

This optimality condition emphasizes the impact of MPE strategies for switching
times on players’ behavior. When choosing the level of the state corresponding
to the switching time, the player who moves first (Player 1), takes into account
the impact of her decision on Player 2’s switching strategy. This condition will
be discussed further at the end of the section.

At the MPE, using (20) and the value for θ2(K1) and θ′2(K1), given in (18),
the term inside the square brackets in equation (21) can be rewritten as:

∂v21
1

∂K1
+
∂v21

1

∂θ2
θ′2(K1) =

C21′
1 (K1)

ρC21
1 (K1)

[
1− e−ρθ2(K1)

2

(
ln

(
γ2

2

γ1
2

)
+ ρS2(K2)

)]
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Thus, equation (21) is equivalent to

− 1

γ1
1C

11
1 (T−1 )

− β1 +
C21′

1 (K1)

ρC21
1 (K1)

[
1− 1

2eρθ2(K1)

(
ln

(
γ2

2

γ1
2

)
+ ρS2(K2)

)]
= 0,

which reduces to

γ1
1C

11
1 (T−1 ) =

Γ + ρK1

Z(K1)− β1 (Γ + ρ2K1)
(22)

where Γ =
ρ2β2(K∗

2 )2

1−β2ρK∗
2

and

Z(K1) ≡
[
1− 1

2eρθ(K1)

(
ln

(
γ2

2

γ1
2

)
+ ρS2(K∗2 )

)]
= 1− ln (1− ρβ2K

∗
2 )

2
√

(1− β2ρK∗2 ) (K1/K∗2 ) + ρβ2K∗2
> 1

where we have made use of the equation (15) and of the fact that K∗2 ∈
(0, (ρβ2)−1).

Define the function F (K1) by

F (K1) = Z(K1)− β1(Γ + ρK1). (23)

this function, that is defined over the interval (K∗2 ,K0), is decreasing in K1.
Thus, a necessary condition for the consumption level in (22) to be defined for
some K1 ∈ (K∗2 ,K0) is F (K∗2 ) > 0, which can be restated as

1− ρ(β1 + β2)K∗2
1− ρβ2K∗2

+
[− ln (1− ρβ2K

∗
2 )]

2
> 0. (24)

From now on, we will assume that this technical condition holds. It notably
imposes that β1 is small enough. (A sufficient condition for consumption to be
non negative for all K1 ∈ (K∗2 ,K0) is Z(K0)− β1(Γ + ρK0) > 0.)

Remark. The inequality (24) is not satisfied for all K∗2 ∈ [0, (ρβ2)−1). It
is pretty easy to show that ∃!K̄∗2 ∈ (0, (ρβ2)−1) such that F (K∗2 ) > 0 for all
K∗2 < K̄∗2 .

The second switching condition (wrt T1) has the same form as the one of
player 2:

e−ρT1 ln(C11
1 (T1))−λ11

1 (T1)
[
γ1

2C
11
2 (T1) + γ1

1C
11
1 (T1)

]
+ρe−ρT1(S1(K1)−v21

1 (K1, θ2(K1))) = 0

Since the relationship γ11
1 C1(t) = γ11

2 C2(t) is valid in the first regime, i.e.
for all t ∈ [0, T1], this condition can be restated as

ln
(
C11

1 (T1)
)

= 2 + ρ[v21
1 (K1, θ2(K1))− S1(K1)] (25)
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Using the value of C11
1 (T1) and C21

1 (T1) respectively given by (22) and (14)
(for the case of T1 > 0), condition (25), that defines the optimal switching level
K∗1 , reads:

ρS1(K1) + ln

(
γ2

1

γ1
1

)
= e−ρθ2(K1)

[
ρS2(K∗2 ) + ln

(
γ2

2

γ1
2

)]
+ ln[F (K1)] (26)

Denote the LHS of (26) by G(K1) and the RHS by H(K1). Now we char-
acterize the MPE in consumption strategies in regime 11 and provide sufficient
conditions for having a unique solution to the first player’s switching problem.

Proposition 2 • If the following conditions hold:

G(K0) > H(K0), ρS1(K∗2 ) + ln

(
γ2

1

γ1
1

)
< ρS2(K∗2 ) + ln

(
γ2

2

γ1
2

)
(27)

and,

β1 <
1

2ρK∗2
[(1− β2ρK

∗
2 ) (− ln (1− β2ρK

∗
2 ))] , (28)

then there exists a unique K∗1 ∈ (K∗2 ,K0) that solves (26).

• In regime (1, 1) consumption strategies at the MPE are

γ2
1C

11
1 (K) = γ1

2C
11
2 (K) = Λ + ρK. (29)

with,

Λ =
Γ + ρK∗1 (1− F (K∗1 ))

F (K∗1 )
(30)

• Taking the pair (K∗1 ,K
∗
2 ) as given, the optimal switching time is

T1 =
1

2ρ
ln

[
K0 + Λ

ρ

K∗1 + Λ
ρ

]
, (31)

with K0 the initial stock.

Proof. See the appendix B.3.

The series of sufficient conditions in proposition (2) are more likely to be
satisfied when:

(i) The initial resource stock is high enough (first inequality in (27)),
(ii) Player 1 is the one for whom adopting the new technology is relatively

less costly, S1(K) < S2(K) for all K ∈ [0,K0]. She also the one who earns the

highest benefit from adoption:
γ2
1

γ1
1
<

γ2
2

γ1
2
< 1.

(iii) Player 1’s direct switching cost is not very sensitive to the resource stock
i.e. β1 is small enough.
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We will see, in the next section, that these sufficient conditions (for the
necessary conditions of an interior solution to hold) are intimately linked with
the necessary conditions characterizing the corner regimes.

In the remaining part of this section, we will further address the impact of
MPE strategies for switching times on the solution. Indeed, given that (player
2) switching strategy is based on the state of the system and player 1 is able to
affect this state, it is crucial to understand how does player 1 adapt her strategy
to player 2’s switching decision. This also requires the solution to the following
related issue: what is the impact of Player 2’s future switch on player 1?

Recall that player 1’s switching conditions are:5

H11∗
1 (T ∗1 )−H21∗

1 (T ∗1 ) =
∂Ω1(K∗

1 ,T
∗
1 )

∂T1
− [H21∗

1 (T ∗2 )−H22∗
1 (T ∗2 )]

λ21∗
1 (T ∗1 )− λ11∗

1 (T ∗1 ) =
∂Ω1(K∗

1 ,T
∗
1 )

∂K1
− θ′2(K∗1 )[H21∗

1 (T ∗2 )−H22∗
1 (T ∗2 )].

In our application, they can be written as:

ln
[
C11

1 (T∗
1 )

C21
1 (T∗

1 )

]
= −ρS1(K∗1 ) + e−ρθ(K

∗
1 ) ln

[
C22

1 (T∗
2 )

C21
1 (T∗

2 )

]
[
γ2

1C
21
1 (T ∗1 )

]−1 −
[
γ1

1C
11
1 (T ∗1 )

]−1
= S′1(K∗1 ) + θ′2(K∗1 )e−ρθ(K

∗
1 ) ln

[
C22

1 (T∗
2 )

C21
1 (T∗

2 )

]
(32)

Compared to the single-agent problem, both conditions are modified. Thus,
we would like to understand how these modifications affect player 1’s switching
problem.

The LHS of the first condition in (32) reflects the marginal gain from ex-
tending the horizon of the first regime. If there exists 0 < T ∗1 < T ∗2 then this
marginal gain must be equal to the marginal cost of switching at T ∗1 . Now,
the marginal switching cost (RHS) is augmented (in absolute magnitude) by

the extra-term e−ρθ(K
∗
1 ) ln[

C22
1 (T∗

2 )

C21
1 (T∗

2 )
]. Player 1 anticipates that her switching de-

cision will be followed by the switch (in finite time too) of the second player
and that this switch will be costly, given that C22

1 (T ∗2 ) < C21
1 (T ∗2 ). She incurs

a indirect (marginal) cost that corresponds to e−ρθ2(K∗
1 ) ln[

C22
1 (T∗

2 )

C21
1 (T∗

2 )
]. Why is it

so? Adopting a new technology translates into a decrease in the extraction
rate. In particular, when player 2 switches, we have γ1

2C
21
2 (T ∗2 ) > γ2

2C
22
2 (T ∗2 ).

