

Working towards a global-scale functional relationship between vegetation optical depth and water content in forest areas

Jennifer Grant, Jean-Pierre Wigneron, Matthias Drusch, K. Bible, Peter D. Blanken, Danilo Dragoni, Thomas E. Kolb, Beverly E. Law, Tilden P. Meyers, Nathalie Novello, et al.

▶ To cite this version:

Jennifer Grant, Jean-Pierre Wigneron, Matthias Drusch, K. Bible, Peter D. Blanken, et al.. Working towards a global-scale functional relationship between vegetation optical depth and water content in forest areas. 2. TERRABITES Symposium, Feb 2012, Frascati, Italy. n.p., 2012. hal-02808628

HAL Id: hal-02808628 https://hal.inrae.fr/hal-02808628

Submitted on 6 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Working towards a global-scale functional relationship between vegetation optical depth and water content in forest areas

Grant, J.P.¹, Wigneron, J.-P.², Drusch, M.¹, Bible, K.³, Blanken, P.D.⁴, Dragoni, D.⁵, Kolb, T.E.⁶, Law, B.E.⁷, Meyers, T.P.⁸, Novello, N.², Kerr, Y.⁹

¹European Space Agency (ESA-ESTEC), The Netherlands; ²Institut National de la Recherche Agronomique (INRA-EPHYSE), France; ³University of Washington, USA; ⁴University of Colorado, USA; ⁵Indiana University, USA; ⁶Northern Arizona University, USA; ⁷Oregon State University, USA; ⁸National Oceanic and Atmospheric Administration (NOAA/ARL), USA; ⁹Centre d'Etudes Spatiales de la Biosphère (CESBIO), France

Background

Vegetation optical depth is one of the parameters which can be retrieved from passive microwave observations over land, such as those made by ESA's Soil Moisture and Ocean Salinity (SMOS) mission. The optical depth is known to be related to vegetation biomass/structure and water content and is therefore potentially very interesting for vegetation modelling. This study focuses on the relationship between optical depth and gravimetric vegetation water content $(M_{\rm q})$. Seasonal and diurnal variations of $M_{\rm q}$ are known to be related to plant water potential and ET. Obtaining global-scale information on M_{α} can therefore contribute to applications in the fields of climate, ecohydrology, and agriculture.

Methods

In this study, vegetation optical depth was retrieved from brightness temperature observations made by ESA's Soil Moisture and Ocean Salinity (SMOS) satellite mission. A number of FLUXNET forest sites in North America were chosen as focus areas (see map) and provided in situ data such as temperature, soil moisture, VPD and precipitation. The nearest most representative SMOS gridcell was selected for analysis. Optical depth was retrieved from L1C brightness temperatures by inversion of a simple radiative transfer model, L-MEB. The relationship between optical depth (τ) and vegetation gravimetric water content (M_{a}) is given in equation (1):

(1) $\cos 0^{\circ}$ ρ_{veg}

In this equation [Wegmüller et al., 1995], A describes the structure of the vegetation, B is the fresh biomass per area [kg/m²], ρ_{veq} the vegetation density [kg/m³], k_0 the wavenumber and ε''_{veq} the vegetation dielectric constant. The latter parameter is a function of temperature, salinity, frequency, vegetation bulk density and gravimetric water content (M_{α}) expressed as [kg water/kg fresh biomass]. In this study, we used MODIS NDVI (MOD13A1) as a proxy for B/ρ_{veg} , and A = 0.3.

Timeseries (2010) of gravimetric vegetation water content $(M_{\rm q})$ obtained from SMOS optical depth with eq. (1). SMOS has ascending (6:00 AM) and descending (6:00 PM) overpasses.

Timeseries (2010) of

using MODIS bands 2 (860 nm) and 7 (2130 nm)

- Vegetation Water Content: calculated with monthly dry biomass from the CASA model and literature values of the annual ratio dry/wet biomass for each vegetation type - 8-day Evapotranspiration (MOD16A2)

for the relationship $M_{\rm q}$ - VPD: MMSF: $\rho = -0.59$ MIP: $\rho = -0.66$ WRC: $\rho = -0.75$ (All with p < 0.005)

Conclusions

The range of resulting M_{a} values is in agreement with literature values, which generally range between 0.45-0.85, depending on vegetation type, status and material. However it should be noted that validation of M_{q} values is still lacking. The morning values of M_{q} (ascending orbits) found here are not always higher than the evening values. More investigation is needed to determine whether this is due to geophysical effects or to instrumental factors. It seems that there is some correlation of M_{a} with VPD, and that this is generally higher for the morning observations.

In general, the results indicate that when biomass increases during the summer period, even though the amount of vegetation water per area increases, the gravimetric vegetation water content [kg water/kg fresh weight] decreases. The latter effect is assumed to be a result of higher net radiation and evapotranspiration, and lower soil moisture conditions during summer. Therefore, the timeseries of M_{a} show opposite seasonal behaviour to those of NDWI or VWC-CASA. M_{a} derived from the vegetation optical depth can thus give different, and complementary, information to optical-based remote sensing observations of vegetation water status.

Future research

Future plans include extending this study to provide global scale maps of gravimetric vegetation water content (M_{α}) . To this end, M_{α} values will need to be validated and model parameters (e.g. A and B/pveg) calibrated per global vegetation type. Also, more investigation into the temporal patterns of M_{a} is needed.

MODEL WANTED: I am looking for a model which can produce global- or regional-scale values of Mg, or any parameter linked to M_{α} (e.g. sapflow, VPD, ET, plant water potential, etc.). If you work with, or know of, such a model then please let me know! (jennifer.grant@esa.int)