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Abstract

We examine the efficiency, distributional, and environmental consequences
of assigning spatial property rights to part of a spatially-connected natural
resource, a situation which we refer to as partial enclosure of the commons.
The model reflects on a large class of institutions and natural resources for
which complete enclosure by a sole owner may be desirable, but is often
institutionally impractical. When a sole owner is granted ownership of only
a fraction of the spatial domain of the resource and the remainder of the
resource is competed for by an open access fringe, interesting spatial exter-
nalities arise. We obtain sharp analytical results regarding partial enclosure
of the commons including: (1) While second best, it always improves wel-
fare relative to no property rights, (2) all resource users are made better
off, (3) positive rents arise in the open access area, and the resource will
maintain higher abundance. Under spatial heterogeneity, we also character-
ize spatial regions that are ideal candidates for partial enclosure - typically,
society should seek to enclose those patches with high ecological productiv-
ity and high self-retention, but whether high economic parameters promote
or relegate a patch may depend on one’s objective. These results help in-
form a burgeoning trend around the world to partially enclose the commons.
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1 Introduction & Background
The economics profession has established incontrovertibly that open access or com-
mon pool management of natural resources often leads to economic inefficiencies,
and possibly ecological disaster ([15], [4], [26], [23]). A large body of evidence
highlights mismanagement of fisheries, pastures, forests, groundwater, pollution
sinks [34], antibiotic resistance ([2], [14]), among other tragedies of the commons.
A massive literature has emerged that proposes economic instruments as solutions,
including taxes ([3], [31], [36]), effort restrictions ([1], [28]), fully-delineated prop-
erty rights ([11], [18], [7]), tradeable permits ([24], [12], [35], [29]), and spatial
zoning with taxation ([32]) or with unitization ([20], [17]). Under certain condi-
tions, each of these instruments has benefits and may even ‘solve’ the tragedy of
the commons, and provide first-best outcomes.1 Yet issues of wealth redistribu-
tion, heterogeneity ([19]), or high political and economic costs ([16]) may impede
the performance of such instruments and may explain why we rarely observe these
instruments being implemented as economic models would suggest. Instead, we
tend to observe hybrids where only part of the resource is subsumed within a
market structure. Indeed the failure of many natural resource management insti-
tutions has been explained by the potential mismatch between the spatial scale of
management and that at which ecological processes operate. For instance, Scott
[33] states that “the property must be allocated on a scale sufficient to insure that
one management has complete control of the asset”. Yet this is rarely the case for
resources such as water, hunting game, fisheries, oil, and forests. A much more
common institutional regime is to assign property rights to a fraction of the natu-
ral resource, often leaving the remainder of the resource to be competed for by an
open access fringe.

We refer to this situation as ‘partial enclosure of the commons’. While the
owner of the enclosed area may behave somewhat like a sole owner, the mobility of
the resource induces a spatial externality, so the open access fringe may affect his
behavior. Despite notable advances on the use of economic policies to internalize
various externalities ([21]), the use of partial enclosure remains an unresolved
issue. We aim at filling this gap by analyzing the efficiency, distributional and
environmental consequences of its application.

We illustrate the ubiquity of partial enclosure by providing some examples.
Even if rights are fully delineated in one state’s jurisdiction, fish often traverse
jurisdictions and are subject to harvest in adjacent open access areas (e.g. out-
side a nation’s exclusive economic zone, on the ‘high seas’). But even for those
species that are reasonably sessile like reef fish, they are often exploited by different

1The OECD report [25] provides a survey of many market-like instruments used to solve these
problems.
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fleets (e.g. commercial vs. recreational), typically where one fleet has well-defined
property rights and the other acts in an open access fashion. Partial enclosure of
the commons is even more commonplace for groundwater and oil reserves. Like
fish, those resources are mobile (extraction in one location induces a flux). Rights
to groundwater and oil stocks are often related to spatial property rights at the
surface.2 The spatial delineation of these rights almost never accords with the
spatial domain of the underlying resource. Game, such as deer and waterfowl,
have characteristics similar to fish - they migrate and are only partially enclosed
on private lands. Even some forest resources share these characteristics. Commu-
nities are often granted exclusive ownership over a tract of forest land, where the
remainder of the forest is open to others. To the extent that actions outside the
tract influence it (e.g. excessive harvest outside may reduce seed dispersal inside),
or actions inside affect the open access area, the ‘partial enclosure’ prerequisites
hold. This institutional arrangement is thus characterized by spatial externalities
(external effects on adjacent areas) diffusing the institutional effect of partial en-
closure by a single owner due to the mobility of the resource. The literature has
not assessed the effect of such asymmetric property rights regimes on a spatially
connected resource. We are specifically interested in the effects of spatial exter-
nalities and heterogeneity on welfare, and in the characterization of the optimal
siting of partial property rights for renewable resources.

To address these questions we develop and study an analytical model of partial
enclosure of the commons. The model is simple enough to maintain analytical
tractability, but contains all of the components essential to describe this ubiqui-
tous institutional arrangement. It is meant to be generically applicable to a wide
range of natural resources with certain characteristics. The dynamics of a natural
resource are both temporal and spatial. Across time, the natural resource can
grow (or shrink) depending on the level of extraction and the degree of regener-
ation which may, itself, depend on the level of resource stock. The resource also
moves across space. We model space as a set of mutually-exclusive and exhaustive
patches. In biological sciences this is referred to as a ‘metapopulation’ - we will
keep track of natural resource stock in each patch. Any given patch may be un-
regulated (i.e. open access - a situation in which current economic returns govern
entry, exit, and extraction) or may be managed by an owner who maximizes her
private benefits. Owing to spatial movement, behavior in the open access region
has important consequences for the sole owner, and vice versa. The ensuing spatial

2The “rule of capture” of groundwater or of any mineral resources is historically based on
the concept that each landowner has complete ownership of resources under his land, and has
an unlimited right to use them. This Absolute Ownership Doctrine has led to overexploitation
issues in areas where the number of users has grown so that the use of the resource, even if it
is limited by land ownership, gets close to that of an open access outcome. It is now commonly
rejected because of the existing diffusion/dispersal process of the resource.
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and temporal externalities represent a potentially damaging market failure that
induce a kind of dynamic spatial game across patches with different characteristics.
We solve this problem and explore its consequences.

As a starting point, we note that partial enclosure of the commons will not fix
all externalities, and will thus be a second best alternative to sole ownership of the
entire resource domain.3 Despite its ubiquity, the literature on partial property
rights is sparse. Under what conditions will assigning rights in this way achieve
economic, distributional, or ecological improvements over the pure open access
case? And if we are to proceed with partial enclosure of the commons, what
guiding principles can be generated to design these institutions? The remainder
of this paper is devoted to addressing these, and related questions.

To the best of our knowledge, only a single existing paper tackles the issue of
partial enclosure of natural resources ([13]).4 It focuses on uncertainty, instrument,
and the congestion problem resulting from the enclosure of some resource pools
on other open-access resource pools. By contrast, we investigate whether partial
enclosure may increase (aggregate or patch-specific) resource stock levels and/or
aggregate economic value (or individual profits). We highlight the influence of
spatial externalities and environmental heterogeneity on the optimal assignment
of partial property rights. The importance of spatial effects has been documented
in the literature on learning externalities and agglomeration economies: it is em-
phasized how investment decisions made by one agent may influence others who
learn from his experience ([22], [27]). In our setting, it is the physical diffusion or
dispersal of the resource across space that gives rise to interesting spatial externali-
ties. Given biological heterogeneity, this diffusion effect may have different impacts
from one region to another, emphasizing the importance of careful selection of the
region in which property rights will be assigned.

2 Model & Results
A natural resource stock (denoted by x) is distributed heterogeneously across a
discrete spatial domain consisting of N patches. Patches may be heterogeneous in

3Taxes are a possible alternative, but a tax in only one region (analogous to partial enclosure)
would be second best. Indeed, it is proven in [32] that a first best outcome would require the use
of spatially differentiated taxes (one for each region).

