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Synopsis 

This deliverable present a validation of the geo-physical techniques, based on different 
sets of criteria: i) accuracy of the measurements generally estimated by the RMSE, ii) 
capacity to represent spatial patterns and spatial variability. 

The geophysical data are interpreted in terms of different thematic maps such as: soil 
thickness, stone content, water content, clay content and C content. For each of these 
maps the performance are evaluated by measuring the gap between the estimated soil 
properties and those observed on the field or stored in existing soil database. Special 
attention is also given to the spatial patterns of errors and uncertainties inherent to the 
geophysical techniques. 

The different maps obtained on the Luxembourg or Mugello test sites are presented. 
First order maps are obtained by a simple inversion of geophysical signals into soil 
properties; second order maps are computed by several first order maps that are 
combined to produce more accurate information or a soil property of a high level. 
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1. Introduction 

1.1. MAIN OBJECTIVES OF THIS STUDY 

Thiis deliverable present a validation of the geo-physical techniques, based on different 
sets of criteria: i) accuracy of the measurements generally estimated by the RMSE, ii) 
capacity to represent spatial patterns and spatial variability. 

The geophysical data are interpreted in terms of different thematic maps such as: soil 
thickness, stone content, water content, clay content and C content. For each of these 
maps the performance are evaluated by measuring the gap between the estimated soil 
properties and those observed on the field or stored in existing soil database. Special 
attention is also given to the spatial patterns of errors and uncertainties inherent to the 
geophysical techniques. 

In the following sections we present the different maps obtained on the Luxembourg or 
Mugello test sites. First order maps are obtained by a simple inversion of geophysical 
signals into soil properties; second order maps are computed by several first order 
maps that are combined to produce more accurate information or a soil property of a 
high level. 

1.2. GENERAL WORKFLOW : FROM INPUT DATA AND FIELD 
OBSERVATIONS TO THEMATIC MAPS 

The principle of estimating soil properties maps from geophysical signals was 
presented within a general workflow in the deliverables of workpackage 2. Due to 
different constraints coming from local field measuring contexts, i.e., soil heterogeneity, 
surface conditions such as roughness, particular physical properties unfavourable to 
one or several geophysical methods, the theoretical workflow has been modified so 
that it corresponds now to what it can be really obtained from our methodologies. The 
following figure (Figure 1) shows the revised approach of the Digisoil's system, 
including the input geophysical data and the contributions of ancillary ones in the 
different processes.  

This new workflow starts with the different techniques (seismic, geoelectric, GPR, EMI, 
hyperspectral) validated during the project and describes the main processing levels 
(inversion, calibration, interpolation). The results are presented as two kinds of maps: 
the first ones derive directly from the data processing (soil thickness, water content, 
different clay content maps, surface C content), the second ones are a combination of 
the previous ones and propose a highest level of information (clay content map, C 
stock map)  
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Figure 1 : Revised workflow of the Digisoil's system for estimating soil properties maps 
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2. First order soil maps 

2.1. SOIL THICKNESS MAP 

2.1.1. Final workflow for the considered map 

The MASW seismic method allows obtaining a velocity model at a given point because 
of the dispersive character of surface waves (Figure 2). The dispersion diagram reveals 
the dependence of phase velocity with frequency. After this stage, the inversion 
process of dispersion curves aims to find the vertical S-waves velocity model. A 
linearized inversion method is then used to obtain the S-waves velocity model and 
layers thicknesses. For each iteration of the inversion process, the algorithm tends to fit 
a computed dispersion curve to observed real data. In some case, there is a 
contraindication for the use of the MASW methodology. Hard soils, non-tabular media 
particularly don’t allow to compute well resolved dispersion diagrams. In such cases, a 
second processing workflow based on the inversion of P-waves first-time arrivals 
inversion was used (the example of Luxembourg test site). This method allows to 
retrieve 2D P-waves velocity (Vp) models. The processing workflow presented 
hereafter is a summary of the methodology developed in the report D1.3 and based on 
the different tests included in D1.1-2 and 2.1-2.3. 

 Luxembourg Mugello 

Input data Seismic records Seismic records 

Processing P-wave tomography MASW 

1.  Amplitude correction (AGC) Dispersion diagram computation 

2.  First breaks picking Picking of dispersion curves 

3.  First-time arrivals inversion Dispersion curves inversion 

Data inversion Production of 2D Vp models Production of 1D Vs models 

Data interpolation  Production of 2D Vs models 

Calibration Penetrometric data set Penetrometric data set 

Soil/bedrock limit Seismic horizon picking using 
penetrometric calibration 

Seismic horizon picking using 
penetrometric calibration 

Mapping Interpolation of the data points 
using kriging technique 

Interpolation of the data points 
using kriging technique 
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Figure 2 : From acquisition to inversion of surface waves (MASW methodology). 

2.1.2. Resulting map description 

Seismic experiments on Luxembourg site led to realize 5 profiles covering around 5 ha 
for almost 200 seismic shots. In addition, 30 penetrometer soudings were performed on 
the same area (Figure 3a). The soundings were divided into 2 groups with the purpose 
of (i) calibrating the Vp isovalue for the soil/bedrock limit horizonation (15 soundings) 
and (ii) validating the obtain soil depth map using this methodology (15 soundings). In 
this case, the soil/bedrock limit was defined as the boundary between subhorizontal 
schistosity red material (~50 to 90 cm) and horizontal schistosity white material (from 
~1m) (RW limit). On a matter of fact, the change is the schistosity constitute a great 
mechanical contrast which strongly influence surface-waves. The RW limit is identified 
as a Qd step around 90 cm on the whole penetrometric data set (Figure 3b). 