Intuitively, with the new technology, one needs less resource to produce a given
amount of the consumption good. The impact of player 2’s adoption on her
own consumption is unclear because it depends on the size of the productivity

differential
γ2
2

γ1
2
. However, it is clear that player 1 is worse off after player 2’s

switch because she bears the decrease in extraction, both players share the same
extraction rate, and is not able to compensate this loss by an adaptation of her
technology. By construction, she already switched at an earlier date and now
sticks to her second technology.

So, it means that the marginal cost of switching is higher than it would be
in the absence of player 2. Other things equal (K1 constant), it implies that the

5At the MPE, the guess of player 1 must be consistent with the switching strategy actually
adopted by player 2.
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switch should occur at a later date i.e. player 1, when interacting with player
2, has an incentive to postpone adoption.

The second condition equalizes the marginal benefit from an extra unit
of the state variable K1 (LHS) with the corresponding marginal cost (RHS).
The marginal cost is lower in the game than in the control problem because

θ′2(K∗1 )e−ρθ2(K∗
1 ) ln[

C22
1 (T∗

2 )

C21
1 (T∗

2 )
] < 0 (θ′2(K∗1 ) > 0). Indeed, other things equal (T1

constant), by increasing K1, player 1 induces player 2 (because player 1 con-
trols K1 on which is based player 2’s decision) to delay the instant of her switch
that is, the instant when player 1 will incur the additional indirect (marginal)
cost. The impact of player 2’s switch will then be felt less acutely because of
discounting. This in turn implies that player 1’s adoption should occur for a
higher K∗1 . This second effect makes it worthwhile for player 1 to adopt at an
earlier date (because the trajectory of K is monotone non increasing).

In summary, the following conclusion can be drawn. At first glance, as a
result of the interaction with player 2, player 1 will delay the adoption of the
new technology (first-order effect corresponding to the first condition in (32)).
It does not mean however that he will not adopt before player 2. According to
the second condition in (32), the sooner the adoption of player 1, the lower the
negative impact of player 2’s adoption on his welfare (second-order effect).

Suppose now that S1(K1) = 0: player 1 does not bear any (direct) cost when
she switches. Then, we know that the solution of the optimal control problem
(single-agent problem) is T ∗1 = 0: one adopts instantaneously because the new
technology is more efficient than the old one.

But, it is clear that if the equations in (32) have a solution then conclusions
will be very different in the switching game, with S1(K1) = S′1(K1) = 0. What
are the features of this solution?

Player 1 incurs a indirect (marginal) cost when player 2 adopts. Then,
it is optimal for player 1 to switch at a 0 < T ∗1 < T ∗2 because it allows
her to compensate for the loss by increasing her extraction (which implies
that consumption increases too) at her switching time i.e. one must have[
γ1

1C
11
1 (T ∗1 )

]−1
> [γ2

1C
21
1 (T ∗1 )]−1. Interestingly enough, the interaction through

switching time offsets the previous effect of adoption (identified for player 2):
switching to the new, more efficient, technology translates into an increase of
the extraction rate.

Under which conditions does a solution exist? Combining the two equations
in (32), one obtains:

ln

[
γ2

1

γ1
1

]
= 2(1− Z(K1)) + ln[Z(K1)] (33)

with Z(K1) defined in the text. Let the RHS be denoted by h(K1). One has
h′(K1) > 0 for all K1 ∈ [K∗2 ,K0]. In addition, evaluated at its lower bound, h(.)

”degenerates” in h̃(K∗2 ) with h̃(K∗2 ) = ln(1− ρβ2K
∗
2 ) + ln

(
1− ln(1−ρβ2K

∗
2 )

2

)
. A

necessary existence condition is h̃(K∗2 ) ≤ ln
[
γ2
1

γ1
1

]
. Given that h̃′(K∗2 ) < 0 for
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all K∗2 ∈ [0, (ρβ2)−1], h̃(0) = 0 and h̃[ρβ2)−1] = −∞, there exists a unique K̃2

such that: K∗2 ≥ K̃2 ⇔ h̃(K∗2 ) ≤ ln
[
γ2
1

γ1
1

]
.

So, if K∗2 is high enough i.e. if player 2 adopts rapidly (this is all the
more likely when, for player 2, the switching cost is relatively low and/or the
technology differential is low), then a sufficient existence condition is h(K0) >

ln
[
γ2
1

γ1
1

]
, which is satisfied if the initial stock is high enough.

By continuity, all this reasoning is also correct when β1 and S1(K1) are not
too high.

4.3 Corner solutions

In this section, we analyze the corner solutions and the erroneous timing sit-
uations. In what follows, we will extensively use one feature of the MPE in
consumption strategies: γl1C

lk
1 = γk2C

lk
2 in any regime lk. This in turn implies

that λlk1 = λlk2 . Attention is paid to the first timing 0 5 T1 5 T2. Results for
the other timing are obtained by symmetry.

Let us first determine the conditions under which the timing analyzed so far
is erroneous i.e. at least one player would prefer the opposite timing.

4.3.1 Erroneous timing

Take the (interior) solution of player 1’s switching problem (T ∗1 ,K
∗
1 ) as given.

Suppose there is no interior solution to player 2’s switching problem. it means
that either player 2 would like to switch at or before T ∗1 or she prefers adopting a
never switching strategy. The latter case will be analyzed in the next subsection.

In the proposition below, we provide some sufficient conditions to be in the
former case. It should be clear that this particular option taken by player 2 will
in turn influence player 1’s strategy. Here we need to introduce some notations.
Let f(K1) be defined as follows:

f(K1) =
1− ρ(β1 + β2)K1

1− ρβ2K1
− ln(1− ρβ2K1)

2

Proposition 3 Immediate switching T ∗1 = T2: assume that 2β1 > β2 and

ln

[
γ2

2

γ1
2

]
+ ρS2(K∗∗1 ) ≤ ln

[
γ2

1

γ1
1

]
+ ρS1(K∗∗1 ) (34)

where K∗∗1 is the unique solution of6

ρS1(K1) + ln

[
γ2

1

γ1
1

]
= ln(1− ρβ2K1) + ln [f(K1)] , (35)

then it is optimal for player 2 to adopt at a date no later than T ∗1 .

6K∗∗1 is the interior solution of player 1’s switching problem when he anticipates that player
2 will stick to his strategy.
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Proof. See the appendix C.1.

Condition (34) characterizes a situation that is more than a simple corner
solution. In order to analyze this case, we must proceed as follows: let 0 <
T1 <∞ be given, we want to determine under which conditions it is ”optimal”
for player 2, who maximizes the discounted value between T1 and ∞, to switch
immediately. This means that the necessary conditions are similar to the usual
conditions of the multi-stage optimal control theory for immediate switching
(see Tomiyama, 1985, Amit, 1986, Makris, 2001 and Boucekkine, Saglam and
Vallée, 2004). However, it is worth noting that this particular situation cannot
be interpreted as usual corner regime precisely because we are in a differential
game. The consequence of this is that T1 (the beginning of the planning period
for player 2) is not fixed. This degenerated corner solution actually corresponds
to a situation in which it is not optimal for player 2 to adopt after player 1. Put
differently, as long as condition (34) holds, the correct timing, at the MPE, if a
MPE exists, should be 0 5 T2 5 T1 5∞.

In the same vein, it is possible that player 1, who is supposed to be the
first mover, might prefer adopting the new technology at a date no earlier than
T ∗2 . In order to find sufficient conditions for this situation to occur, we analyze
the corner T ∗1 = T ∗2 . Assuming now that we have found an interior solution
(T ∗2 ,K

∗
2 ) to player 2’s adoption problem, our results are as follows.

Proposition 4 Never switching T1 = T ∗2 : if F (K∗2 ) ≤ 1
2 and

ρS1(K∗2 ) + ln

(
γ2

1

γ1
1

)
≥ ρS2(K∗2 ) + ln

(
γ2

2

γ1
2

)
(36)

then player 1 never finds it optimal to switch from the old to the new technology
before T ∗2 .

Proof. See the appendix C.1.