4Colombo and Labrecciosa [6] analyze the oligopolistic exploitation of a productive asset
under private and common property. They assume that, under private exploitation, the resource
is parceled out. Each firm owns and manages the assigned parcel over the entire planning horizon.
Thus, fully delineated property rights exist over the entire domain of the resource. As such, they
abstract from situations where the resource is fully mobile, and do not analyze (as we do) the
impact of spatial externalities and biological heterogeneity on the assignment of partial property
rights.
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size, shape, economic, and environmental characteristics, and resource extraction
can potentially occur in each patch. The only requirement for the delineation
of patches is that patches must be homogeneous intra-patch; all ecological and
economic variables are constant within each patch. The resource is mobile and
can migrate from patch to patch. In particular, denote by Dij ≥ 0 the (constant)
fraction of the resource stock in patch i that migrates to patch j in a single time
period. Time is treated in discrete steps. The resource may also grow, and the
growth conditions may be patch-specific. Assimilating all of this information, the
equation of motion, in the absence of harvest, is given as follows:

xit+1 =
N∑
j=1

Djig(xjt, αj) (1)

Here resource production in patch i is given by g(xi, αi) which is extremely general;
we follow the literature and require that ∂g(x,α)

∂x
> 0, ∂g(x,α)

∂α
> 0, ∂2g(x,α)

∂x2 < 0, and
∂2g(x,α)
∂x∂α

> 0. We also assume that extinction is absorbing (g(0;α) = 0) and that
the growth rate is finite (∂g(x,α)

∂x
|x=0 <∞). The patch-specific parameter αi affects

resource growth and has many possible interpretations including intrinsic rate
of growth, carrying capacity, patch size, etc. All standard biological production
functions are special cases of g(x, α). The resource stock that is produced in patch
i then disperses across the spatial domain: some fraction stays within patch i (Dii)
and some flows to other patches (Dij). Indeed, some may flow out of the system
entirely, so the dispersal fractions need not sum to one: ∑j Dij ≤ 1.

Because this is a discrete-time model, we must specify the timing of harvest.
For patch-i harvest hit, the residual stock5 left for reproduction is given by eit ≡
xit − hit. Including harvest, the patch-i equation of motion becomes:

xit+1 =
N∑
j=1

Djig(ejt, αj). (2)

The timing is thus: the present period stock (xit) is observed and then harvested
(hit) giving residual stock (eit), which then grows (g(eit, αi)), and disperses across
the system (Dij). By the identity eit ≡ xit−hit, there is a duality between choosing
harvest and choosing residual stock as the decision variable. We use residual stock
because it turns out to bypass many technical issues that arise when one uses
harvest as the decision variable. By adopting residual stock as the control, we are
able to fully characterize the optimal policy; one can then back out the optimal
harvest. This in turn will enable us to provide a precise assessment of partial
enclosure as an institutional arrangement.6

5In the fisheries literature, residual stock has been coined escapement.
6This mathematical convenience was pointed out in [30] and has been adopted by several

subsequent contributions ([10], [9] among others).
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Patch-i harvesters earn price pi per unit harvest and marginal harvest cost is
a non-increasing function of resource stock in patch i. If hit is harvested in patch
i at period t, then the residual stock level is eit, and profit is given by:

Πit = pi(xit − eit)−
∫ xit

eit
ci(s)ds (3)

where c′i(s) ≤ 0 (higher resource stock reduces per-unit harvest cost).

2.1 Open Access Benchmark
In the absence of property rights, resource users are able to costlessly access all
patches to seek short-run profit. As such, extraction effort will gravitate in any
period to the patches with the highest marginal profit. Indeed, we assume that
effort will enter patch i until marginal profit is zero, i.e. until pi = ci(êit) were êit
denotes the residual stock in patch i when all patches are under open access. As
long as costs are sufficiently high in at least one patch (pj < cj(0)) and there is
some self-retention (Djj>0), then the stock will never be completely exhausted,
even under open access. Rather, in each patch the stock will be extracted down to
a level where it becomes unprofitable to extract further. In patches for which this
level is positive, stock will grow and redistribute spatially according to Equation
2. Thus, under pure open access of this spatial resource, we have the following
benchmark results:

Proposition 1. Open access residual stock level in patch i satisfies pi = ci(êit)
when ci(0) > pi and êit = 0 otherwise.

2.2 Partial Assignment of Spatial Property Rights
The main purpose of this paper is to examine the consequences of partial enclosure
of the commons. Within the model developed here, we implement that concept by
assigning exclusive property rights over a single patch to a single owner while the
other N − 1 patches remain open access. This induces a potentially complicated
dynamic spatial game between the owner of the enclosed patch and the adjacent
open access fringe areas, which are connected to the enclosed patch through the
system dynamics. More specifically, assuming that patch i is the enclosed patch,
the optimal policy function eit = φi(t, x1t, x2t, ...) is potentially time and state
dependent. The enclosed patch owner’s economic objective is to maximize the
expected net present value of harvest, expressed in terms of residual stock level,
from patch i over an infinite horizon:

max
{eit}

∞∑
t=1

δt
[
pi(xit − eit)−

∫ xit

eit
ci(s)ds

]
. (4)
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Henceforth, all of the analysis will rely on solving the discrete-time difference
game that is induced by the patchiness of spatial ownership. Because we focus
on the residual stock as the control variable in each spatial patch, and owing
to some useful characteristics of the economic environment, this challenge has a
straightforward solution. We can immediately write down an implicit expression
defining the residual stock level in every patch. These levels (in all patches) are
summarized as follows:

Lemma 1. When patch k is enclosed, and the other N − 1 patches remain open
access, the equilibrium residual stock levels are:

pi = ci (eit) for i 6= k

pk − ck (ēkt) = δDkk [pk − ck (x̄kt+1)] ge (ēkt, αk) ,

Here, eit denotes the residual stock in patch i when another patch is enclosed,
and ēkt (respectively x̄kt) denotes the residual stock (respectively the stock level)
when k is enclosed (all other patches being under open access). All proofs are
provided in the appendix. Lemma 1 shows that the residual stock level takes just
two possible forms. In the open access patches, harvest will respond to behavior in
the other patches, but residual stock will not. Each open access patch is harvested,
in each period, down to the open access residual stock level - i.e. where harvesting
the next unit of resource stock would entail an economic loss. In the enclosed patch,
the owner acknowledges the behavior of the (connected) open access patches and
realizes that she will not be the residual claimant of any conservative harvesting
behavior. Thus, she behaves as if the entire resource that disperses out of her patch
will be lost. This is why the only dispersal term to enter the optimal residual stock
term is Dkk the fraction of the resource that remains in the enclosed patch.

As an extreme point of comparison, we can also consider the problem in which
sole ownership is assigned over the entire spatial domain. While this problem has
been studied elsewhere, we provide the sole owner’s first order conditions in this
case as a point of comparison with that described in Lemma 1. Following [9] the
complete sole owner chooses residual stock in patch j as follows:

pj − cj
(
e∗jt
)

=
N∑
l=1

δDjl [pl − cl (xlt+1)] ge
(
e∗jt, αj

)
. (5)

Equation 5 leads to a very different residual stock than is implied by Lemma 1.
Indeed, simple inspection of the right hand side of the Equation 5 highlights that
the sole owner would account for the effect on all patches (Djl ∀l) not just the
fraction of the resource that stays in patch k (Dkk).

Now, relying on Lemma 1 and following [9], it turns out that the residual stock
level in every patch is constant; this is summarized by the following:
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Lemma 2. The equilibrium harvest strategy for all patches under partial enclo-
sure, is for all patches to harvest down to a pre-determined residual stock level that
is time and state independent.

Lemma 2 is extraordinarily useful. Normally, we would expect the optimal
residual stock level to be a (possibly time varying) feedback control rule that
mapped the state (all possible combinations of resource stock levels in all N
patches) into the residual stock. Then finding the equilibrium across all patches
would require solving a complicatedN -dimensional system. Indeed, if we had spec-
ified harvest as the control variable, this would be the case. But since the marginal
profit and marginal growth conditions depend only on the residual stock level, and
not on resource stock, then Lemma 2 obtains, which dramatically simplifies the
dynamic game. However, since biological growth, dispersal, and economic returns
can vary across patches, the optimal choice will, in general, vary across space too.

2.3 Welfare & Distribution
Accounting for the behavior characterized in Section 2.2, we are initially inter-
ested in the consequences of partial enclosure on resource stocks. Because partial
enclosure is second best, it is possible that perverse outcomes arise. Is it possible,
for example, for partial enclosure, combined with spatial connectivity, to lead to
lower natural resource stocks than under pure open access? We can unambiguously
answer this question: it turns out that enclosing any patch will always increase
resource stock. This is formalized below:

Proposition 2. Partial enclosure of any patch (weakly) increases resource stock
in all patches and strictly increases stock in at least one patch.

Proposition 2 accords with economic intuition. When moving from a system
of pure open access to a system in which some fraction of the resource is enclosed
by a single owner, that owner will find it optimal to maintain a larger resource
stock in her own patch. The adjacent open access patches clearly benefit from
this behavior - to the extent that some of this increased resource spills over into
adjacent patches, they are residual claimants of this behavior. Thus, the stock
rises (weakly) everywhere.

Partial enclosure also has important consequences for profit as is formalized
below:

Proposition 3. Partial enclosure of any patch provides a strict Pareto-Improvement
(i.e. increases profit in at least one patch without decreasing profit in any patch).

8



A powerful, and somewhat counterintuitive corollary immediately emerges. Be-
cause the enclosed patch owner has the incentive to raise resource stock in every
period, and because some of that resource spills over to the open access sector every
period, the presence of partial enclosure guarantees positive profits in equilibrium
for the open access sector, as is formalized below:

Corollary 1. Some open access patches retain positive equilibrium profit under
partial enclosure, even when extinction is optimal by the open access fringe.