When interpolating the soil depth data points obtained from the MASW method, a map 
of the soil depth can be derived. This map can afterwards be compared to the 
validation dataset, i.e., RW limit depth obtained from the 2nd group of penetrometric 
data, to estimate the a posteriori uncertainty related to the methodology (Figure 4). 
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a) 

 

b) 

Figure 3 : (a) Location map of seismic and penetrometer data  points over the Luxembourg site; 
(b) Comparison between a penetrogram and trench observations. 

 

Figure 4 : Comparison between the soil depth obtained from MASW (left) and from the 
validation penetrometric data set (right). 
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2.1.3. Performances 

 Spatial error 

The map of the difference between RW limit depth from MASW and from the validation 
penetrometric data set allows analyzing the spatial variations of the misfit between the 
prediction and the validation data set (Figure 5). The prediction error vary between ~-
20 cm and ~20 cm. Isolated positive error spots (brown colors on the Figure 5) can be 
considered as singular values, probably due to a bad picking of the RW limit horizon on 
the seismic section. For those points, it would be judicious to reiterate one part of the 
processing workflow. On the other side, we observe that the negative error cloud 
(yellow colors on the Figure 5) is concentrated in the area of lowest RW limit depth 
(eastern area), according to the results of Figure 4. On a matter of fact, very low soil 
depth (lower than ~50 to 70 cm) constitute a limitation in terms of resolution for the 
seismic method.  

 

Figure 5 : Map of the RW limit depth spatial error obtained calculating the difference between 
RW limit depth from MASW and from the penetrometric validation data set. 
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 RMSE estimation 

Linear regression analyzes the relationship between two variables, X and Y. For each 
subject (or experimental unit), knowing both X and Y, the best straight line through the 
data has to be found. The goal of linear regression is to adjust the values of slope and 
intercept to find the line that best predicts Y from X. More precisely, the goal of 
regression is to minimize the sum of the squares of the vertical distances of the points 
from the line. The Figure 6 shows the linear regression between the RW limit depth 
predicted using the MASW methodology and from the validation penetrometric data set 
at the location of the penetrometric soundings. A significant correlation is observed 
between these two variables (R2=0.6255). This means that ~62% of the real RW limit 
depth should be explained using this linear regression obtained using the MASW 
methodology. This constitutes a consistency check of the method. 
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Figure 6 :Plot of the linear regression between the RW limit depth predicted using MASW and 
from the validation penetrometric data set. 

Spatial resolution 

 Technical or economical constraints 

Timetable and human effort: For this study, the Digisoil seismic system was run on the 
field by two operators during two days; another day was dedicated to penetrometric 
measurements and trench observations. This implies that a consequent part of the 
spatial resolution in predicting soil depth is due to acquisition parameters. On a matter 
of fact, for example, it would be too expensive and too long to realize a seismic survey 
with an excessively reduced shot interval. In the current state, the performance of the 
system is about 0.75 Ha per day with a 4 m shot interval and 20 m between seismic 
lines. 
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 Spatial structure and data interpolation 

The spatial structures of the soil depth was assessed from variograms estimated along 
four directions: 0°, 35°, 90° and 135° from geographic north. The variograms were 
generated from all possible sample pairs in a given direction grouped into classes 
(lags) of approximately equal distance (Matheron, 1965). The variance (one-half of the 
mean squared difference) of the paired sample measurements were then plotted as a 
function of the distance between the samples to provide a means of quantifying the 
spatial structure of the data. The soil depth obtained using seismic method was then 
interpolated by ordinary kriging - a geostatistical method that takes into account both 
the distance and the degree of variation between known data points and relies on the 
data’s spatial correlation structure to determine the weighting values. Ordinary kriging 
has been shown to perform better for soil parameters than other available methods 
(e.g. Burgess et al., 1981; Myers, 1994). The interpolations were accomplished by 
fitting each of the various theoretical variogram models (Quadratic components with 
scale=0.0551, Length=185, anisotropy ratio=2 and anisotropy angle=23.08°) to the 
empirical isotropic variogram via the least-square method (Figure 7). The best fit model 
was used for the interpolation. Data points were then interpolated to a regular 5×5m 
grid using a full second-order polynomial drift function, as is common practice. With the 
interpolation process, we then create an output grid of kriging standart deviations which 
brings informations about the interpolation error. Figure 7 shows that the minimum 
interpolation error (between 0.01 and 0.05m) is situated at the location of data points 
and the maximum interpolation error (between 0.05 and 0.1m) is located between data 
points. 

 

Figure 7 : (Left) Example of a variogram estimated in the direction 0° from geographic north. 
This variogram is fitted with a theoritical variogram model using a quadratic component with 
scale=0.0551, Length=185, anisotropy ratio=2 and anisotropy angle=23.08°, (Right) kriging 

standart deviation map. 
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2.2. EFFECTIVE CLAY CONTENT MAP 

2.2.1. Mapping procedure 

Figure 8 : Complete workflow for the considered map. 