The link between the two situations is apparent from propositions (3) and
(4). Actually, it turns that the sufficient conditions (34) and (36) for an erro-
neous timing are identical for the two players, except that they do not have the
same reference point. One way of ensuring that they are satisfied is to impose:

ρ[S1(K)− S2(K)] ≥ −
[
ln

(
γ2

1

γ1
1

)
− ln

(
γ2

2

γ1
2

)]
for any K ∈ [0,K0], (37)

where − ln
(
γ2
i

γ1
i

)
, for i = 1, 2, can be understood as a measure of the gain from

switching.
Condition (37) can be easily interpreted in economic terms. It basically

states that the relative advantage of adoption (RHS), measured in terms of the
differential of gains, is lower the relative advantage in terms of adoption costs
(LHS), for player 1. Of course, this inequality is satisfied when player 2 incurs a
lower direct switching cost and, at the same time, withdraws the higher benefit
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of adoption. But, it might also hold in intermediate situations where player 2’s
adoption cost is higher provided that the differential in technological gains is
largely favorable to player 2.

4.3.2 Corner timings and simultaneous switches

In this sub-section, we briefly give an overview of the conditions under which
the MPE may either be associated with corner timings or features simultaneous
switches.

Proposition 5 • Never switching 0 < T1 < T2 =∞: if

ln

[
γ2

2

γ1
2

]
+ ρS2(0) ≥ 0 (38)

then player 2 never finds it optimal to switch from the old to the new
technology.

• Immediate switching 0 = T1 < T2 <∞: if F (K0) ≥ 1 and,

ρS1(K0) + ln

[
γ2

1

γ1
1

]
≤ ln(1− β2ρK

∗
2 ), (39)

with K∗2 , the unique solution of (15) and F (.), defined in (23), then player
1 instantaneously adopts the new technology.

• Immediate and never switchings 0 = T1 < T2 =∞: if (38),

ρS1(K0) + ln

[
γ2

1

γ1
1

]
≤ 0, (40)

and,

ρK0 ≥
γ1

1 − γ2
1

β1γ1
1γ

2
1

(41)

hold, then players adopt strictly opposite strategies, one adopting immedi-
ately the new technology, the other sticking to the old technology.

Proof. See the appendix C.2.
Sufficient conditions for corner solutions have a very simple interpretation.

For instance, according to condition (38), a player never finds it worthwhile to
adopt the new technology when the fixed cost of adoption, weighted by the rate
of time preference, is larger than the gain from switching. In the same vein, a
player is willing to adopt the new technology immediately when the switching
cost at the initial resource level is lower than the gain from adoption.

Finally, there are three remaining cases. Players might wish to adopt their
new technology at the same date and for the same stock of resource. Or, they
might prefer switching instantaneously or on the contrary adopting never switch-
ing strategies. The conditions for these cases are summarized in the proposition
below.
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Proposition 6 • It cannot be optimal for players with different switching
costs to adopt at the same positive and finite date.

• Immediate switching 0 = T1 = T2: if

ρSi(K0) + ln

[
γ2
i

γ1
i

]
≤ 0 (42)

and,

ρK0 ≥
γ1
i − γ2

i

βiγ1
i γ

2
i

(43)

for i = 1, 2, then both players find it worthwhile to adopt instantaneously
the new technology.

• Never switching T1 = T2 =∞: if

ln

[
γ2
i

γ1
i

]
+ ρSi(0) ≥ 0 (44)

for i = 1, 2, then players will not to switch from the old to the new tech-
nology.

Proof. See the appendix C.3.
Regarding the first item, using the feature that λlk1 = λlk2 in any regime

(l, k), it is clear that the switching conditions

λ11∗
2 (T ∗) + ∂Ω2(K∗,T∗)

∂K2
= λ22∗

2 (T ∗)

λ11∗
1 (T ∗) + ∂Ω1(K∗,T∗)

∂K1
= λ22∗

1 (T ∗)

with K∗ = K1 = K2 the level of the state variable at the switching date T ∗ =
T1 = T2, cannot be satisfied at the same time as long as players bear different
direct switching costs. More precisely, if S′1(K) 6= S′2(K) for all K,⇔ β1 6= β2,
then this case cannot arise.

5 Discussion

In this section, we provide a synthesis of Section 4. Once all possible combina-
tions of switching times, for 0 5 T1 5 T2 <∞, have been studied, it is possible
to develop the general reasoning that allows us to conclude that a MPE will be
associated with, for instance, the interior timing 0 < T1 < T2 <∞.

The first thing to do is check that neither player finds this timing erroneous.
Necessary conditions for the timing not to be erroneous are simply the opposite
of the sufficient conditions for an erroneous one. Thus, we must have (see the
appendix devoted to the analysis of corner solutions): f(K∗∗1 ) > 1 and

ln

[
γ2

2

γ1
2

]
+ ρS2(K∗∗1 ) > ln

[
γ2

1

γ1
1

]
+ ρS1(K∗∗1 ) (45)
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from player 2’s erroneous timing conditions. We also have to impose F (K∗2 ) > 1
and

ρS1(K∗2 ) + ln

[
γ2

1

γ1
1

]
≥ ρS2(K∗2 ) + ln

[
γ2

2

γ1
2

]
, (46)

from player 1’s problem.
Next, it must be the case that players do not find it optimal to be situated at

their respective corner solutions. Again, necessary conditions for this statement
to be true are the opposite of the sufficient for the corner 0 = T ∗1 and T ∗2 =∞
to arise at the MPE. So, it is necessary that

ln

[
γ2

2

γ1
2

]
+ ρS2(0) < 0, (47)

F (K0) < 1 and,

ρS1(K0) + ln

[
γ2

1

γ1
1

]
> ln(1− β2ρK

∗
2 ), (48)

Assume that there exists K∗∗1 , solution of (35) with f(K∗∗1 ) > 1, F (K∗2 ) >
1 and (45)-(48) hold. What are the remaining conditions needed to ensure
the existence of an interior MPE? One can observe that F (K∗2 ) > 1 and (46)
correspond to part of the sufficient conditions presented in Proposition 2 for
the existence of K∗1 at the interior solution. Moreover, it appears that (47) is
also a sufficient condition for existence of K∗2 (see Proposition 1). Thus, we can
establish the following.

Corollary 2 Suppose that there exists K∗∗1 , solution of (35) with f(K∗∗1 ) > 1,
F (K∗2 ) > 1 and (45)-(48) hold. A sufficient condition for the existence of K∗1
is:

G(K0) > H(K0). (49)

If this critical level satisfies K∗1 ≥ (ρβ2)−1 then there exists a MPE featuring
the timing 0 < T1 < T2. Otherwise (K∗1 < (ρβ2)−1), there is a second sufficient
condition that reads:

ρS2(K∗1 ) + ln

[
γ2

2

γ1
2

]
> ln(1− β2ρK

∗
1 ). (50)

Remark 1. Recall that under (46)-(48), there may well exist other MPEs
primarily because they are just the opposite of sufficient conditions for corner
and erroneous timing. So, we cannot guarantee the uniqueness of the (interior)
solution. If one seeks to determine a unique solution, it is enough to refer to
the sufficient conditions for corner solutions stated in Propositions 5 and 6.

Remark 2. K∗∗1 is not related to a particular solution. It is just defined to
study the hypothetical scenario in which the timing is erroneous for player 2.
But, it is possible that there exists no K∗∗1 . In this case, one logically expects
that player 1, given that player 2 would prefer sticking to her strategy, prefers
switching immediately. So, K∗∗1 should be replaced with K0. However, studying
this hypothetical scenario, we can show that there exists no solution featuring
0← T1 ← T2.
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6 Conclusion

In this paper, we have developed a general two-player differential game with
regime switching. The interaction between players is assumed to be governed
by two kinds of strategies. At each point in time, they have to choose an
action that influences the evolution of a state variable. In addition, they may
decide on the switching time between alternative and consecutive regimes. At
a feedback Nash equilibrium, the switching strategy is defined as a function of
the state of the system. Compared to the standard optimal control problem
with regime switching, necessarily optimality conditions are modified only for
the first-mover. When choosing the optimal date and level of state variable for
switching, this player must take into account that (i) her decision will influence
the other player’s switching strategy, and (ii) the other player’s switch will
affect her welfare. Furthermore, we have exhibited the necessary conditions
characterizing the timing at the Markov perfect equilibria. Erroneous timing
strategies were eventually analyzed.

At the latter part of this paper, we applied this new theoretical framework
to solve a game of exhaustible resource extraction with technological regime
switching. It was assumed that, at a given cost, players have the option to adopt
a more efficient extraction technology. We then obtained sufficient conditions
guaranteeing that both players switch in finite time. Moreover, we investigated
the impact of feedback strategies for switching time on the first-mover technol-
ogy adoption strategy. There is an interplay between two conflicting effects.
First, the switch of the second mover is costly for the first-mover because it
implies a drop in her consumption. Thus, the first-mover may opt to delay
adoption. Meanwhile, because of discounting, delaying the switch of the other
play will allow the first-mover to incur a lower indirect cost. This is an incentive
for the first-mover to adopt at an earlier date.