While Corollary 1 holds for any cost function, it is most striking when c′(·) = 0
in which case all open access patches drive the stock extinct. Enclosure of any
single patch k induces that patch owner to increase residual stock which bestows
a positive externality on all patches j for which Dkj 6= 0. The result focuses on
the positive rents accruing to open access patches when moving from a fully open
access to a partial sole ownership management structure.

We have shown that even if exclusive ownership can be implemented only over
a small part of the spatial domain, some positive effect is expected on resource
stocks and agents’ profits. These results arise from behavioral adaptations: when
part of the spatial domain is enclosed, behavioral changes (by the enclosed patch
owner and the open access sector) ensue.

Before concluding this section, we examine the role of key biological, environ-
mental, and economic parameters on these behavioral changes. When patch i is
enclosed, increasing self-retention (Dii) or biological growth (αi) causes the en-
closed patch owner to increase her optimal residual stock. In contrast, increasing
price (pi) causes her to decrease residual stock. Increasing Dii or αi increases the
rate of return to owner i from a larger residual stock, thus she favors a larger stock.
The effect of price is more subtle: as it increases, the benefit of increased harvest
(and thus lower residual stock) turns out to outweigh the future benefit of higher
residual stock. These results are summarized below and we will make extensive
use of them in the remainder of the analysis7:

Lemma 3. When patch i is enclosed:

dēi
dDii

≥ 0, dēi
dαi
≥ 0, dēi

dpi
≤ 0.

These results will prove useful in the optimal siting of partial enclosure of the
commons.

7Due to Lemma 2, we might omit subscript t in the expressions of residual stocks and stock
levels.
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2.4 Siting Partial Enclosure
Thus far we have focused on the welfare effects of partial enclosure of the com-
mons. In many real-world contexts a government, NGO, or private agent has
the opportunity to enclose part of the commons. For example, current initiatives
by development banks (such as the World Bank), NGOs (such as The Nature
Conservancy or Rare), and countless local communities, often in developing coun-
tries with little or no existing formal governance, involve siting decisions where
decision-makers must determine which areas to enclose. We have shown that even
haphazard siting decisions will improve welfare and conservation. But there may
be considerable differences across sites: enclosing the “right” patch may lead to
substantially larger welfare gains, or may give rise to important distributional or
conservation effects, than enclosing the “wrong” patch. This section is devoted to
analyzing the characteristics of patches that are good candidates for enclosure. We
use as a starting point the case when a single patch is enclosed and the remaining
N − 1 patches are open access.8

Which patch to enclose may depend on one’s objective. For example, many
resource conservation groups may advocate partial enclosure, say of a fishery or
a forest area, to protect the natural resource itself, often arguing that protecting
the resource stock is a first step toward enhancing local, or aggregate, profits. If
the objective is to site the enclosure to maximize equilibrium resource stock, we
can use the model to derive conditions which define the optimal candidate for
enclosure. Indeed, inspecting the expression characterizing the evolution of stock
levels, we can immediately characterize the optimal enclosure. It turns out that
the difference g(ēi, αi)−g(ei, αi) determines it (if the goal is to maximize aggregate
resource stock): The decision-maker should enclose the patch with highest such
difference (see Appendix for proof). Of course, calculating this difference requires
calculating ēi and ei which, in turn, are implicitly defined by economic returns
and biological parameters. Thus, even though this condition has a straightforward
interpretation, it is difficult to use it in order to assess the effect of key model
parameters on optimal enclosure siting. Furthermore, there is no guarantee that
maximizing resource stock will coincide with maximizing profits.

Thus, we will seek to determine the role of key model parameters on the op-
timal siting of partial enclosure by adopting the following strategy: We define
a benchmark situation in which all economic and biological parameters are held
equal across patches, thus enclosure does not favor any particular patch. Moving
from this situation, we then increase the value of a single parameter in a particular

8While it may seem restrictive to only allow 1/N th of the patches to be enclosed, recall that
the patches can be different sizes, so we can consider enclosing any arbitrary percentage of the
resource domain.
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patch, and assess the impact of the change on economic and environmental objec-
tives. Enclosing any given patch will give rise to dynamics throughout the system,
which, in principle, affect all patches (including the enclosed patch), so the entire
system’s response to enclosure must be accounted for. This approach allows us
to derive concrete conclusions about optimal enclosure siting while isolating the
effects of any given parameter. We derive guiding principles for optimal enclosure
under each possible objective.

In the benchmark case, Dii = D, Djk = Q, αi = α, pi = p, and ci(·) = c(·) ∀ i
and for j 6= k. Starting from this situation, patches are indistinguishable so there
is no preference for enclosing any particular patch. Without loss of generality, we
assume that a single parameter (either D11, α1, or p1) increases in patch 1 and
we calculate the comparative static effects given all possible enclosures. Because
parameters are identical across all other patches j (j 6= 1), we need only calculate
the effects of changing parameters in patch 1 when patch 1 is enclosed and when
some other patch (we choose patch 2) is enclosed. Thus, under an increase in a
single parameter in patch 1, we examine the following cases: (1) Patch 1 is enclosed
and all N − 1 other patches remain open access, and (2) Patch 2 is enclosed and
all N − 1 other patches remain open access.

This procedure allows us to determine, ceteris paribus, whether an increase in
self retention (D), biological growth (α), or price (p) will favor, or relegate, a given
patch for enclosure. We analyze optimal enclosure under four possible objectives:
(1) maximize resource stock in the enclosed patch, (2) maximize aggregate stock,
(3) maximize profit in the enclosed patch, and (4) maximize aggregate profit.
For each objective, we compute the difference between the payoff when enclosing
patch 1 and the payoff when enclosing patch 2. If that difference is positive, then a
higher value of the parameter in patch 1 promotes the patch for enclosure (because
enclosing patch 1 is preferred to enclosing patch 2). If the difference is negative,
then a higher value of the parameter relegates the patch for enclosure (because
enclosing patch 2 is preferred to enclosing patch 1).

Aside from the determination of optimal siting of an enclosure, we are interested
in the conditions under which these four objectives are consistent or contradictory:
If enclosure is sited to maximize local benefits, will this also maximize benefits
system-wide? And if enclosure is sited to maximize resource stock, will this also
maximize profit?

While our model permits any non-increasing c(·), we begin with the case of
linear harvest cost, so c′(·) = 0.9 In that case, the open access patches always
harvest the entire local resource stock in each period. Though by Proposition 2
the resource stock is positive in equilibrium - this is because the enclosed patch acts
as a donor for all connected patches; provided that Q > 0, it supplies all patches

9In Section 2.5 we discuss how results may change when c′(·) < 0.
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with a surplus stock from which to harvest each period. While this case is not
trivial to examine, the dynamics are somewhat muted because changes in system
parameters do not change the optimal residual stock in the open access patches.
Furthermore, the first order condition for the enclosed patch no longer relies on
price or cost, which simplifies the comparative statics of behavioral changes.

2.4.1 Self-retention, D11

We begin by assessing the effects of increasing the self-retention parameter D11
in patch 1 on the optimal siting of partial enclosure. Higher self-retention allows
patch 1 to retain a greater fraction of its growth. If patch 1 is open access (so
patch 2 is enclosed), then there is no behavioral shift in patch 1 from the increase
in D11 - all residual stocks are unchanged. But if patch 1 is enclosed, that owner
will increase her residual stock to take advantage of higher retention (see Lemma
3). Proving that profits are larger when patch 1 is enclosed (compared to enclosing
some other patch) relies on an envelope theorem: to analyze the total derivative
of profit in patch 1 we can ignore the behavioral shift, and can instead focus only
on the direct influence of D11 on profit. This effect is clearly positive since all
non-enclosed patches have zero residual stock. Taking all of the dynamics into
account, we find that if costs are linear, then across all four objectives, a higher
value of D promotes a patch for enclosure. This result is formalized below:

Proposition 4. Provided c′(·) = 0, a higher value of self-retention (D11) in patch
1 has the following effects:

1. (Enclosed Patch Stock): Patch 1 is the best candidate for enclosure.

2. (Aggregate Stock): Patch 1 is the best candidate for enclosure.

3. (Enclosed Patch Profit): Patch 1 is the best candidate for enclosure.

4. (Aggregate Profit): Patch 1 is the best candidate for enclosure.

Proposition 4 shows that ceteris paribus, across all four objectives, the optimal
patch to enclose is the patch with higher self-retention. Thus there is strong
consistency between optimal enclosure siting for individual benefit and optimal
enclosure siting for aggregate benefit. There is also strong consistency between
conservation objectives (i.e. maximizing resource stock) and economic objectives
(maximizing profit).