The procedure described hereafter allows obtaining a map of clay content of bare 
topsoils from airborne hyperspectral images, using the continuum removal technique 
(Clark and Roush, 1984). This procedure is based on the fact that the depth of an 
absorption feature is strongly related to the abundance of the absorbing material. 
Continuum removal normalizes reflectance spectra with the aim of allowing a direct 
comparison among absorption features from a common baseline, minimizing the effect 
of different scales or observation conditions and assuming that no other no other 
material has strong absorption features around that specific wavelength.  

After CR the absorption peak depth at a certain wavelength is calculated and related to 
the atomic group responsible for the spectral feature. Clay content and mineralogy 
influence the short wave infrared portion of the spectrum (1300-2500 nm), but only the 
peak at 2210 nm can be detected in airborne sensors spectra, which are affected by 
atmospheric absorption bands. 
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Data acquired with Hyper SIM-GA sensor form Selex Galileo on September 23, 2009 
were processed in order to obtain geo-referenced, calibrated and atmospherically 
corrected SWIR cubes. Clay absorption peak depth at 2210 nm from ASD indoor 
spectra, was correlated with total clay content obtained from laboratory analysis, thus 
obtaining a calibration line. After continuum removal, the absorption peak depth was 
calculated at 2210 nm, for every pixel of the image, using a dedicated IDL routine. 
Then, the laboratory relation was used to invert the hyperspectral images into clay 
content maps. As a matter of fact, as demonstrated by Lagacherie et al. (2008), 
laboratory-calibrated functions can be applied at map scale to hyperspectral images to 
map soil properties. This processing workflow represents a summary of the 
methodology developed in the report D1.3 and based on the different experiments 
included in D1.1-2 and 2.1-2.3 and is further explained in Figure 8 and Figure 9. 
Elaborations on images were performed using ENVI software (ITT VIS, Boulder, CO). 

 

  
 

 
Atmospheric corrected 

SIM-GA image 
Step 1) continuum 

removed image 
Step 2) map of absorption 

peak depths 
Step 3) map of 

percentage clay content 

 

Figure 9 : From acquisition to inversion of hyperspectral data. 

2.2.2. Resulting map description 

The map of Figure 10 shows in false colors the spatial distribution of clay mineral 
content, resulting from manipulation on hyperspectral images, with orange-red 
corresponding to higher percentages and green-blue corresponding to lower 
percentages. A mask was applied to the neighbouring grassland. Lower values are 
concentrated in the northern part of the parcel, which is topographically more elevated 



Validation and performances report 
 

BRGM/RP- FP7-DIGISOIL-D3.3 19 

while an increasing trend towards the south (i.e.: parallel to the flow direction, towards 
the bottom) can be observed. 

 

  

Figure 10: Comparison between hyperspectral-derived clay map and IDW interpolation of 
laboratory values. 

2.2.3. Performances 

 Validation and RMSE estimation 

The clay content map deduced from hyperspectral data was compared with the 
interpolated laboratory values map of the total clay mineral concentration, obtained 
using the Inverse Distance Weighting  algorithm, for validation (Figure 10). The general 
trend, described in the previous paragraph, can be retrieved in this second map, 
showing a good agreement between the predicted and the observed clay distribution 
tendency. 

A reliability test of the described procedure can be performed using linear regression, 
which analyzes the relationship between two variables, X and Y, finding the best 
straight line through the data, with the goal of minimizing the sum of the squares of the 
vertical distances of the points from the line. The linear regression was calculated 
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between hyperspectral-predicted clay values and their correspondent clay mineral 
content, observed in the sampling data set (Figure 11). Correlation between the two 
variables is satisfactory, with a determination coefficient of R2=0.599; as a 
consequence, our model can explain about 60% of actual clay content in the top level 
of soils in the study area. 

 

Figure 11:Plot of the linear regression between clay content predicted using SIM-GA and from 
the validation sampling data set. 

 

The accuracy of clay content estimation and clay maps could be improved through the 
use of 1414 and 1914 nm clay absorption peaks, which show better correlations with 
the laboratory dataset, with respect to the used one (Figure 12). 

 

Figure 12: Correlation between clay content and absorption peak at 1414 nm, 1914 nm and 
2210 nm. 
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2.3. STONE CONTENT MAP 

2.3.1. Final workflow for the considered map 

 Input data 

Input data are electrical resistivity measurements from the three arrays of the ARP. 
From the first array data, a standard deviation map has been calculated by the 
following method: each pixel is of 50 x 50 cm in size, and its value is the standard 
deviation of the electrical resistivity values calculated in a circle centred on the pixel 
with a radius of 5 m (see paragraph 2.2.1, page 29 in D3.2). 

 Calibration data  

The stone content has been measured on soil cores sampled by a driller over the first 
30 cm (see the locations of the sampling in paragraph 2.1, page 17 in D3.2.). The 
dataset was splitted in two parts: four samples were selected randomly (except in the 
North-East anthropogenic part) and used as a calibration set. 