Overall, the methodology presented in this paper may pave the way to handle
a wider class of problems in economics. Potential extensions include the analysis
of cooperative outcomes, the consideration of ecological switching, and the like.
These issues will be addressed in the authors’ future research endeavors.
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Appendix

A Proof of Theorem 1

Let the triplet (C∗1 (t), C∗2 (t),K∗(t)) be the path followed by each player’s strat-
egy and the state variable at a Markov perfect equilibrium (MPE), for every
t ∈ [0,+∞). A restriction of this path to [Tj−1, Tj ], j = 1, 2, with T0 = 0, con-
tinues to characterize the solution of the subgame with K(Tj) = K∗j , Tj−1 and

Tj fixed and with the maximization of
∫ Tj
Tj−1

Fi(K,C1, C2)e−ρtdt as player i’s ob-

jective, i = 1, 2. In addition, a restriction of (C∗1 (t), C∗2 (t),K∗(t)) to [T2,+∞)
is a MPE of the infinite horizon game with K(T2) = K∗2 , T2 fixed and with the
maximization of

∫∞
T2
Fi(K,C1, C2)e−ρtdt as player i’s objective.

The proof uses standard calculus of variations techniques in a sequence of
three subgames as explained in the main text. The problem is solved recursively,
starting from the game arising after the last switch. The proof focuses on the
timing 0 5 T1 5 T2 5 ∞, i.e. on the case where player 1 is the first to switch,
followed by player 2. The necessary optimality conditions for the other timing
0 5 T1 5 T2 5∞ can be obtained by symmetry.

The index of the technology for player 1 is k, k = 1, 2, whereas the technology
of the second player is indexed by l, l = 1, 2. The system is said to be in regime
(k, l) when player 1 uses technology l and player 2 uses technology k. Note that
both the payoff Fi(K,C1, C2), the function of the state equation f(K,C1, C2)
and the strategies can be dependent of the particular regime in which the system
lays. So, k, l will be used as a superscript.

In each subgame, we determine the Markov Perfect Equilibrium i.e. we
restrict attention to strategies of the type: Cj(t) = Φj(K(t)). Player’s opti-
mization problems are solved using the Pontryiagin method. This implies that
when solving player 1’s problem, in any regime, we have to introduce a guess
about the other player’s strategy, here C2(t) = Φ2(K(t)).

For each subgame, except the last one, attention is mainly paid to the prob-
lem faced by the player who undertakes the switching decision. When required,
we also present the optimality conditions of the other player.

• Last regime (2, 2), for t ≥ T2:
In this regime, player j solves:

max
Cj

∫ ∞
T2

F 22
j (K,Cj ,Φ−j(K))e−ρtdt, (51)

subject to,
K̇ = f22(K,Cj ,Φ−j(K)). (52)

where T2 and the initial condition K(T2) = K2 are fixed. K(T2) will be made
free in the next stage. The present value Hamiltonian of the problem, H22

j ,

is given by H22
j = F 22

j (K,C1, C2)e−ρt + λ22
j f

22(K,C1, C2), where λ22
j is player

j co-state variable associated with K in regime (2, 2). This problem does not
deserve further attention since it yields straightforward first-order necessary
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conditions (including the appropriate transversality conditions). Let us denote
by superscript ∗ the paths identified by these conditions (abstracting here from
existence and uniqueness issues). Let V 22∗

j (K2, T2) be the value function, we
have the usual envelope conditions: for j = 1, 2

∂V 22∗
j

∂T2
= −H22

j (T2),
∂V 22∗

j

∂K2
= λ22

j (T2).
(53)

• Second regime (2, 1), for t ∈ [T1, T2]:
In this regime, player 2 (the one who decides on the switching time) solves:

max
C2,T2

∫ T2

T1

F 21
2 (K,C2,Φ1(K))e−ρtdt− Ω2(K2, T2) + V 22∗

2 (K2, T2) (54)

subject to,
K̇ = f21(K,C2,Φ1(K)), (55)

where T1 and the initial condition K(T1) = K1 are fixed. But, K(T2) = K2 and
T2 are free.

After some some standard calculations, one obtains:

V 21
2 =

∫ T2

T1

[
H21

2 + λ̇21
2 K

]
dt−

{
λ21

2 (T2)K2 − λ21
2 (T1)K1

}
−Ω2(K2, T2)+V 22∗

2 (K2, T2)

To find the necessary optimality conditions, we derive the first-order varia-
tion of V 21

2 with respect to the state and control variables’ paths, for fixed T1,
K(T1) = K1 and free T2 and K2. This yields, after rearranging terms:

δV 21
2 =

T2∫
T1

[(
∂H21

2

∂K +
∂H21

2

∂C1
Φ′1(K) + λ̇21

2 )δK +
∂H21

2

∂C2
δC2]dt

+(H21
2 (T2)− ∂Ω2(K2,T2)

∂T2
+

∂V 22∗
2

∂T2
)δT2 − (λ21

2 (T2) + ∂Ω2(K2,T2)
∂K2

− ∂V 22∗
2

∂K2
)δK2.

A trajectory is optimal if any small departure from it decreases the value
function, that is δV 21

2 ≤ 0 for any δK(t), t ∈ (T1, T2), for any δC2(t), t ∈ [T1, T2],
and for any δT2 and δK2, which gives the following necessary conditions for an
interior maximizer, T1 < T2 <∞:{

∂H21
2

∂C2
= 0,

∂H21
2

∂K +
∂H21

2

∂C1
Φ′1(K) + λ̇21

2 = 0,

H21
2 (T2)− ∂Ω2(K2,T2)

∂T2
+

∂V 22∗
2

∂T2
= 0, λ21

2 (T2) + ∂Ω2(K2,T2)
∂K2

− ∂V 22∗
2

∂K2
= 0.

(56)
The first two equations are the standard Pontryagin conditions, the last two
are optimality conditions with respect to the switching time, T2, and the free
state value, K2. Together with conditions in (53) obtained from the third sub-
problem, one gets conditions (1) of Theorem 1, that is:

H21∗
2 (T ∗2 )− ∂Ω2(K∗

2 ,T
∗
2 )

∂T2
= H22∗

2 (T ∗2 )

λ21∗
2 (T ∗2 ) +

∂Ω2(K∗
2 ,T

∗
2 )

∂K2
= λ22∗

2 (T ∗2 ).
(57)
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Regarding the necessary conditions for corner solutions:
Suppose T1 = T ∗2 (and δK2 = 0) then the only possible variations of T ∗2 are

such that δT2 ≥ 0. For δV 21
2 ≤ 0 it must be true that

H21∗
2 (T ∗2 )− ∂Ω2(K∗2 , T

∗
2 )

∂T2
≤ H22∗

2 (T ∗2 ) (58)

Suppose in addition that the state variable follows a monotone trajectory,
for instance a monotone non increasing one (which would be the case if K is
an exhaustible resource). Then, we have to take into account an additional
constraint: K1 ≥ K∗2 . If this constraint is binding (by definition, this holds in
the corner situation T1 = T2), then the only possible variations of K∗2 are of the
type δK2 ≤ 0. For δV 21

2 ≤ 0 (assuming δT2 = 0), we must have

λ21∗
2 (T ∗2 ) +

∂Ω2(K∗2 , T
∗
2 )

∂K2
≤ λ22∗

2 (T ∗2 ), (59)

which gives another necessary condition for the corner case.
Finally, player 2 finds it optimal to stick to her first technology i.e. T ∗2 =∞,

when:

H21∗
2 (T ∗2 )− ∂Ω2(K∗2 , T

∗
2 )

∂T2
≥ H22∗

2 (T ∗2 ) (for any T ∗2 > T1) (60)

Let us now have a look to player 1’s problem. We also consider feedback
strategies for the switching time. This implies that player 2 switching strategy
is defined in terms of the level of state at which her switching problem starts
that is, of K1: T2 = T1 +θ2(K1). Player 1’s does not take any switching decision
in this regime but she makes the guess that player 2’s switching time will be
dependent on the level of the state variable K1 at which player 1 switches.
One has to incorporate the guess of player 1 about player 2 switching time in
her value function. At the MPE, this guess will be consistent with the actual
switching strategy of player 2. So, player1’s value function in the same regime
reads:

V 21
1 =

∫ T1+θ2(K1)

T1

[
H21

1 + λ̇21
1 K

]
dt−

{
λ21

1 [T1 + θ2(K1)]K2 − λ21
1 (T1)K1

}
+V 22∗

1 [K2, T1+θ2(K1)]

Following the same steps as before, one can obtain the Pontryagin conditions
for player 1:

∂H21
1

∂C1
= 0,

∂H21
1

∂K
+
∂H21

1

∂C2
Φ′2(K) + λ̇21

1 = 0. (61)

In addition, we the partial derivatives of the value function with respect to T1

and K1 (making use of (53)) are:

∂V 21∗
1

∂K1
= θ′2(K1)[H21

1 (T2)−H22
1 (T2)] + λ21

1 (T1)
∂V 21∗

1

∂T1
= H21

1 (T2)−H21
1 (T1)−H22

1 (T2),
(62)

we call these conditions the modified envelope conditions.
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Note finally that by construction of the second sub-game, its value function
V 21

2 depends on the fixed initial condition and T1: V 21∗
2 (T1,K1). Again one can

write the following envelope properties:

∂V 21∗
2

∂T1
= −H21∗

2 (T1),
∂V 21∗

2

∂K1
= λ21∗

2

• First regime (1, 1), for t ∈ [0, T1]:
In the initial regime, for the timing considered so far, player 1 has now to

choose whether she switches and when. The optimization program is:

max
C1,T1

∫ T1

0

F 11
1 (K,C1,Φ2(K))dt− Ω1(K1, T1) + V 21∗

1 (K1, T1)

subject to,
K̇ = f11(K,C1,Φ2(K)),

where K0 is given and K(T1) = K1 and T1 are free.
The value function can written as:

V 11
1 =

∫ T1

0

[
H11

1 + λ̇11
1 K

]
dt−

[
λ11

1 (T1)K1 − λ11
1 (0)K0

]
−Ω1(K1)+V 21∗

1 (K1, T1)

Computing the first-order variation of V 11
1 with respect to the state and

control variables’ paths, for free T1 and K1, one obtains:

δV 11
1 =

T1∫
0

[(
∂H11

1

∂K +
∂H11

1

∂C2
Φ′2(K) + λ̇11

1 )δK +
∂H11

1

∂C1
δC1]dt

+(H11
1 (T1)− ∂Ω1(K1,T1)

∂T1
+

∂V 21∗
1

∂T1
)δT1 − (λ11

1 (T1) + ∂Ω1(K1,T1)
∂K1

− ∂V 21∗
1

∂K1
)δK1.

(63)
A trajectory is optimal if any small departure from it decreases the value

function, that is δV 11
1 ≤ 0 for any δK(t), t ∈ (0, T1), for any δC1(t), t ∈

[0, T1], and for any δT1 and δK1. Hence, the necessary conditions for an interior
maximizer, 0 < T1 < T2 are:{

∂H11
1

∂C1
= 0,

∂H11
1

∂K +
∂H11

1

∂C2
Φ′2(K) + λ̇11

1 = 0,

H11
1 (T1)− ∂Ω1(K1,T1)

∂T1
+

∂V 21∗
1

∂T1
= 0, λ11

1 (T1) + ∂Ω1(K1,T1)
∂K1

− ∂V 21∗
1

∂K1
= 0.

(64)
The (last) two switching conditions can be rewritten, using (62), as:

H11∗
1 (T ∗1 )− ∂Ω1(K∗

1 ,T
∗
1 )

∂T1
= H21∗

1 (T ∗1 )− [H21∗
1 (T ∗2 )−H22∗

1 (T ∗2 )]

λ11∗
1 (T ∗1 ) +

∂Ω1(K∗
1 ,T

∗
1 )

∂K1
= θ′2(K∗1 )[H21∗

1 (T ∗2 )−H22∗
1 (T ∗2 )] + λ21∗

1 (T ∗1 ),
(65)

they correspond to conditions (2) of Theorem 1. Thus, conditions in (57) and
(65) give the necessary conditions for the optimal timing to be 0 < T1 < T2 <∞.

Optimality conditions for corner solutions can easily be deduced from the
analysis above:
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Suppose 0 = T ∗1 (and δK1 = 0) then the only possible variations of T ∗1 are
such that δT1 ≥ 0. For δV 11

1 ≤ 0 it must be true that

H11∗
1 (T ∗1 )−∂Ω1(K∗1 , T

∗
1 )

∂T1
≤ H21∗

1 (T ∗1 )−[H21∗
1 (T ∗2 )−H22∗

1 (T ∗2 )] (for any T ∗1 < T ∗2 )

(66)
In the opposite situation, T ∗1 = T2, the variations T ∗1 are non positive: δT1 ≤

0. For δV 11
1 ≤ 0, we must have

H11∗
1 (T ∗1 )− ∂Ω1(K∗1 , T

∗
1 )

∂T1
≥ H21∗

1 (T ∗1 )−[H21∗
1 (T ∗2 )−H22∗

1 (T ∗2 )] (for any T ∗1 > 0)

(67)
Consider again that the state variable follows a monotone no increasing

trajectory. Then, we have an addition constraint: K0 ≥ K∗1 ≥ K2. If K1 = K0

(which corresponds to 0 = T1), then the only possible variations of K∗1 are
δK1 ≤ 0. Thus δV 11

1 ≤ 0 (assuming δT1 = 0) is ensured only if

λ11∗
1 (T ∗1 ) +

∂Ω1(K∗1 , T
∗
1 )

∂K1
≤ θ′2(K∗1 )[H21∗

1 (T ∗2 )−H22∗
1 (T ∗2 )] + λ21∗

1 (T ∗1 ) (68)

which gives another necessary condition for the corner case.
In the opposite situation, K∗1 = K2, the following condition

λ11∗
1 (T ∗1 ) +

∂Ω1(K∗1 , T
∗
1 )

∂K1
≥ θ′2(K∗1 )[H21∗

1 (T ∗2 )−H22∗
1 (T ∗2 )] + λ21∗

1 (T ∗1 ) (69)

must be satisfied.

Another eventuality is that both players find it optimal to switch at the
same instant T1 = T2 = T , and for the same resource stock, K1 = K2 = K.
This is of course a knife-edge situation, which is highly unlikely at least when
one assumes a sufficient degree of heterogeneity between players. In that case,
the set of necessary conditions reduce to:

H11∗
2 (T ∗)− ∂Ω2(K∗,T∗)

∂T2
= H22∗

2 (T ∗),

λ11∗
2 (T ∗) + ∂Ω2(K∗,T∗)

∂K2
= λ22∗

2 (T ∗),

H11∗
1 (T ∗)− ∂Ω1(K∗,T∗)

∂T1
= H22∗

1 (T ∗),

λ11∗
1 (T ∗) + ∂Ω1(K∗,T∗)

∂K1
= λ22∗

1 (T ∗).

(70)

Finally, there may exist double corner solutions: T1 = T2 = 0 and T1 = T2 =
∞. To be completed

About the corner solutions when the state variable follows a monotone (non
increasing path):

Consider again that the state variable follows a monotone no increasing
trajectory. Then, we have an addition constraint: K0 ≥ K∗1 ≥ K2. If K∗1 = K0,
then the only possible variations of K∗1 are δK1 ≤ 0. But K∗1 = K0 ⇔ 0 = T ∗1 .
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So, We necessarily have at the same time δT1 ≥ 0. Thus, from (63), δV 11
1 ≤ 0

is ensured only if

(H11
1 (T1)−∂Ω1(K1, T1)

∂T1
+
∂V 21∗

1

∂T1
)δT1−(λ11

1 (T1)+
∂Ω1(K1, T1)

∂K1
−∂V

21∗
1

∂K1
)δK1 ≤ 0

(71)
which gives the necessary condition for the corner case that replaces condition
(66) (holding whenK∗1 can move in any direction). It is also clear that conditions
(66) and (68) are just sufficient conditions for (71) to be satisfied.

In the same vein, when K∗1 = K2 ⇔ T ∗1 = T2, the only possible variations
of both variables are δK1 ≥ 0 and δT1 ≤ 0. It turns out that a the necessary
condition for this corner case to be the solution is still given by (71). In this
case, (67) and (69) are just some sufficient conditions.