2.4.2 Biological growth, α1

Our resource growth model from Section 2 is quite general and permits a wide
range of interpretations for the parameter αi. Regardless of the interpretation,
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we can think of higher α1 as representing improved growth conditions in patch 1.
Here we examine the role of α1 on optimal enclosure siting: will improved growth
conditions in a patch promote it as a candidate for enclosure? If patch 1 is open
access (so patch 2 is enclosed), there will be no adjustment in residual stock in
patch 1 because p1 = c1(e1). On the other hand, if patch 1 is enclosed, then the
increase in α1 leads to an unambiguous increase in residual stock in 1 (see Lemma
3). This also has positive externalities on adjacent patches. Again, in the case
of linear cost we will prove that across all four objectives, a higher value of α1
promotes patch 1 for enclosure. The result is formalized as follows:

Proposition 5. Provided c′(·) = 0, a higher value of biological growth (α1) in
patch 1 has the following effects:

1. (Enclosed Patch Stock): Patch 1 is the best candidate for enclosure.

2. (Aggregate Stock): Patch 1 is the best candidate for enclosure.

3. (Enclosed Patch Profit): Patch 1 is the best candidate for enclosure.

4. (Aggregate Profit): Patch 1 is the best candidate for enclosure.

Proposition 5 reveals that α has the same effects as D on optimal siting of the
enclosure: Higher biological growth always promotes a patch as an ideal candidate
for partial enclosure regardless of one’s objective.

2.4.3 Market price, p1

Finally we consider the effect of an increase in p1 on optimal enclosure siting.
A price increase in a single patch can have complex and far-reaching effects on
the stock and profit because both the enclosed patch owner and the open access
patches may change residual stock in response to the price increase. However, when
c′(·) = 0 (linear cost), neither the open access patch nor the enclosed patch will
change residual stock following a price rise. Thus, residual stock is unaffected by
the decision about which patch to enclose. However, profit is affected by the price
rise, and thus the effects of higher price will depend on which patch is enclosed.
Because resource stocks are unaffected, it is clear that to maximize enclosed patch
profit, one should enclose the patch with the elevated price. But to maximize
system-wide profit, it will depend on the spatial externality. When the patches
are weakly connected (so Q is small), then the patch with high price should be
enclosed. But when the patches are tightly connected, the patch with the elevated
price should be left open access. These results are summarized as below.

Proposition 6. Provided c′(·) = 0, a higher price (p1) in patch 1 has the following
effects:
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1. (Enclosed Patch Stock): All patches are equally desirable for enclosure.

2. (Aggregate Stock): All patches are equally desirable for enclosure.

3. (Enclosed Patch Profit): Patch 1 is the best candidate for enclosure.

4. (Aggregate Profit): Patch 1 is the worst candidate for enclosure if D ≤ Q or
δ is small. Patch 1 is the best candidate for enclosure if Q is small and δ is
large.

Proposition 6 reveals an interesting tension between the biophysical parameters
and the economic parameters. While we found that higher biophysical parameters
always promoted a patch for enclosure, we find nearly the opposite for the key
economic parameter, at least when harvest costs are linear.

Taken together, these results suggest that if the objective is to maximize local
(i.e. enclosed patch) benefits from enclosure, it is typically optimal to enclose
the patch with a high level of self-retention, a high biological parameter, or a high
price. But if the goal is to site the enclosure to improve the system overall (whether
system-wide profit or system-wide stock), the best candidate for enclosure may be
a patch with high self-retention, high biological growth, or low price. This reveals
an interesting tension between local and system-wide benefits. If the enclosure
is to be sited by an agent who derives only local benefits, the enclosure may in
fact minimize system-wide benefit, though this result can only occur if there is
heterogeneity in economic returns across space. Conversely, if the enclosure is
sited by a social planner who seeks to maximize aggregate benefits, payoffs in
the local enclosure may suffer. Table 1 summarizes the results of Propositions 4-6,
where a "+" indicates that the patch with elevated parameter is the best candidate
for enclosure and a “-” indicates that the patch with the elevated parameter is the
worst candidate for enclosure.

Table 1: Summary of results for linear cost (c′(·) = 0)
Objective D α p

Enclosed Stock + + 0
Aggregate Stock + + 0
Enclosed Profit + + +
Aggregate Profit + + +/−

2.5 Extension to non-linear cost
The siting results above have been proven only in the case of linear cost (c′(·) = 0).
While this is a common assumption in natural resource models, it fails to capture
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the possibility of a stock effect, where harvest costs rise as scarcity sets in. In
that case c′(·) < 0 which has important economic and behavioral implications.
First, this assumption implies that even in the open access patches, stocks will
not be fully exhausted. As the resource becomes scarce, the costs rise to such a
degree that, even under open access, the marginal profit eventually hits zero and
harvesting ceases. Second, in the enclosed patch the optimal residual stock level
will depend on both price and residual stock from the open access fringe. These
facts link the system together in a more nuanced way than when costs are linear,
rendering the spatial externalities more complex. Thus, one might predict that
there is an enhanced role for connectivity (both self-retention, D and migration
Q) to drive results. Indeed, when c′(·) < 0 we find that the result often hinges on
connectivity. Table 2 summarizes our results for the case of c′(·) < 0.

Table 2: Summary of results for nonlinear cost c′(·) < 0
Objective D α p

Enclosed Stock + + if D ≥ Q + if D small
− if D small − if Q small

Aggregate Stock + + if D ≥ Q + if D small
or D small

Enclosed Profit + + if D ≥ Q +
− if D small

Aggregate Profit + if D ≥ Q + if D ≥ Q ?
or D small

While these results are more nuanced than those derived when c′(·) = 0, they
are largely consistent. Three exceptions are worth pointing out. First, if the
objective is to maximize enclosed patch stock, then the effect of higher biological
growth on the optimal patch to enclose can flip depending on the value of self-
retention. When self retention is large (in particular, when it is larger than Q)
it is always optimal to enclose the patch with high biological growth (intuitively,
because the high value of D allows the enclosed patch to capture most of the
benefits of its larger α). But if self retention is sufficiently small, it is optimal to
enclose a patch with lower self-retention: When self retention is small, the stock in
a patch derives primarily from large values of residual stock in other patches. Thus,
the enclosure owner would like his benefactor to have a high value of α (because he
would claim the spill-over). The other exceptions involve the parameter p. When
c′(·) = 0, resource stock in all patches is unaffected by price, so no preference is
given for enclosure. But when c′(·) < 0 the optimal enclosure again depends on
the extent of the spatial externality. To maximize enclosed patch stock, when self
retention is small, one would like to enclose the patch with high price. This is
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because a higher price causes the enclosed patch owner to decrease his residual
stock (see Lemma 3), but since D is small, this has little effect on his own stock.
Instead, if the high price patch is open access, it will cause the open access patch to
reduce its residual stock and when D is small, this has a greater (negative) impact
on the enclosed patch stock. Similar reasoning explains why enclosing a low price
patch is optimal when out-of-patch migration (Q) is small. A similar argument
explains the effects of price on aggregate resource stock. The general case of price
and its effect on aggregate profit cannot be signed, except for in special cases.

3 Illustrative Example
To illustrate the results of this analysis, we now present two versions of an example,
which are easily replicated in a simple spreadsheet. We loosely base these examples
on spatial analysis of fisheries near the Channel Islands, California (e.g. see White
and Casselle 2008 [37]), which was explored by Costello and Kaffine 2009 [8]; we
focus on the 13 patches of roughly 210 km2 each surrounding the Northern Channel
Islands (see Figure 1). The equation of motion in patch i is given by:

xit+1 =
13∑
j=1

Dji

[
ejt + rjejt

(
1− ejt

Kj

)]
︸ ︷︷ ︸

g(ej ,αj)

. (6)

Under this functional specification, both the intrinsic growth rate rj and the car-
rying capacity Kj conform to the requirements of the general parameter αj from
Section 2.10

3.1 Heterogeneous patches
The first example allows the patches to be heterogeneous and calculates the ben-
efits, and optimal siting, of enclosure. Dispersal (Dij), growth (rj), and carrying
capacity (Kj) parameters are drawn loosely from real data in the region. Dispersal
from patch j to i is given by the dispersal kernel, and is loosely based on White et
al. 2013 [38]. We assume that both growth and carrying capacity are positively
related to the fraction of the patch that is covered by kelp (Lj ≤ 1), according to
these relationships:

rj = 0.4 + L
1/2
j (7)

Kj = 100 + 1000Lj (8)
10Under this logistic growth model, g(e) = e+ re(1− e/K). Both r and K adhere to require-

ments for α: ∂g
∂r = e(1− e/K) > 0, ∂g

∂K = re2/K2 > 0, ∂2g
∂r∂e = 1− 2e

K > 0 and ∂2g
∂K∂e = 2re

K2 > 0.
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In this example, this produces intrinsic growth rates rj ∈ [0.40, 0.68] and carrying
capacities Kj ∈ [100, 177].11 We assume marginal harvest cost is given by the
function c(s) = θ/s, and we use θ = 15 (see White and Costello [39]). Price is set
to unity, and we use δ = .9.