A linear relationship was determined between the standard deviation of the electrical 
resistivity and the stone content (Figure 13). As expected, a higher stone content leads 
to the higher variability in electrical resistivity. To check the stability of the relationship, 
several random datasets of 4 samples were selected and analysed with the standard 
deviation of the electrical resistivity. The slope of the relationship was quite stable, 
equal to about 0.65. The quality of the relationship could be improved by taking into 
account more numerous samples. We have here decided to use the maximum data for 
the validation, and, as a consequence, the minimum data for the calibration. 
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Figure 13 : Calibration relationship to estimate the stone content from electrical resistivity data 
and direct measurements in the field. 
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 Validation 

The remaining 26 samples of the field dataset were used for the validation. 

 Spatial resolution 

Due to the high spatial resolution of the ARP (one point each 50 cm on a line, and lines 
separated by 2m), the initial geophysical measurements can be considered as an 
exhaustive dataset. During the data processing a 5x5 m grid was build. The final map 
results from a weighted inverse distance interpolation. 

 Resulting map description 

 

Figure 14 : Modelisation of the stone content 

Figure 14 presents the stone content in the studied area. It varies between 13 and 53% 
and is higher in the South-East part and the Western border of the studied area. 

 RMSE Estimation 

The stone content measured on soil cores (validation dataset) was compared to the 
stone content measured by the model (Figure 15). Except at some locations in the 
anthropogenic part, the estimation is rather satisfying, but the model slightly 
overestimates the real stone content. The Root Mean Square Error has been 
calculated for the whole calibration dataset, except data from the anthropogenic part: it 
was equal to 9.7%. An estimation of the stone content at about 10% can be considered 
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as a good estimation, with a precision of the same order of magnitude as visual 
estimations in the field by a pedologist. 
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Figure 15 : Validation of the model. The orange dots, far from the 1:1 line, correspond to points 
located in the anthropogenic North-East part and the stone content at these locations can not 

be estimated by the model. 

 Possible improvements of the method 

The methodology can then be used extensively to determine the stone content at the 
scale of a parcel. Improvements would consist in better measurements of the stone 
content on the calibration points, by taking into account larger volumes of soil that 
would be more representative of the real stone content. 

2.4. WATER CONTENT MAP 

GPR surveys were carried out using both far-field (off-ground) and near-field (on-
ground) systems (Figure 16). Depending on the configuration, different processing 
procedures were used to retrieve soil water content from the radar data. We used the 
Lambot et al. (2004, 2006) full-wave inversion method for far-field radar 
measurements. In that case, the GPR antenna effects are filtered out by complex linear 
transfer functions determined by antenna calibration in the laboratory and the filtered 
frequency-domain signal is converted to the time-domain using the Fourier transform. 
Then, focusing on the surface wave reflection, the full-wave radar model is inverted to 
retrieve the soil surface dielectric permittivity. Finally, the soil dielectric permittivity is 
converted to volumetric water content using Topp’s (1980) equation. For on-ground 
GPR, the direct ground wave (DGW) method is used. The single trace analysis (STA) 
for DGW allows retrieving the soil dielectric permittivity in the shallow soil layer (less 
than 0.5 m), depending on the antenna center frequency and soil moisture (Figure 16). 
In order to retrieve the soil dielectric permittivity, the propagation time from the 
transmitting antenna (Tx) to the receiving one (Rx) should be calculated. In this case, 



Validation and performances report 

24 BRGM/RP- FP7-DIGISOIL-Dx.y 

the Tx-Rx offset is fixed and the ground propagation time is directly related to soil 
dielectric permittivity and, consequently, to soil water content: 

2

.
x

t
cr

 

where εr is soil relative dielectric permittivity (-), c is the speed of light in vacuum 
(m.s-1), ∆t is propagation time (s), and ∆x is the Tx-Rx offset (m). 

 Luxembourg Mugello 

Input data Off-ground frequency-domain GPR/ 
On-ground time-domain GPR 

Off-ground frequency-domain GPR/ 
On-ground time-domain GPR 

Processing Surface-reflection waveform inversion/ 
Single Trace Analysis (DGW) 

Surface-reflection waveform inversion/ 
Single Trace Analysis (DGW) 

Calibration Antenna calibration/  
none 

Antenna calibration/  
none 

Soil/bedrock limit Roughness Roughness 

Mapping Interpolation of the data points 
using kriging technique 

Interpolation of the data points 
using kriging technique 

 

Figure 16. Data acquisition from the field and principles of the STA method. 
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2.4.1. Resulting map 

Off- and on-ground GPR surveys were carried out at the Luxembourg site during 
different weather conditions: dry and wet. In the dry condition, 11 transects were 
performed with about 1300 traces for off-ground and 14000 traces for on-ground over 
~5 ha field. In the wet conditions 13 transects were performed with about 1700 traces 
for off-ground and about 24500 traces for on-ground. Soil core sampling was carried 
out at 30 locations over the entire field close to the GPR transects for ground-truth 
volumetric water content measurements at different depths (0-10, 10-20, 20-30, 30-40, 
and 40-50 cm). Three of these ground-truth points were sampled during the dry day 
while sampling at the other 27 locations was performed under wet soil conditions. 
Applying the STA method to on-ground measurements and surface-reflection inversion 
to off-ground measurements allowed to retrieved the soil dielectric permittivity from 
each trace. Then, the soil volumetric water content estimates from Topp’s equation 
were interpolated over the entire field area using kriging. Figure 17 shows the soil 
water content maps from both off- and on-ground GPR data in dry and wet conditions. 
It is worth noting that the off-ground derived map represents only the surface moisture 
(top ~2-3 cm). The characterization depth for the on-ground map is difficult to specify 
accurately as it depends on both the operating center frequency and soil moisture. In 
our case, the characterization depth is expected to be around 30 cm for the dry soil and 
around 10 cm for the wet conditions. 