B Analysis of interior solutions

B.1 Solution of the last period problem

To verify that (12) is correct, define

g2 = γ2
2C

22
2 , g1 = γ2

1C
22
1

then, with the guess that g2 = ρK, we have

ρv22
1 (K) = max

g1

{
ln g1 − ln γ2

2 −
d

dK
v22

1 (K) [g1 + ρK]

}
Guessing v22

1 (K) = A1 +B1 ln(K)

ρ [A1 +B1 ln(K)] = max
g1

{
ln g1 − ln γ2

2 −
B1

K
[g1 + ρK]

}
So 1

g1
= B1

K and

ρA1 + ρB1 ln(K) = lnK − lnB1 − ln γ2
2 − 1−B1ρ

Thus

B1 =
1

ρ
and hence ρA1 = ln ρ− 2− ln γ2

2

So

v22
1 (K) =

1

ρ

[
lnK + ln ρ− 2− ln γ2

2

]
and

γ2
1C

22
1 = g1 = ρK
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B.2 Proof of Proposition 1

Assume player 1 has switched at some T ∗1 ≥ 0 for some K∗1 ≤ K0. Taking these
elements as given, player 2’s value function in regime (2, 1) can be rewritten as:

V 21
2 (.) =

∫ T2

T1

[
H21

2 (.) + λ̇21
2 K

]
dt−

[
λ21

2 (T2)K2 − λ21
2 (T1)K1

]
−e−ρT2S2(K2)+V 22

2 (K2, T2)

(72)
where H21

2 (.) is the Hamiltonian in present value and λ2 is the co-state variable,
also in present value value.

• Interior solution T ∗1 < T2 <∞ and 0 ≤ K2 < K∗1 :
Player 2 chooses a switching time T2 and a stock switching level K2 to

maximize (72). The FOC wrt K2 is

−λ21
2 (T−2 )− e−ρT2S′2(K2) + e−ρT2

1

ρK2
= 0 (73)

Given that the FOC wrt C21
2 yields e−ρt

C21
2

= γ1
2λ2, this is equivalent to

C21
2 (T−2 ) =

ρK2

γ1
2(1− β2ρK2)

(74)

The second switching condition is obtained by taking the derivative of the
value with respect to T2 is (assuming an interior solution, i.e. T2 ∈ (T1,∞)),

e−ρT2 ln(C21
2 (T−2 ))−λ21

2 (T−2 )
[
γ1

2C
21
2 (T−2 ) + γ2

1C
21
1 (T−2 )

]
+ρe−ρT2S2(K2)−ρV 22

2 (K2, T2) = 0
(75)

Let us determine the consumption strategies. Hereafter, we assume that the
feedback strategy, C21

i (K), is linear in K. Define

h1 = γ2
1C1 and h2 = γ1

2C2

Then
K̇ = −h1 − h2

Player 1 takes K2 and T2 as given. Suppose player 1 also guesses that h2 =
µ2 + δ2K. Then player 1’s maximizes∫ T2

T1

e−ρt
[
lnh1 − ln γ2

1

]
dt+ V 22

1 (K2, T2)

s.t.
K̇ = −h1 − µ2 − δ2K

His FOC are
ḣ1

h1
= −ρ− δ2
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Similarly, suppose player 2 guesses that h1 = µ1 + δ1K. Then his FOC gives

ḣ2

h2
= −ρ− δ1

On the other hand, from the guesses that hi = µi + δiK, we have

ḣ1

h1
=

δ1K̇

µ1 + δ1K
=
−2δ1

[
µ1+µ2

2 + δ1+δ2
2 K

]
µ1 + δ1K

ḣ2

h2
=

δ2K̇

µ2 + δ2K
=
−2δ2

[
µ1+µ2

2 + δ1+δ2
2 K

]
µ2 + δ2K

Therefore, for the FOCs and the guesses to be consistent, we require

−2δ1
[
µ1+µ2

2 + δ1+δ2
2 K

]
µ1 + δ1K

= −ρ− δ2

−2δ2
[
µ1+µ2

2 + δ1+δ2
2 K

]
µ2 + δ2K

= −ρ− δ1

These two equations must hold for all K, hence they imply that δ1 = δ2 = ρ
and µ1 = µ2 = µ

To determine µ2, use eq (74) and the fact that δ2 = ρ to obtain

µ+ ρK2 =
ρK2

1− β2ρK2

Thus

µ =
ρ2β2(K2)2

1− β2ρK2

and

hi(K) =
ρ2β2(K2)2

1− β2ρK2
+ ρK (76)

In particular, at K = K2

hi(K2) =
ρK2

1− β2ρK2

Next, we determine what is the optimal level for switching. Using (76), the
switching condition (75) simplifies to

ln

(
ρK2

γ1
2(1− β2ρK2)

)
= 2 + ρ(v22

2 (K2)− S2(K2)) (77)

This equation defines the optimal level for switching, K∗2 . After some manipu-
lations, (77) reduces to

− ln(1− β2ρK2) = ln

[
γ1

2

γ2
2

]
− ρ [χ2 + β2K2] (78)
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The left-hand side is defined for all K2 ∈
[
0, 1

ρβ2

)
. Assume that K∗1 ≥ 1

ρβ2
.

Then, the LHS is an increasing function of K2, varying from zero to ∞ as K
goes from zero to 1/ρβ2. The right-hand side is strictly positive at K2 = 0 iff

ln
[
γ1
2

γ2
2

]
> ρχ2. Since β2 > 0, right-hand side is strictly decreasing in K2. Thus,

if ln
[
γ1
2

γ2
2

]
> ρχ2, there exists a unique solution K∗2 in

[
0, 1

ρβ2

)
.

The last part of the proof consists in defining the optimal switching date.
Replacing consumptions with the expressions given by (76) in the state equation,
one obtains:

K̇ = −2ρK − 2Γ

with Γ = γ2
1a1 = γ1

2a2 = µ. The solution of this differential equation is

K21(t) =

[
K1 +

ρβ2(K2)2

1− β2ρK2

]
e−2ρ(t−T1) − ρβ2(K2)2

1− β2ρK2
(79)

Evaluating (79) in T2 and defining θ2 as the optimal length between two switches:
θ2 = T2 − T1, one has

K∗2 =

[
K1 +

ρβ2(K∗2 )2

1− β2ρK∗2

]
e−2ρθ2 − ρβ2(K∗2 )2

1− β2ρK∗2
,

Then [
K1

K2∗
+

ρβ2K
∗
2

1− β2ρK∗2

]
e−2ρθ2 = 1 +

ρβ2K
∗
2

1− β2ρK∗2
=

1

1− β2ρK∗2

(1− β2ρK
∗
2 ) (K1/K

∗
2 ) + ρβ2K

∗
2 = e2ρθ2 =

(
eρθ2

)2√
(1− β2ρK∗2 ) (K1/K∗2 ) + ρβ2K∗2 = eρθ2 (80)

which gives the solution

θ2(K1) =
1

2ρ
ln

[
(1− ρβ2K

∗
2 )
K1

K∗2
+ ρβ2K

∗
2

]
=

1

2ρ
ln

[
C21
i (K1)

C21
i (K∗2 )

]
. (81)

where the second equality comes from C21
i (T1)e2ρT1 = C21

i (T2)e2ρT2 .

B.3 Proof of Proposition 2

Using the fact that (for the case of T1 > 0),

γ1
1C

11
1 (T−1 ) = Γ+ρK1

F (K1)

γ2
1C

21
1 (T+

1 ) = Γ + ρK1

the optimality condition (25) can be rewritten as:

ρS1(K1) + ln

(
γ2

1

γ1
1

)
= e−ρθ2(K1)

[
ρS2(K∗2 ) + ln

(
γ2

2

γ1
2

)]
+ ln[F (K1)] (82)
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with F (K1) = Z(K1)− β1(Γ + ρK1) defined in the main text. We’re trying to
solve this equation in K1 for K1 ∈ [K∗2 ,K0].

Denote the LHS (respectively the RHS) of (82) by G(K1) (respectively
H(K1)).

Note that G(K1) is an increasing function of K1 on the interval [K∗2 ,K0]
whereas H(K1) is non monotone.

It follows that if G(K∗2 ) < H(K∗2 ) and K0 is sufficiently large so that
G(K0) > H(K0), then there exists a unique K∗1 ∈ (K∗2 ,K0) that satisfies (82).

Evaluating G(.) at the lower bound K∗2 yields G(K∗2 ) = ρS1(K∗2 )+ln
(
γ2
1

γ1
1

)
.