Under this model, the open access equilibrium residual stock is given by: ê = 15
in all patches (see Proposition 1), which is confirmed by this numerical application.
Thus, under this parameterization, the open access residual stock is 8%-15% of
carrying capacity (depending on the patch). Enclosing patches one-by-one, while
the other 12 patches remain open access, generates optimal residual stock level in
the enclosed patch of between 18.7 (patch 1) and 47.1 (patch 7) with an average
of 26.3 (see Lemma 1). It is not immediately obvious which patch to enclose to
achieve different objectives. Using the guidance from Propositions 4-6, patch 12
has the highest self-retention and patch 6 has the largest values of r and K. How-
ever, while patch 7 does not have the largest value of any single parameter, it does
have relatively large values of all parameters. Stock in all non-enclosed patches
increases as a consequences of enclosure (see Proposition 2). In our numerical ex-
ample, the increase in system-wide stock arising from partial enclosure depends on
which patch is enclosed. It ranges from 4.1 (when enclosing patch 1, representing
just a 2% increase in stock) to 38 (when enclosing patch 7, representing a 16%
increase). Consistent with Proposition 3, equilibrium profit in all non-enclosed
patches increases as a consequence of enclosure. As was the case with stock, the
increase in system-wide profit arising from partial enclosure ranges from .2% (when
enclosing patch 1) to 5% (when enclosing patch 6).

In this example, it turns out that for three of the four objectives (enclosed
patch stock, aggregate stock, and enclosed patch profit), patch 7 is the optimal
enclosure. The optimal enclosure to maximize aggregate profit is patch 6. Figure
1 shows the study area and displays the values of D in circles and K (which is
correlated with r in this example) colored shading. From this figure, it is clear
why patches 6 and 7 are good candidates for enclosure.

11We provide in the Appendix all input parameters necessary to replicate all of these results.
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Figure 1: Study region, TURF delineation, and optimal enclosure site (shaded).

3.2 Homogeneous patches
Our second example illustrates the comparative statics of optimal enclosure derived
in Section 2.5. It builds on the first example, but adopts the starting point from
Section 2.4 that all patches are symmetric. For ri and Ki we assume that each
patch has the average value of those parameters from the previous example (so
r = .49, K = 114.2). ForDij we assume that all off-diagonal terms are Q = .06 and
that the diagonal terms are D = .20 (though we also explore values of D ∈ [0, .30]).
We continue to assume δ = 0.9, p = 1, and θ = 15. Together, these assumptions
yield a completely symmetric set of patches. From this starting point, it is equally
desirable to enclose any one of the 13 patches, though doing so only leads to a
small increase in stock (by 1%) and equilibrium profit (by 3%).

Following the theoretical treatment, we numerically calculate the comparative
statics associated with a 10% increase in each parameter in a single patch. We do
so by incrementing a single parameter in patch 1 only, holding all other parameters
at their initial values, and calculating the subsequent effects on the entire system.
Our main focus is on how this change in a parameter will affect the optimal patch
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to enclose under the various objectives spelled out above.

3.2.1 Comparative statics: D11

When the self-retention parameter in patch 1 is increased, it implies that patch
1 is a stronger residual claimant of conservative harvesting behavior than are the
other patches. Thus, consistent with Proposition 4 and with the extended results
in Table 2, we find that patch 1 is the optimal enclosure. This result holds across
all four objectives. When patch 1 is enclosed, a 10% increase in D11 (from 0.2 to
0.22) leads to < 1% increases in stock and profit.

3.2.2 Comparative statics: r1 and K1

The parameters ri and Ki are both special cases of the more general biological
growth parameter αi considered in the analytical model. Thus, the comparative
statics in Section 2.5 apply to both r andK. To maximize enclosed patch stock, we
find that a larger value of r or a larger value of K promotes a patch for enclosure,
provided D > .06, and it relegates a patch for enclosure if D < .06. We obtain a
very similar result for the objective of maximizing enclosed patch profit, though
the cutoff values of D are slightly larger. To maximize aggregate stock we found a
similar result for r (though the cutoff is D = .01), and we found that higher value
of K always promotes a patch for enclosure. Finally, when the goal is to maximize
aggregate profit, we found that higher values of r or K always promote a patch
for enclosure. This result holds for all values of D. Again, in the homogeneous
patch case considered here, we find small elasticities: a 10% increase in r or K in
a patch leads to less than 1% increases in aggregate stock or profit.

3.2.3 Comparative statics: p1

Finally we consider numerically the effects of an increase in price. When p1 is
increased, the optimal patch to enclose depends on the objective being pursued
and on the extent of the spatial externality, via D and Q. If the objective is to
maximize profit in the enclosed patch or aggregate stock, we find an unambiguous
result that higher p promotes a patch for enclosure. If the goal is to maximize
enclosed patch stock, we find a mixed result: when D < .06, we find that higher p
promotes a patch for enclosure. But when D > .06, higher price relegates a patch.
This is consistent with the theoretical finding reported in Table 2 that small D
promotes a patch for enclosure and small Q relegates a patch for enclosure. Finally,
if the objective is to maximize aggregate profit, we find the unambiguous result
that higher p always relegates a patch for enclosure, regardless of the value of D.

Each of these results is consistent with the theoretical results reported in Table
2. While the example is meant to be illustrative only, and not to provide specific
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policy guidance for the Channel Islands, it does demonstrate the ease and utility
with which the model developed here can be applied in a real world context.

4 Conclusion
Partial enclosure of the commons is perhaps the most common institutional ar-
rangement for governing renewable natural resources, yet it has received almost
no attention in the literature. We define it as a circumstance in which part of
a spatially-connected resource is controlled by a sole owner, but the remainder
is competed for by an open access fringe. Because the resource is mobile, each
group imposes an externality on others. We develop a spatial bioeconomic model
to address questions such as: Under what conditions will partial enclosure lead to
aggregate (or individual) welfare gains? What will be the consequences of partial
enclosure on the open access fringe? What are the ecological effects of partial
enclosure? And, for different objectives, in which patches should partial enclosure
be undertaken? The framework allows us to make sharp analytical predictions,
which are then illustrated with a numerical example of a spatially-connected fish-
ery surrounding the Northern Channel Islands.

Perhaps the most salient welfare implication of partial enclosure is that it al-
ways leads to a strict Pareto Improvement over open access. This conclusion holds
whether the agents’ objectives are based solely on profit or are motivated by con-
servation, and it holds even when one assigns partial enclosure haphazardly. We
also explored the environmental (via Dij), biological (via αi), and economic (via
pi) characteristics that make a patch a particularly good candidate for enclosure.
We found that, ceteris paribus, if a patch has higher self-retention, it is a good
candidate for enclosure regardless of one’s objective. Here, there is strong consis-
tency between individual and aggregate welfare and between stock and profit as
objectives. But we found that patches with higher biological parameters (such as
growth rate or patch size) may not be ideal candidates, depending on one’s objec-
tive. In that case, the optimal enclosure location can be reversed depending on
whether one is interested in enclosed patch outcomes or aggregate outcomes. Fi-
nally, economic returns and resource growth have potentially opposite comparative
effects.

Overall, these findings suggest that partial enclosure of the commons is a po-
tentially valuable (though second best) institutional arrangement with positive
economic and environmental consequences. Our comparative results emphasize
that optimal siting of enclosures are often consistent between individual and so-
cietal objectives and between conservation and profit motives. But the analysis
also illuminates interesting tensions where the optimal siting of partial enclosure
can impact negatively on some agents. In those cases, policy interventions such as
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monetary transfers may be designed to remove these tensions.
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5 Appendix

Proof of Lemma 1
The result follows immediately from the first order conditions.

Proof of Lemma 2
By the first order condition in any period t, open access optimal residual stock levels are inde-
pendent of all stock levels (the state vector) in that same period. The same result holds for the
optimal residual stock level of the enclosed patch. Let patch j be enclosed. When the optimal
residual stock level is positive, the optimality condition is necessary and sufficient. The term on
the left hand side of this condition reflects the marginal contribution of residual stock to current
period payoff, and is independent of xt by inspection. The derivative of the payoff function in
period t + 1 depends on the period t + 1 state, but is independent of the period t state. Since
we know that an interior solution satisfies ējt < x̄jt and using Expression 2, x̄jt+1 is a function
of ējt but not of x̄jt. Therefore, the term on the right hand side in the first order condition is
independent of x̄jt, and the period t problem of the sole owner has state independent control.