2.4.2. Performances 

 Spatial error 

The off-ground GPR allows retrieving surface soil water content and the on-ground 
GPR (DGW method) allows retrieving the shallowest less-lossy layer soil water content 
depending on moisture conditions. Figure 10 shows the two water content maps 
derived from off- and on-ground GPR surveys under wet conditions, corresponding to 
the collection of the major part (27 out of 30) of the ground-truth samples. Although 
both GPR techniques provided consistent soil moisture maps, comparison with the 
ground-truths is complicated by the different characterization scales and depths as well 
as by the great local variability of soil moisture (Figure 18). 

 RMSE estimation 

We have 30 ground truth points in different depths to validate the GPR derived soil 
water content. Only 3 points of them correspond to the dry conditions and the 
remaining points were sampled during the wet conditions. Therefore, we are only able 
to validate the wet derived water content estimates. To quantify the error between the 
0-10 cm depth ground-truth soil moisture and both GPR derived water content, we 
used the nearest neighbor of GPR data to the location of ground-truth data. Then linear 
regressions were used to analyze the relationships between the two variables. Figure 
19 shows the plots of data validation for both GPR techniques. The RMSE is about 
3.6% for off-ground GPR and 4.9% for on-ground related to the best fit line. 
Discrepancies between ground-truth measurements and GPR soil water content 
estimates may arise for several reasons. First, a part of the differences would result 
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from the contrasted characterization depths and scales of GPR compared with ground-
truth measurements (100 cm³ cylinders). 

 

 

Figure 17 : Soil water content maps derived from off-ground (left) and on-ground (right) GPR 
data for dry (top) and wet (bottom) conditions at the Luxembourg site. 
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Figure 18 : Wet condition soil moisture maps derived by both off- and on-ground GPR 
techniques compared with ground truths in shallowest 10 cm depth. 

Furthermore, while GPR surveys were completed within about one hour and a half, soil 
core sampling over the entire field took one complete day and soil water content is 
likely to vary during that time as a result of infiltration, especially within the hours 
following a rain event as it is the case for this field campaign. Moreover, infiltration is 
likely to evolve spatially as a result of spatial variation of topography and clay content 
over the field area. 

 

Figure 19 : Plot of the linear regression for soil volumetric water content between the off-ground 
(left) and on-ground (right) GPR techniques and soil core sampling. 
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2.4.3. Spatial resolution 

 Technical or economical constraints 
 

Timetable and human effort: For proper high-resolution (1 m) mapping of soil 
properties, GPR measurements should be carried out at a velocity lower than 2 
m/s. On the Luxembourg site, the average velocity of the platform during the 
measurements was 1.9 m/s Therefore, each coverage of the total field area 
took between half an hour and one hour for one person.  

 Spatial structure and data interpolation 

The derived soil moisture by both GPR methods was interpolated by ordinary 
kriging. The interpolations were accomplished by fitting each of the various 
theoretical variogram models to the empirical isotropic variogram via the least-
square method. Figure 20 shows an example of variogram and the spatial error 
based on standard deviation of soil water content entire the field. 

a)
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b) 

Figure 20 : Plot of the linear regression for soil volumetric water content between the off-ground 
(a) and on-ground (b) GPR techniques and soil core sampling. 
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2.5. BULK DENSITY MAP 

2.5.1. Final Workflow 

  

A local 1D inversion was calculated for all the ARP data, by using the QWin1D model 
from J. Tabbagh, to estimate the real resistivity of the cultivated soil horizon. A double-
layer initial model was used. According to the auger holes measurements, the 
thickness of the first layer was taken equal to about 30 cm and the thickness of the 
second layer was considered as infinite. Outside the anthropogenic part, the resistivity 
was taken equal to 150 ohm.m in the first layer and to 1000 ohm.m in the second layer. 
These values come from the 1D inversion of some local vertical soundings.  

In the anthropogenic part, the thickness of the first layer was taken equal to 60 cm and 
the resistivity was equal to 300 ohm.m, according to the apparent resistivity data from 
the ARP measurements. The resistivity of the second layer (thickness: infinite) was 
taken equal to 150 ohm.m. 

 Calibration and validation datasets. 

The bulk density was measured on soil cores sampled by a driller over the first 30 cm 
(see the locations of the sampling in paragraph 2.1, page 17 in D3.2.). The dataset was 
splitted in two parts: 15 samples were selected randomly for the calibration (Figure 21), 
and 15 were used as a validation dataset. 
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Figure 21 :Calibration plot for the bulk density estimation from ART measurements 

A relationship between the real electrical resistivity of the first layer and the bulk density 
of the cultivated horizon was determined and used as a model (Figure XX). The 
determination coefficient of the model was equal to 0.73 but we have to consider that 
the model was strongly influenced by 3 points of low bulk density and high electrical 
resistivity. The model was then applied over the whole studied area. A weighted 
inverse distance interpolation was used to create the final map. Finally, the modelled 
bulk density values were compared to the validation data. 