By evaluating H(.) at K∗2 , one obtains

H(K∗2 ) = ρS2(K∗2 ) + ln

(
γ2

2

γ1
2

)
+ ln

[
1− ln(1− β2ρK

∗
2 )

2
− β1ρK

∗
2

1− β2ρK∗2

]
.

which is well-defined under (24).
So, a set of sufficient conditions for G(K∗2 ) < H(K∗2 ) are (i): ρS1(K∗2 ) +

ln
(
γ2
1

γ1
1

)
< ρS2(K∗2 ) + ln

(
γ2
2

γ1
2

)
and (ii): − ln(1−β2ρK

∗
2 )

2 − β1ρK
∗
2

1−β2ρK∗
2
≥ 0. The

second inequality is satisfied iff β1 is sufficiently small such that

β1 <
1

2ρK∗2
[(1− β2ρK

∗
2 ) (− ln (1− β2ρK

∗
2 ))]

Next, we can solve for the MPE in consumption strategies, holding in the
first period problem. Noticing that player 2 has no means to influence player 1’s
switching decision due to the particular timing we have considered (0 < T1 <
T2), her problem is simply given by

max
{C2}

V 11
2 (.) =

∫ T1

0

e−ρt ln(C2)dt+ e−ρT2v21
2 (K1)

subject to,
K̇ = −γ1

2C2 − γ1
1(a1 + b1K)

with K(0) = K0 and K1 given. Combining again the two players FOCs, it’s easy
to find that γ1

1b1 = γ1
2b2 = ρ and γ1

1a1 = γ1
2a2 = Λ. In order to determine the

parameter Λ, we evaluate the MPE strategy in K1 and equalize to the resulting
value for consumption to the one defined in condition (22). This yields,

Λ =
Γ + ρK∗1 (1− F (K∗1 )

F (K∗1 )
.

Finally, we have to find the almost explicit value of the switching time T1.
For that purpose, first note that at the MPE of the first regime, the resource

stock is given by: K11(t) =
(
K0 + Λ

ρ

)
e−2ρt − Λ

ρ . Evaluating this expression in

T1 and equalizing with the optimal value K∗1 , one has:

T1 =
1

2ρ
ln

[
K0 + Λ

ρ

K∗1 + Λ
ρ

]
.
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C Corner solutions

C.1 Proof of proposition 3

• Corner solution 0 < T ∗∗1 = T2 <∞ and 0 ≤ K2 = K∗∗1 :

In this situation, assuming 0 < T1 < ∞ but considering T2 → T1, the
optimality conditions of player 1 are:

H11
1 (T1) + ρe−ρT1S1(K1) = H22

1 (T1)
λ11

1 (T1) + e−ρT1S′1(K1) = λ21
1 (T1)− θ′2(K1)[H22

1 (T1)−H21
1 (T1)]

In our application, these conditions simplify to:

γ1
1C

11
1 (T1) =

ρK1

γ1
1(1− β2ρK1)

1
1−ρ(β1+β2)K1

1−ρβ2K1
− ln(1−ρβ2K1)

2

, (83)

which gives the consumption level at the switching date here. Denote the de-
nominator of the second term by f(K1). And,

ρS1(K1) + ln

(
γ2

1

γ1
1

)
= ln(1− ρβ2K1) + ln [f(K1)] , (84)

which defines an optimal switching level K∗∗1 as long as f(K∗∗1 ) > 0.
From the general proof of theorem, two sufficient conditions for this case to

occur are:

H21
2 (T2)− ∂Ω2(K2, T2)

∂T2
≤ H22

2 (T2) (85)

and,

λ21
2 (T2) +

∂Ω2(K2, T2)

∂K2
≤ λ22

2 (T2) (86)

for all T2 ≥ T ∗∗1 and K2 ≤ K∗∗1 .
For our example, these equations reduces to:

C21
2 (T−2 ) ≥ ρK2

γ1
2(1− β2ρK2)

(87)

ln(C21
2 (T2)) ≤ ln(C22

2 (T2))− ρS2(K2) (88)

In the following analysis, we distinguish between two sub-cases. Let us first
consider the opportunity to switch at some T2 > T1 and suppose that (87) holds
with the equality. Then, the remaining condition (88) reduces to:

ln

[
γ2

2

γ1
2

]
+ ρS2(K2) ≤ ln(1− β2ρK2) (89)

for all K2 > K1. Second, in the particular point in time T ∗∗1 = T2 (and K∗∗1 =
K2), we cannot use (87) with the equality because it contradicts the fact that
in any regime lk, one has γl1C

lk
1 (t) = γl2C

lk
2 (t). But, we can precisely use the
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latter relationship and the fact that regime (2, 1) actually vanishes into regime
11 in this situation, to conclude that: γl2C

21
2 (T−1 ) = γl1C

11
1 (T−1 ) given by (83).

Thus, conditions (87)-(88) can be rewritten as:

(0 <)f(K∗∗1 ) < 1 (90)

and

ln

[
γ2

2

γ1
2

]
+ ρS2(K∗∗1 ) ≤ ln(1− β2ρK

∗∗
1 ) + ln[f(K∗∗1 )] (91)

where K∗∗1 is the solution of (84).
Now, assume that 2β1 > β2, then f ′(K∗∗1 ) < 0 for all K∗∗1 ∈ [0,K0]. In

addition, f(0) = 1. Thus, condition (90) is satisfied. The material is sufficient
to show that condition (91), valid for T ∗∗1 = T2, implies condition (104), valid
for T ∗∗1 < T2. Indeed, first note that because S′2(K2) > 0 we have

ln

[
γ2

2

γ1
2

]
+ ρS2(K∗∗1 ) ≥ ln

[
γ2

2

γ1
2

]
+ ρS2(K2) for all K2 ≤ K∗∗1

Second, because f(.) is decreasing, one has:

ln(1− β2ρK
∗∗
1 ) + ln[f(K∗∗1 )] ≤ ln(1− β2ρK2) + ln[f(K2)] for all K2 ≤ K∗∗1

Third, use the fact that because f(K2) ∈ [0, 1] for all K2 ≤ K∗∗1 to obtain

ln(1− β2ρK2) + ln[f(K2)] ≤ ln(1− β2ρK2) for all K2 ≤ K∗∗1

which completes the proof: if (84) has a solution then a sufficient condition to
be at the corner 0 < T ∗∗1 = T2 <∞ is

ln

[
γ1

2

γ2
2

]
+ ρS2(K∗∗1 ) ≤ ln

[
γ1

1

γ2
1

]
+ ρS1(K∗∗1 ) (92)

• Corner solution 0 < T ∗1 = T ∗∗2 <∞ and K1 = K∗2 :

We work by symmetry in this corner situation. The conditions now involves
the following inequalities:

H11
1 (T1)− ∂Ω1(K1, T1)

∂T1
≥ H21

1 (T1)− [H21
1 (T ∗2 )−H22

1 (T ∗2 )]

λ11
1 (T1) +

∂Ω1(K1, T1)

∂K1
≥ θ′2(K1)[H21

1 (T ∗2 )−H22
1 (T ∗2 )] + λ21

1 (T1)

for any T1 > 0 and K1 ≤ K0. Or, for our example,

ln[C11
1 (T1)] + ρS1(K1) ≥ ln[C21

1 (T1)] + e−ρθ2(K1) ln(1− β2ρK
∗
2 ) (93)

γ1
1C

11
1 (T−1 ) ≤ Γ + ρK1

F (K1)
(94)
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In the case where T1 < T ∗∗2 , (110) and (111), holding with an equality, are
sufficient to be in the corner. They reduce to one inequality which is exactly
the opposite of (107)

ρS1(K1) + ln

(
γ2

1

γ1
1

)
≥ e−ρθ2(K1) ln(1− β2ρK

∗
2 ) + ln[F (K1)] (95)

In the case where T1 = T ∗∗2 ↔ K1 = K∗2 (definition of T ∗∗2 ), we can use the
fact that γ1

1C
11
1 (T ∗∗2 ) = γ1

2C
21
2 (T ∗∗2 ) = Γ + ρK∗2 . Then, conditions (110)-(111)

are equivalent to:
(0 <)F (K∗2 ) < 1 (96)

ρS1(K∗2 ) + ln

(
γ2

1

γ1
1

)
≥ ln(1− β2ρK

∗
2 ) (97)

Following the same approach as in the two previous proofs, it easy to show
that (97) and a condition a bit stronger than (96) are sufficient to be at the
corner T1 = T ∗∗2 . Let H(K1) be the RHS of (97). A sufficient condition for
having H ′(K1) < 0 for all K1 ≥ K∗2 is F (K1) < 1

2 , which is satisfied if F (K∗2 ) ≤
1
2 . Replace condition (96) with the latter inequality. Then, we have H(K1) ≤
H(K∗2 ) for all K1 ≥ K∗2 , which is equivalent to

ln(1−β2ρK
∗
2 ) > ln(1−β2ρK

∗
2 )+ln[F (K∗2 )] ≥ e−ρθ2(K1) ln(1−β2ρK

∗
2 )+ln[F (K1)]

In addition, we know that

ρS1(K1) + ln

(
γ2

1

γ1
1

)
≥ ρS1(K∗2 ) + ln

(
γ2

1

γ1
1

)
for all K1 ≥ K∗2

thus, F (K∗2 ) ≤ 1
2 and (97) imply (95). Finally, recall that K∗2 solves (104).