Second, we must prove that optimal residual stock levels are time independent. Again, since
economic returns are independent of time, open access optimal residual stock levels are time
independent. Now, regarding patch j, we just proved that ējt is independent of x̄jt. This implies
that a change in stock in the next period affects the payoff function in t+1 only through the term
relating to x̄jt+1. Since biological growth, dispersal, and economic returns are time-independent,
the optimal choice, ējt, is also time-independent.

Proof of Proposition 2
Let êi denote residual stock in patch i when all patches are open access and let ei denote residual
stock in patch i when patch j is enclosed, but all other patches i are open access. First, note
that êi = ei for i 6= j (because pi = ci(êi) = ci(ei)). For patch j, the residual stock under
open access is pj − cj(êj) = 0. But under enclosure, residual stock in j is given by the FOC:
pj − cj(ēj) = δDjj [pj − cj(x̄j)] gē(ēj , αj). The right hand side of this expression is > 0, thus
pj − cj(ēj) > 0, so ēj > êj . The difference in patch i stock in the enclosed case minus the open
access case is simply Djigj(ēj)−Djigj(êj). Because ge > 0, stock is higher in all patches i such
that Dji > 0 and is unchanged in all patches i such that Dji = 0.

Proof of Proposition 3
Without loss of generality, let patch j be enclosed. If patch j chooses the open access residual
stock level, then all patches are indifferent to the enclosure. But if patch j chooses a different
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residual stock level, then patch j must do so to increase her profit. The proof to Proposition 2
shows that patch j chooses a residual stock larger than the open access level, so patch j must be
better off under the enclosure. Again the proof to Proposition 2 shows that if Dji > 0, then patch
i receives a higher stock, and is thus better off under the enclosure. Instead, if Dji = 0, then
patch i stock is unchanged under the enclosure, and thus patch i is indifferent to the enclosure.

Proof of Corollary 1
Follows immediately from the evolution rule of the stock levels.

Proof of Lemma 3
Applying the implicit function theorem to the first order condition gives the relevant total deriva-
tives:

dēj
dDj

= −
δgē(ej , αj)

[
pj − cj(x̄j)−Djjc

′
j(x̄j) · g(ēj , αj)

]
SOC

dēj
dpj

= 1− δDjjgē(ēj , αj)
SOC

dēj
dαj

= −
δDjj

[
−gē(ēj , αj) · gα(ēj , αj)c′j(x̄j)Djj + (pj − cj(x̄j)) gēα(ēj , αj)

]
SOC

with SOC = c′j(ēj) + δDjj

[
−Djjc

′
j(x̄j)

(
gēj (ēj , αj)

)2 + (pj − cj(x̄j)) gēj ēj (ēj , αj)
]
< 0, which is

the second order condition. The numerators of the fraction in the expressions of dēj
dDjj

and dēj
dαj

are unambiguously non-negative. Therefore, dēj
dDjj

≥ 0 and dēj
dαj
≥ 0. Finally, by the first order

condition for ēj , the numerator of dējdpj
is non-negative, thus dēj

dpj
≤ 0.

Proof of the claim in Section 2.4
First, let us assume that patch j is enclosed while all other patches are under open access. Now,
for i 6= j, we have :

x̄j = Djjg (ēj , αj) +
N∑
k 6=j

Dkjg (ek, αk) ; xi = Djig (ēj , αj) +
N∑
k 6=j

Dkig (ek, αk)

If enclosing patch j yields the highest value of the aggregate stock level, the following inequality
is satisfied :

x̄j +
N∑
l 6=j

xl ≥ max

x̄1 +
N∑
k=2

xk; . . . ; x̄N +
N∑
l 6=N

xl


Let us assume that this inequality holds. We are going to compare the expression of aggregate
stock levels when patch j is enclosed and when another patch (say i) is enclosed (assuming in both
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cases that all other patches remain under open access). We obtain the equivalent inequalities :

Djjg (ēj , αj) +
N∑
k 6=j

Dkjg (ek, αk) +
N∑
l 6=j

Djlg (ēj , αj) +
N∑
k 6=j

Dklg (ek, αk)


> Diig (ēi, αi) +

N∑
k 6=i

Dkig (ek, αk) +
N∑
l 6=i

Dilg (ēi, αi) +
N∑
k 6=i

Dklg (ek, αk)


⇔ g (ēj , αj) +

N∑
l 6=j

g (el, αl) > g (ēi, αi) +
N∑
l 6=i

g (el, αl)

⇔ g (ēj , αj) + g (ei, αi) > g (ēi, αi) + g (ej , αj)
⇔ g (ēj , αj)− g (ej , αj) > g (ēi, αi)− g (ei, αi)

Setup of proofs to Propositions 4-6
Without loss of generality, we will assume that a single parameter is elevated in patch 1 and we
explore the consequences of enclosing patch 1 or patch 2. We indicate the enclosed patch by
placing a bar over its relevant variables (x̄, ê, ᾱ, D̂ and p̂). We indicate an open access patch
(which may have an elevated parameter) without a bar, e.g. x. Finally, we must also account
for the other N − 2 patches 3, 4, ..., N which neither have elevated parameters nor are enclosed.
We denote the representative patch with a tilde, e.g. x̃. Prior to any change in parameters, the
three equations of motion are given by:

x̄ = Dg(ē, ᾱ) + (N − 1)Qg(e, α) (9)
x = [D + (N − 2)Q] g(e, α) +Qg(ē, ᾱ) (10)
x̃ = [D + (N − 2)Q] g(e, α) +Qg(ē, ᾱ) (11)

By Lemma 3, the optimal residual stock is time-independent, which implies that the profit
expressions are given by :

Π̄ = p̄(x0 − ē)−
∫ x0

ē

c(s)ds+ δ

1− δ

[
p̄(x̄− ē)−

∫ x̄

ē

c(s)ds
]

(12)

Π = p(x0 − e)−
∫ x0

e

c(s)ds+ δ

1− δ

[
p(x− e)−

∫ x

e

c(s)ds
]

(13)

Π̃ = p̃(x0 − ẽ)−
∫ x0

ẽ

c(s)ds+ δ

1− δ

[
p̃(x̃− ẽ)−

∫ x̃

ẽ

c(s)ds
]

(14)

where x0 is the initial stock level. We examine comparative statics for three parameters (D, α,
and p). For any parameter θ ∈ {D,α, p}, total differentiation gives the expressions in Table 3.

To determine whether it is advantageous to enclose patch 1 (the patch with the elevated
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Table 3: Comparative statics
Enclosed Profit Stock # patches

1 1: dΠ̄
dθ̄

= ∂Π̄
∂θ̄

1: dx̄
dθ̄

= ∂x̄
∂ē

∂ē
∂θ̄

+ ∂x̄
∂θ̄

1

2: dΠ
dθ̄

= ∂Π
∂ē

∂ē
∂θ̄

+ ∂Π
∂θ̄

2: dx
dθ̄

= ∂x
∂ē

∂ē
∂θ̄

+ ∂x
∂θ̄

N − 1

2 1: dΠ
dθ = ∂Π

∂e
∂e
∂θ + ∂Π

∂ē
∂ē
∂θ + ∂Π

∂θ 1: dx
dθ = ∂x

∂e
∂e
∂θ + ∂x

∂ē
∂ē
∂θ + ∂x

∂θ 1

2: dΠ̄
dθ = ∂Π̄

∂e
∂e
∂θ + ∂Π̄

∂θ 2: dx̄
dθ = ∂x̄

∂e
∂e
∂θ + ∂x̄

∂ē
∂ē
∂θ + ∂x̄

∂θ 1

k: dΠ̃
dθ = ∂Π̃

∂e
∂e
∂θ + ∂Π̃

∂ē
∂ē
∂θ + ∂Π̃

∂θ k: dx̃
dθ = ∂x̃

∂e
∂e
∂θ + ∂x̃

∂ē
∂ē
∂θ + ∂x̃

∂θ N − 2

parameter) or patch 2 (a patch without the elevated parameter), we compute the differences:

Enclosed Stock: ∆1(θ) ≡ dx̄

dθ̄
− dx̄

dθ
(15)

Aggregate Stock: ∆2(θ) ≡ dx̄

dθ̄
+ (N − 1)dx

dθ̄
−
(
dx̄

dθ
+ dx

dθ
+ (N − 2)dx̃

dθ

)
(16)

Enclosed Profit: ∆3(θ) ≡ dΠ̄
dθ̄
− dΠ̄
dθ

(17)

Aggregate Profit: ∆4(θ) ≡ dΠ̄
dθ̄

+ (N − 1)dΠ
dθ̄
−
(
dΠ̄
dθ

+ dΠ
dθ

+ (N − 2)dΠ̃
dθ

)
(18)

And we can use the total derivative calculations in the table 3 to re-write Equations 15-18 as
partial derivatives. For example, ∆3(θ) = ∂Π̄

∂θ̄
− ∂Π̄

∂e
∂e
∂θ + ∂Π̄

∂θ .
Depending on the parameter being examined, many of these partial derivative terms are

zero. For example, price in an open access patch has no direct influence on an enclosed patch
stock, so ∂x̄