 Resulting map description and RMSE estimation 

Figure 22 presents the real resistivity map of the cultivated horizon and the associated 
error map. As expected, the real resistivity was higher in the anthropogenic part, and in 
the south-East part of the studied area. The lowest resistivity was observed in the 
central part. The error associated to the inversion ranged from 0.5 to 8 %, with a mean 
value of 4%, which means that the inversion can be considered as satisfying. 
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Figure 22: a) real resistivity map of the cultivated horizon b) associated inversion error map 

The associated bulk density map is presented in Figure 23. As expected, the lowest 
values of bulk density (about 1-1.2) were observed in the anthropogenic part, whereas 
the bulk density was higher elsewhere. The mean value of the bulk density was equal 
to 1.41 for the estimation and 1.44 for the measurements. The RMSE associated to this 
map was equal to 0.17 only. Nevertheless, this map has to be analysed with caution 
insofar as the measurements of bulk density in the field, i.e. the calibration and 
validation sets, were difficult due to the high stone content in the studied area. 
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Figure 23 : Bulk density map 
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3. Second order soil maps 

3.1. CLAY CONTENT 

3.1.1. Final workflow for the considered map 

Soil electrical conductivity of low-salinity soils is mainly affected by soil water content 
and clay content. Rhoades et al. (1976) proposed the following empirical model to 
relate soil electrical conductivity to soil physico-chemical properties:  

swba )( 2
 

where σ is the bulk soil electrical conductivity (S.m-1), θ is the soil water content 
(m3.m-3), σw is the soil solution electrical conductivity (S.m-1), σs is the electrical 
conductivity of dry soil (S.m-1), and a and b are soil specific empirical parameters. In 
this equation, σs may be expressed as a function of the soil clay content. We used this 
model to estimate clay content from EMI measurements considering the empirical 
parameter values (a=1.382, b=-0.093) found by Rhoades et al. (1976) for a soil 
comparable to that of the main soil unit observed at the study site and assuming σw= 
0.05 S.m-1. Water content estimates from GPR measurements were used to remove 
the effect of θ on measured soil electrical conductivity and provide estimations of σs. 
For a subsample of the ground truth points (0-10 cm and 20-30 cm clay content 
measured from soil samples collected along the EMI and GPR transects), relationships 
were then established between σs estimates and clay content measurements. Finally, 
these calibration relationships were applied to estimate soil clay content at each EMI 
measurement point and these estimations were compared with the complete ground 
truth measurement data set for validation. 

 

 Luxembourg Mugello 

Input data EMI-GPR EMI-GPR 

Processing GPR: full-wave inversion  εr  θ 

EMI: standardization of measured 
electrical conductivity to reference 
temperature of 25°C (Sheets and 
Hendrickx, 1995)  

GPR: full-wave inversion  εr  θ 

EMI: standardization of measured 
electrical conductivity to reference 
temperature of 25°C (Sheets and 
Hendrickx, 1995)  

Calibration Ground truth clay content Ground truth clay content 

Mapping Interpolation of the data points 
using kriging 

Interpolation of the data points 
using kriging 

The GPR-EMI setup and the workflow are presented at Figure 24. 
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(a) 

EM38

Profiler

EM38

Profiler

GPR

EM38

Profiler

EM38

Profiler

GPR

 
(b) 

 

Figure 24: (a) GPR-EMI setup and (b) workflow for clay content estimation 

3.1.2. Resulting maps 

For clay content within the 0-10 cm soil layer, these analyses were performed using 
horizontal dipoles measurements as they present high sensitivity to the soil surface 
properties. Data sets from both the first (dry conditions) and second (wet conditions) 
measurement days were considered in order to compare clay content estimates using 
data from contrasted soil water content conditions. For clay content below the plough 
layer (20-30 cm), vertical dipole measurements were used as this configuration 
presents higher sensitivity to the deeper soil layers, only one set of EMI data (second 
day of measurements) is available in this case. For each data set, clay content was 
determined with and without correcting electrical conductivity values for water content 
(using the Rhoades model), in order to investigate the effect of this correction on clay 
content estimates. The resulting maps are presented in Figure 25. 
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With correction for water content Without correction for water content 

Clay content 0-10 cm, dry conditions 

  
Clay content 0-10 cm, wet conditions 
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With correction for water content Without correction for water content 

Clay content 20-30 cm, wet conditions 

  

 

Figure 25: Kriged maps of clay content estimates from EMI and GPR measurements 

3.1.3. Performances 

 Validation and RMSE estimation 

Clay content estimates from EMI measurements may be compared with ground truth 
measurements for validation (Figure 26). Lower R2 values of the relationships relating 
measured clay content to estimated clay content are generally observed when values 
of soil electrical conductivity are not corrected for soil water content (i.e., when the 
Rhoades model is not applied and clay content is directly related to measured soil 
electrical conductivity), indicating the importance of accounting for this correction. For 
the 0-10 cm layer, better agreement between clay content estimates and ground truth 
measurements is found for the wet soil conditions (R2=0.27) compared with the dry 
conditions (R2=0.18). This would be explained by the more contrasted patterns of soil 
electrical conductivity over the area under wet than under dry conditions, which would 
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allow to better retrieving spatial variations of clay content. Nevertheless, in both cases, 
very poor agreement is observed between measurements and estimates of clay 
content at the location of the anthropogenic soil along the eastern limit of the field 
(represented by the orange dots in the graphs, not included in the establishment of the 
measured vs estimated clay content relationships). The very different nature of this soil 
compared with the rest of the studied field may explain these observations, the values 
of the model’s empirical parameters being soil-specific. Regarding the 20-30 cm layer, 
poor agreement is found between clay content estimations and measurements, 
especially within the north-east part of the field where large overestimations of clay 
content are observed. Such low R2 values and the sometimes large discrepancies 
found between ground truth and estimates may at least partly arise from the fact that 
EMI measurements integrate a large volume of soil while clay content was determined 
from relatively small samples characterising a rather thin (10 cm thick) layer of soil. 
Furthermore, the rather low clay content at the study site associated with its narrow 
range of spatial variation over the investigated area also limit the accuracy of the 
estimations of this soil property from soil electrical conductivity measurements. 