Thus, (97) can be rewritten as:

ρS1(K∗2 ) + ln

(
γ2

1

γ1
1

)
≥ ρS2(K∗2 ) + ln

(
γ2

2

γ1
2

)
(98)

C.2 Proof of proposition 5

• Corner solution 0 < T ∗∗1 < T2 =∞:

If player 2 adopts a never switching strategy, then it must hold that:

ln

[
γ2

2

γ1
2

]
+ ρS2(K2) ≥ ln(1− β2ρK2) (99)

for all (0 ≤)K2 ≤ K1, where we have made use of

C21
2 (T−2 ) ≥ ρK2

γ1
2(1− β2ρK2)

(100)
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Assuming that player 1’s switch occurs in finite time, a sufficient condition for
(99) is:

ln

[
γ2

2

γ1
2

]
+ ρS2(0) ≥ 0 (101)

Remark. When T2 = ∞, player 1’s problem reduces to a single agent’s
switching problem and it is pretty simple to determine the switching level (as-
suming there is an interior solution). It solves:

ln

[
γ2

1

γ1
1

]
+ ρS1(K1) = ln(1− β1ρK1) (102)

Now, if one assumes that (101) does not hold, then a sufficient condition for
this corner case not to be optimal (for player 2) is:

ln

[
γ2

2

γ1
2

]
+ ρS2(K1) ≤ 0 (103)

with K1 solution of (102).

• Corner solution 0 = T1 < T ∗2 <∞ and K0 = K1:

Suppose that we have an interior solution for player 2. Then, the following
must be satisfied: under the conditions of proposition 2, there exists a unique
K∗2 that solves:

ln

[
γ2

2

γ1
2

]
+ ρS2(K2) = ln(1− β2ρK2) (104)

Remark. In this case the switching level of player 2, K∗2 , is still given by
(104). The general expression of the switching time is obtained in (81) but of
course this switching time is different from the one found at the interior solution
(for T ∗1 > 0).

If player 1 finds it optimal to switch instantaneously then:

H11
1 (T1)− ∂Ω1(K1, T1)

∂T1
≤ H21

1 (T1)− [H21
1 (T ∗2 )−H22

1 (T ∗2 )]

λ11
1 (T1) +

∂Ω1(K1, T1)

∂K1
≤ θ′2(K1)[H21

1 (T ∗2 )−H22
1 (T ∗2 )] + λ21

1 (T1)

for any T1 < T ∗2 and K1 ≥ K∗2 .
In our application, these conditions simplify to:

γ1
1C

11
1 (T−1 ) ≥ Γ + ρK1

F (K1)
(105)

with F (K1) = Z(K1)− β1 (Γ + ρK1). And,

ln[C11
1 (T1)] + ρS1(K1) ≤ ln[C21

1 (T1)] + e−ρθ2(K1) ln(1− β2ρK
∗
2 ) (106)
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Again, a distinction is made between two sub-cases. First consider that, for
any T1 > 0, condition (105) holds with equality and use the resulting expression
for C11

1 (T1) and the fact that γ2
1C

21
1 (T1) = Γ+ρK1 to obtain a single condition:

ρS1(K1) + ln

(
γ2

1

γ1
1

)
≤ e−ρθ2(K1) ln(1− β2ρK

∗
2 ) + ln[F (K1)] (107)

that must hold for any 0 < T1 < T2 and K1 > K∗2 .
A the particular date 0 = T1 (implying that K1 = K0), it must be that

(105) holds with inequality and we obtain the level of the first period consump-
tion by using the fact that (regime 11 vanishes in regime 21 and) γ1

1C
11
1 (0) =

γ1
2C221(0) = Γ + ρK0. Using this expression, conditions (105) and (106) reduce

to:
F (K0) ≥ 1 (108)

and,

ρS1(K0) + ln

(
γ2

1

γ1
1

)
≤ ln(1− β2ρK

∗
2 ) (109)

In order to show that (108)-(109) are sufficient to be in the corner case considered
that is, imply (107), first note that under (108) and F ′(K1) < 0, one has
F (K1) > 1 for all K1 ≤ K0. Then, we have

ln(1−β2ρK
∗
2 ) ≤ e−ρθ2(K1) ln(1−β2ρK

∗
2 ) ≤ e−ρθ2(K1) ln(1−β2ρK

∗
2 )+ln[F (K1)],

for any K1 ∈ [K∗2 ,K0].
Moreover, we use the feature that:

ρS1(K0) + ln

(
γ2

1

γ1
1

)
≥ ρS1(K1) + ln

(
γ2

1

γ1
1

)
for any K1 ≤ K0

to reach the conclusion that (108)-(109) are sufficient to be in the corner T1 = 0.

• Immediate and never switching: 0 = T1 < T2 =∞.

The analysis of the case follows quite easily from the one of the corner
0 < T ∗∗1 < T2 = ∞ and 0 = T ∗∗1 < T2 < ∞. (99) gives a sufficient condition
for player 2 to be at the corner T2 =∞ and we have already mentioned that in
such a situation player 1 faces a standard two-stage control problem. Sufficient
conditions for having that there is no point at which player 1 wishes to adopt
her new strategy are:

H11
1 (T1)− ∂Ω1(K1, T1)

∂T1
≤ H21

1 (T1)

λ11
1 (T1) +

∂Ω1(K1, T1)

∂K1
≤ λ21

1 (T1)

if T1 = 0 and K1 = K0. Note that in this case, player 1 simply compares
the (marginal) value she would obtain under the permanent regime 11 with the
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corresponding value she would get by switching directly to 21. In particular,
what would differ is the initial consumption since if the same regime is valid for
all t then γl1C1(0) = ρK0 for l = 1, 2 i.e. the rule that defines the extraction
rate would be the same.

Therefore, in our application, the conditions above reduce to:

ρK0 ≥
γ1

1 − γ2
1

β1γ1
1γ

2
1

(110)

and,

ρS1(K0) + ln

(
γ2

1

γ1
1

)
≤ 0 (111)

C.3 Proof of proposition 6

• Simultaneous interior switches: 0 < T1 = T2 = T <∞.

Suppose that the two players want to adopt their new technology at the
same date and for the same stock of resource. The optimality conditions corre-
sponding to this case are, for an interior solution:

H11∗
2 (T ∗)− ∂Ω2(K∗,T∗)

∂T2
= H22∗

2 (T ∗)

H11∗
1 (T ∗)− ∂Ω1(K∗,T∗)

∂T1
= H22∗

1 (T ∗)

λ11∗
2 (T ∗) + ∂Ω2(K∗,T∗)

∂K2
= λ22∗

2 (T ∗)

λ11∗
1 (T ∗) + ∂Ω1(K∗,T∗)

∂K1
= λ22∗

1 (T ∗)

with K = K1 = K2 the level of the state variable at the switching date T =
T1 = T2. Using the feature that λlk1 = λlk2 in any regime lk, it is clear that the
two last switching conditions cannot be satisfied at the same time as long as
players bear different direct switching costs. More precisely, if S′1(K) 6= S′2(K)
for all K,⇔ β1 6= β2, then this case cannot arise.

• Simultaneous instantaneous switches: T1 = T2 = 0.

It is straightforward that sufficient conditions for this case correspond to
(110) and (111), that must be satisfied now for the two players.

• Never switching for both players: T1 = T2 =∞.

The last situation can also be deduced from the corner case T1 < T2 = ∞.
The sufficient condition is (99). It must hold for the two players.
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