∂p = 0. All of the terms in the following table equal zero:

Table 4: Conditions
D α p

Enclosed Stock ∂e
∂D ,

∂ē
∂D ,

∂x̄
∂D

∂e
∂α

∂x̄
∂p̄ ,

∂x̄
∂p ,

∂ē
∂p ,
(
∂e
∂p

)
Aggregate Stock ∂e

∂D ,
∂ē
∂D ,

∂x̄
∂D ,

∂x
∂D̄
, ∂x̃∂D

∂e
∂α ,
(
∂ē
∂α

)
,
(
∂x̄
∂α

)
∂x̄
∂p̄ ,

∂x̄
∂p ,

∂ē
∂p ,
(
∂e
∂p

)
, ∂x∂p̄ ,

∂x
∂p ,

∂x̃
∂p

Enclosed Profit ∂e
∂D ,

∂Π̄
∂D

∂e
∂α

∂Π̄
∂p

Aggregate Profit ∂e
∂D ,

∂Π̄
∂D ,

∂ē
∂D ,

∂Π
∂D̄

∂e
∂α ,
(
∂ē
∂α

)
,
(
∂x̄
∂α

)
∂Π̄
∂p ,

∂Π
∂p̄ ,

∂Π̃
∂p ,

∂ē
∂p
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The parenthetical terms (e.g. ∂e
∂p ) equal zero only if = 0. We will make extensive use of

Table 4 in the proofs that follow. For each of the four objectives (enclosed stock, aggregate
stock, enclosed profit, aggregate profit) and for each of the three parameters (D, α, and p) we
analyze the effects of enclosing patch 1 minus patch 2. This difference is given in Equations
15-18.

Proof of Proposition 4 (self-retention, D)
1. Enclosed patch stock

Adopting the conditions in Table 4, the difference 15 is ∆1(D) = dx̄
dD̄

> 0.

2. Aggregate stock
Adopting the conditions in Table 4, the difference 16 is:

∆2(D) = ∂ē

∂D̄

(
∂x̄

∂ē
+ (N − 1)∂x

∂ē

)
+ ∂x̄

∂D̄
− ∂x

∂D
= ∂ē

∂D̄

(
∂x̄

∂ē
+ (N − 1)∂x

∂ē

)
+ g(ē, ᾱ)− g(e, α)

Each of these terms is positive since the growth rate function is increasing and ē > e and
ᾱ = α (because in this case the variable of interest is D), so ∆2(D) > 0.

3. Enclosed patch profit
Adopting the conditions in Table 4, the difference 17 is ∆3(D) = dΠ̄

dD̄
> 0.

4. Aggregate profit
Adopting the conditions in Table 4, the difference 18 is:

∆4(D) = ∂Π̄
∂D̄
− ∂Π
∂D

+ (N − 1)∂Π
∂ē

∂ē

∂D̄
.

First, note that the last term is always positive. Now, regarding the first term, we have :

∂Π̄
∂D̄
− ∂Π
∂D

= [p− c(x̄)]g(ē, ᾱ)− [p− c(x)]g(e, α)

Note that if c′ = 0, this term is (p − c)[g(ē, ᾱ) − g(e, α)] > 0 since g is increasing and
ē > e. This implies that ∆4(D) > 0. If c′ < 0, because ge > 0, a sufficient condition for
this term being positive is x̄ > x. The difference between Equations 9 and 10 is:

x̄− x = (D −Q) [g(ē, ᾱ)− g(e, α)]

If D ≥ Q then the term is positive and ∆4(D) > 0.

Proof of Proposition 5 (biological growth, α)
We will use the following notations for the derivatives in the remainder of this appendix: ge =
ge(e, α), gē = ge(ē, ᾱ), gα = gα(e, α), gᾱ = gα(ē, ᾱ), and gē,ᾱ = geα(ēᾱ).

1. Enclosed patch stock
Adopting the conditions in Table 4 the difference 15 is:

∆1(α) = ∂x̄

∂ē

(
∂ē

∂ᾱ
− ∂ē

∂α

)
︸ ︷︷ ︸

≡A

+
(
∂x̄

∂ᾱ
− ∂x̄

∂α

)
. (19)
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First note that if c′ = 0, ∂x̄
∂α = ∂ē

∂α = 0 and ∆1(α) > 0. If c′ < 0, then using Equation 9,
we have ∂x̄

∂ᾱ −
∂x̄
∂α = Dgᾱ − Qgα. This term is positive provided D ≥ Q, and is negative

for sufficiently small D. The other parenthetical term involves analyzing

∂ē

∂ᾱ
=

δD
(
gêc
′(x̄) ∂x̄∂ᾱ − [p− c(x̄)]gēᾱ

)
SOC

> 0 (20)

∂ē

∂α
=

δD
(
gêc
′(x̄) ∂x̄∂α

)
SOC

> 0 (21)

The denominator of both terms is the second order condition, which is negative. Sub-
tracting the expressions gives:

∂ē

∂ᾱ
− ∂ē

∂α
=
δD
(
gēc
′(x̄)( ∂x̄∂ᾱ −

∂x̄
∂α )− [p− c(x̄)]gēᾱ

)
SOC

(22)

Because gēᾱ > 0, a sufficient condition for this term being positive is D ≥ Q. Instead,
suppose D = 0. In that case, term A = 0 and ∂x̄

∂ᾱ = 0. The entire expression is negative.
By a continuity argument, this implies that ∆1(α) < 0 for sufficiently small values of D.
To summarize, if = 0, we have ∆1(α) > 0; if < 0 then if D ≥ Q, we have ∆1(α) > 0, and
if D sufficiently small, we have ∆1(α) < 0.

2. Aggregate stock
Adopting the conditions in Table 4, the difference 16 is:

∆2(α) = ∂x̄

∂ē

∂ē

∂ᾱ
+ ∂x̄

∂ᾱ
+ (N − 1)

(
∂x

∂ē

∂ē

∂ᾱ
+ ∂x

∂ᾱ

)
−

[
∂x

∂ē

∂ē

∂ᾱ
+ ∂x

∂α
+ ∂x̄

∂ē

∂ē

∂α
+ ∂x̄

∂α
+ (N − 2)

(
∂x̃

∂ē

∂ē

∂α
+ ∂x̃

∂α

)]
We use the fact that ∂x

∂ē = ∂x̃
∂ē to rewrite ∆2(α):

∆2(α) =
(
∂x̄

∂ē
+ (N − 1)∂x

∂ē

)
︸ ︷︷ ︸

>0

(
∂ē

∂ᾱ
− ∂ē

∂α

)
︸ ︷︷ ︸

A

+(N −2)
(
∂x

∂ᾱ
− ∂x̃

∂α

)
+ ∂x̄

∂ᾱ
− ∂x̄

∂α
+ ∂x

∂ᾱ
− ∂x

∂α

First note that the last term composed by the derivatives of stocks (w.r.t α) are unam-
biguously positive since it involves analyzing Equations 9 and 10 as follows:

∂x̄

∂ᾱ
− ∂x̄

∂α
+ ∂x

∂ᾱ
− ∂x

∂α
= (D +Q) (gᾱ − gα) > 0.

Then the other parenthetical term involves analyzing Equations 9 and 11 such that: ∂x
∂ᾱ −

∂x̃
∂α = Q (gᾱ − gα). We now provide sufficient conditions that ensure that term A is
positive, which would enable us to conclude that ∆2(α) is positive. First, note that if
c′ = 0, ∂x̄

∂α = ∂ē
∂α = 0, then the difference ∆2(α) is unambiguously positive. If c′ < 0,

then the difference ∆2(α) is positive provided D ≥ Q or D = 0 which, by a continuity
argument, enables to conclude that ∆2(α) > 0 for sufficiently small value of D.