 
With correction for water content Without correction for water content 

Clay content 0-10 cm, dry conditions 
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Clay content 20-30 cm, wet conditions 
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Figure 26: Validation relationships between measured and estimated clay content 

3.1.4. Spatial resolution 

 Technical or economical constraints 

With the EM38, mounted of a quad together with the GPR setup, on average 0.75 hour 
was necessary for one person to collect each data set. For the Profiler, carried at 
walking speed over the area, the time requested to perform each measurement set 
amounted to around 1.25 hour. The total area of the study field is around 5 ha. The 
non-invasiveness of the techniques and the fast, almost instantaneous, data acquisition 
rate allow to cover large areas with fine spatial and temporal resolutions. 

 Interpolation aspects 

Ordinary kriging was used to interpolate clay content estimates from EMI and GPR 
measurements all over the study area and to produce the clay content maps presented 
above (see Figure 25). The exponential model associated with a nugget effect was 
found to provide better fitting results to the empirical variogram in each case. The map 
of kriging standard deviations for the 0-10 cm clay content estimates determined from 
horizontal dipole measurements during wet conditions (providing the best validation 
results, see Figure 26) indicates that the interpolation error is minimum and maximum 
along and between the measurement transects, respectively (Figure 27). 
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Figure 27: Standard deviation map for kriged 0-10 cm clay content estimated from horizontal 
dipoles EMI measurements during the second measurement day (wet conditions) 

 

3.2. C STOCK 

 Input data 

The SOC stock (Mg ha-1) is calculated from the SOC content (C, g kg-1), the bulk 
density (BD, g cm-3), the rock fragment content by mass (RM, dimensionless) and the 
thickness of the layer considered (d, m).  

SOC = C * BD *(1-Rm)*d*10 

 The SOC stock requires a compilation of soil property maps in order to be able to 
calculate the SOC stock equation for each pixel. We have chosen to represent the 
SOC stock for the pixels (2.6 by 2.6 m) of the airborne hyperspectral image acquired by 
the AHS 160 sensor. The processing of the signals required to determine the individual 
soil properties have been explained elsewhere (C content : D3.2, section 2.2.3 ; bulk 
density : D3.3, section 2.5.1 ; stone content : D3.2, section 2.2.1 ; soil depth : D3.3, 
section 2.2.1).    
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 Luxembourg 

Input data Hyperspectral, Geo-electric, 
seismic 

Processing Hyperspectral, PLSR regression 
for C content of the AHS 160 
image  (D3.2, section 2.2.3  

Geo-electric, BD, Rm: (2.3.1 and 
2.5.1) 

Seismic, d (2.1.1)  

Calibration C content: independent calibration 
on previous campaign 

BD: 15 random points 

Rm: 4 random points 

D: independent penetrometer data 

Mapping BD, Rm, d maps interpolated to 
the 2*2 m pixels of the AHS 160, 
map calculator applied to eq. XX 

 Calibration/validation 

The maps of C content have been calibrated using 27 samples of the 0-20 cm top soil 
collected during a sample campaign in 2009 (D3.2, section 2.2.3), the bulk density on 
15 of the 30 calibration/validation points (D3.3, section 2.5.1), the stone content on 4 
points (D3.2, section 2.2.1) and finally the soil depth was calibrated against a set of 30 
independent penetrometer values (D3.3, section 2.2.2).  For the validation, we have 
calculated the SOC stock of the upper 20 cm of the soil profiles. Out of the 30 
calibration/validation profiles, 15 have been selected that were not used in any form of 
calibration exercise. These profiles have been used to estimate the residuals between 
predicted and observed SOC stocks (Figure 28).  
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Figure 28 : Map of the SOC stocks of the upper 20 cm soil layer. The values and residuals are 
expressed in Mg ha

-1
. Point numbers refer to the validation points. 

 

a) Resulting map description 

The map of the SOC stocks of the 0-20 cm topsoil (Figure 28) corresponds to the first 
plough layer (AP1 : 0-10 cm) and half the thickness of the second plough layer (AP2 : 
10-30 cm) as identified in the pedologic survey (D3.2, section 2.1).  As this horizon is 
every year well mixed, there are no vertical gradients in SOC content, stone content or 
bulk density. Hence, mean values of SOC content (0-20 cm), stone content and bulk 
density (0-30 cm) were used to calibrate the geophysical signals. In general, The SOC 
stock of the plough layer decrease from 70 Mg ha-1 in the northern part of the field to 20 
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Figure 29 : Map of the SOC stock (Mg ha
-1

) for the entire soil profile until the unweathered 
bedrock as detected by the seismic profiler. 

Mg ha-1 on the southwestern margin. The low values on the northeastern field border 
are probably an artefact. According to the pedologic report, this is an anthropogenic 
area with a low stone content (D3.2, section 2.1). Unfortunately the stone content 
cannot be estimated for values below 20 % (2.3.1), and the resistivity erroneously 
indicated very high stone contents. The residuals for the validation points also indicate 
the largest errors in SOC stocks for this anthropogenic unit (points 4, 9 and 11, Figure 
28).  
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Using the depth of the unweathered schist bedrock derived by the seismic signal 
(2.1.1) we were able to estimate the SOC stocks for the entire soil profile (Figure 29). 
For this map vertical extrapolation of the SOC content, stone content and bulk density 
for which only surface (0-30 cm) values were available proved to be necessary. For the 
SOC content we applied an exponential decrease with depth until it reaches zero at the 
unweathered bedrock detected by the seismic survey. The shape parameters for the 
curves were fitted on the 30 calibration/validation profiles). For the bulk density and 
stone content we used a linear increase until a value of 100 % for stone content and 
2.65 g cm-3 for bulk density at the unweathered bedrock.  Unfortunately these stocks 
cannot be validated as the soil was too stony for the corer in order to collect soil 
samples to the depth of the unweathered bedrock. The SOC stock for the entire profile 
broadly show the same pattern as the stock of the topsoil, and the values are roughly 
twice the topsoil values. 

 

b) RMSE estimation 

In general, the SOC stock (0-20 cm) was reasonable well predicted with an R² of 0.3 
and an RMSE of 9.41 Mg ha-1 (Figure 30). As already discussed above, the prediction 
would considerably improve when the anthropogenic unit would be excluded from the 
SOC stock map (points 4, 9 and 11, Figure 28 and Figure 30).    

 

Figure 30 : Predicted against observed SOC stocks (Mg ha
-1

) for the upper 20 cm. The numbers 
refer to the validation points. 
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 Spatial resolution 

 
a) Technical and economical constraints 

Hyperspectral remote sensing using the AHS160 airborne sensor provided the SOC 
signal for all bare cropland fields in a 60 by 10 km flight line taking 2 hours flight time. It 
is obvious that a large number of fields should be analysed for cost efficiency of such 
flight campaigns. The combination of hypespectral remote sensing with seismic and 
geo-electric signals was used to produce the SOC stock, and therefore the costs of the 
different techniques should be added up.  

  

b) Interpolation aspects 

An exponential function gives the best fit for the semivariogram of the predicted SOC 
stock of the first 20 cm (Figure 30). The spatial patterns occur mainly over 34 meters 
(i.e. the range of the semivariogram). Stevens et al (subm) have calculated the scale of 
spatial patterns in 14 cropland fields along a north-south transect in Luxembourg, and 
found that the range of semivariograms for C content varies between 27 and 76 m. 
Given the strong spatial dependence over short distances, the spatial correlation 
should be taken into account for the estimation of the mean SOC stock and its 
confidence limits, as the hypothesis of independence does not hold. Spatial 
dependence typically reduces the amount of information contained in a given set of 
observations. An option to take positive autocorrelation into account is to adjust the 
number of observations using the concept of effective sample size (Griffith, 2005). The 
effective sample size is defined as the number of independent observations n* equal to 
the sample size n of a spatially autocorrelated dataset. Griffith (2005) proposed several 
model-informed solutions to estimate the effective sample size. Using a geostatistical 
model specification (i.e. based on semivariograms), the effective sample size can be 
approximated by : 

 

Where n is the sample size (in our case the number of pixels), b and c are coefficients, 
r is the range and dmax the diagonal of the field. For an exponential semivariogram 
Griffith (2005) proposes to use a b of 51.4879 and a c of 1.7576. Given the number of 
pixels (1692), the effective sample size is reduced to 59. The mean value of the 
predicted SOC stock in the upper 20 cm is thus 48.62 ± 2.96 Mg C ha-1, while the SOC 
stock (0-20 cm) calculated from the 30 calibration/validation points results in a value of 
51.6 ± 2.37 Mg c ha-1. The slightly lower predicted SOC stock is probably due to the 
poor prediction of the stone content in the anthropogenic unit, as illustrated by the high 
residuals in points 4, 9 and 11 (Figure 28).    
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Figure 31 : Semi variogram of the SOC stock of the upper 20 cm. 
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4. Conclusions 

 

This deliverable present a validation of the geo-physical techniques, based on different 
sets of criteria: i) accuracy of the measurements generally estimated by the RMSE, ii) 
capacity to represent spatial patterns and spatial variability. 

The geophysical data are interpreted in terms of different thematic maps such as: soil 
thickness, stone content, water content, clay content and C content. For each of these 
maps the performance are evaluated by measuring the gap between the estimated soil 
properties and those observed on the field or stored in existing soil database. Special 
attention is also given to the spatial patterns of errors and uncertainties inherent to the 
geophysical techniques. 

The different maps obtained on the Luxembourg or Mugello test sites are presented. 
First order maps are obtained by a simple inversion of geophysical signals into soil 
properties; second order maps are computed by several first order maps that are 
combined to produce more accurate information or a soil property of a high level. 
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