3. Enclosed patch profit
Adopting the conditions in Table 4, the difference 17 is:

∆3(α) = dΠ̄
dᾱ
− ∂Π̄
∂α

= δ

1− δ (p− c(x̄))
(
∂x̄

∂ᾱ
− ∂x̄

∂α

)
= δ

1− δ (p− c(x̄)) (Dgᾱ −Qgα)
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First note that if c′ = 0 then ∂x̄
∂α = 0 and ∆3(α) is unambiguously positive. If c′ < 0, then

this term is positive provided D ≥ Q, and is negative for sufficiently small D.
4. Aggregate profit

Adopting the conditions in Table 4, the difference 18 is:

∆4(α) = ∂Π̄
∂ᾱ

+ (N − 1)
(
∂Π
∂ē

+ ∂ē

∂α
+ ∂Π
∂ᾱ

)
−

[
∂Π
∂ē

∂ē

∂α
+ ∂Π
∂α

+ ∂Π̄
∂α

+ (N − 2)
(
∂Π̃
∂e

∂e

∂α
+ ∂Π̃
∂ē

∂ē

∂α
+ ∂Π̃
∂α

)]
We use the fact that ∂Π

∂ē = ∂Π̃
∂ē to rewrite ∆4(α):

∆4(α) = (N − 1)∂Π
∂ē

(
∂ē

∂ᾱ
− ∂ē

∂α

)
︸ ︷︷ ︸

A

+(N − 2)
(
∂Π
∂ᾱ
− ∂Π̃
∂α

)
︸ ︷︷ ︸

=(p−c(x))Q(gᾱ−gα)>0

+∂Π̄
∂ᾱ
− ∂Π̄
∂α

+ ∂Π
∂ᾱ
− ∂Π
∂α

The last term composed by the derivatives of profits (with respect to α) is unambiguously
positive since it involves analyzing Equations 12 and 13 as follows:

∂Π̄
∂ᾱ
− ∂Π̄
∂α

+ ∂Π
∂ᾱ
− ∂Π
∂α

= (gᾱ − gα) [D (p− c(x̄)) +Q (p− c(x))] > 0.

As previously, a sufficient condition to sign this difference depends on the term A. First,
note that if c′(·) = 0, the difference ∆4(α) is unambiguously positive. If c′(·) < 0, if
D ≥ Q then ∆4(α) > 0. Instead, suppose D = 0. In that case, the term A is equal to
zero and ∆4(α) > 0 which, by a continuity argument, enables to conclude that ∆4(α) > 0
for sufficiently small value of D.

Proof of Proposition 6 (price, p)
1. Enclosed patch stock

Adopting the conditions in Table 4 the difference 15 is:

∆1(p) = ∂x̄

∂ē

∂ē

∂p̄
− ∂x̄

∂e

∂e

∂p
(23)

First note that if c′ = 0, ∂e∂p = ∂ē
∂p̄ = 0 so ∆1(p) = 0. If c′(·) < 0, then the difference can

be written:
∆1(p) = Dgē

∂ē

∂p̄
−Qge

∂e

∂p
(24)

This term is positive for sufficiently small D and negative for sufficiently small Q.
2. Aggregate stock

Adopting the conditions in Table 4, the difference 16 is:

∆2(p) = ∂x̄

∂ē

∂ē

∂p̄
+ ∂x̄

∂p̄
+ (N − 1)

(
∂x

∂ē

∂ē

∂p̄
+ ∂x

∂p̄

)
−

[
∂x

∂e

∂e

∂p
+ ∂x

∂ē

∂ē

∂p
+ ∂x

∂p
+ ∂x̄

∂ē

∂ē

∂p
+ ∂x̄

∂e

∂e

∂p
+ ∂x̄

∂p
+ (N − 2)

(
∂x̃

∂ē

∂ē

∂p
+ ∂x̃

∂e

∂e

∂p
+ ∂x̃

∂p

)]
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We use the facts that ∂x̄
∂e = ∂x̃

∂e and ∂x̃
∂ē = ∂x

∂ē to rewrite ∆2(p):

∆2(p) = [D + (N − 1)Q]
[
gē

(
∂ē

∂p̄
− ∂ē

∂p

)
− ge

∂e

∂p

]
.

If c′(·) = 0 then the first order condition for the enclosed patch is 1 = δDgē, which is
independent of the market price in patch 1 in any case. This implies that ∂ē

∂p̄ = ∂ē
∂p = 0.

Thus, if c′(·) = 0, ∆2(p) = 0.
Instead if c′(·) < 0 we have

∂ē

∂p̄
= 1− δDgē

SOC
< 0 ; ∂ē

∂p
=
δDQgēgec

′(x̄) ∂e∂p
SOC

< 0

Because gē < ge (as ᾱ = α and gee < 0), we have: gē
(
∂ē
∂p̄ −

∂ē
∂p

)
− ge ∂e∂p > gē

(
∂ē
∂p̄ −

∂e
∂p

)
.

When D gets close to zero, ∂ē
∂p̄ −

∂e
∂p gets close to zero, which by a continuity argument,

implies that gē
(
∂ē
∂p̄ −

∂ē
∂p

)
− ge ∂e∂p ≥ 0 (and ∆2(p) > 0) for sufficiently small values of D.

3. Enclosed patch profit
Adopting the conditions in Table 4 the difference 17 is:

∆3(p) = ∂Π̄
∂p̄
− ∂Π̄
∂e

∂e

∂p
(25)

The first term is positive. If c′(·) = 0, ∂e∂p = 0, so ∆3(p) > 0. If c′(·) < 0, then the second
term, equal to (p−c(x̄))Qge

c′(e) , is negative. Thus the difference ∆3(p) > 0.

4. Aggregate profit
Adopting the conditions in Table 4, the difference 18 is:

∆4(p) = ∂Π̄
∂p̄

+ (N − 1)∂Π
∂ē

∂ē

∂p̄

−
[
∂Π
∂e

∂e

∂p
+ ∂Π
∂ē

∂ē

∂p
+ ∂Π
∂p

+ ∂Π̄
∂e

∂e

∂p
+ ∂Π̄
∂ē

∂ē

∂p
+ (N − 2)

(
∂Π̃
∂e

∂e

∂p
+ ∂Π̃
∂ē

∂ē

∂p

)]
Which can be rewritten:

∆4(p) = x0 − ē+ δ

1− δ (x̄− ē) + (N − 1) δ

1− δ (p− c(x))Qgē
∂ē

∂p̄

−
[
x0 − e+ δ

1− δ (x− e) + δ

1− δ (p− c(x))Dge
∂e

∂p

]
−

[
δ

1− δ (p− c(x))Qgē
∂ē

∂p
+ δ

1− δ (p− c(x̄))Qge
∂e

∂p

]
− (N − 2)

(
δ

1− δ (p− c(x̃))Qge
∂e

∂p
+ δ

1− δ (p− c(x̃))Qgē
∂ē

∂p

)
If c′(·) = 0, then we use the facts that ∂ē

∂p̄ = ∂ē
∂p = ∂e

∂p = 0, which imply that
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∆4(p) = e− ē+ δ (x̄− ē− x+ e)
1− δ = (e− ē)

1− δ + δ (x̄− x)
1− δ

= (e− ē)
1− δ + δ (D −Q) [g(ē, ᾱ)− g(e, α)]

1− δ .

The first conclusion is that ∆4(p) < 0 as long as Q ≥ D or δ is small. Indeed, when
Q ≥ D, the second term in the expression of ∆4(p) is negative, and the first term is
obviously negative as ē > e. Now, when δ is small, the sign of ∆4(p) is given by that of
the following expression:
e − ē + δ(D − Q) [g(ē, ᾱ)− g(e, α)] = (ē − e)

(
−1 + δ(D−Q)[g(ē,ᾱ)−g(e,α)]

ē−e

)
. When δ → 0,

we have ē → e: in this case, this implies that g(ē,ᾱ)−g(e,α)
ē−e → ge > 0 (and finite). All

together, when δ converges to zero, we have: −1 + δ(D−Q)[g(ē,ᾱ)−g(e,α)]
ē−e → −1 < 0. Thus,

a continuity argument enables us to conclude that ∆4(p) ≤ 0 for sufficiently small values
of δ.
Moreover, we know that e = 0, which implies that g(e, α) = g(0, α) = 0 and x̄ = Dg(ē, ᾱ).
Plugging these expressions into the above equality and simplifying, we obtain:

∆4(p) = − ē

1− δ + δ (D −Q) g(ē, ᾱ)
1− δ = 1

1− δ

[
−ē+ δ

(
1− Q

D

)
x̄

]
.

If Q gets close to zero and δ gets close to one, then the sign of ∆4(p) is that of −ē + x̄,
which is positive. By a continuity argument, we conclude that ∆4(p) ≥ 0 for sufficiently
small values of Q and large values of δ.

Input parameters for numerical example from Section 3.1
D =

.728 .013 .039 .008 .002 .005 .016 .018 .011 .005 .002 .003 .002

.008 .697 0.056 .007 .002 .005 .025 .026 .013 .004 .002 .004 .002

.010 .025 .722 .007 .002 .005 .028 .026 .013 .005 .002 .004 .002

.004 .015 .039 .717 .002 .006 .020 .018 .014 .007 .001 .004 .002

.002 .010 .022 .003 .765 .004 .013 .015 .006 .005 .001 .003 .001

.002 .009 .013 .002 .001 .777 .015 .015 .006 .003 .002 .004 .001

.003 .004 .008 .003 .001 .003 .803 .010 .005 .004 .002 .004 .001

.009 .016 .046 .008 .002 .005 .015 .717 .015 .007 .003 .003 .003

.005 .015 .044 .005 .002 .004 .013 .019 .731 .006 .003 .002 .002

.008 .014 .032 .011 .002 .005 .014 .020 .021 .711 .007 .002 .002

.005 .007 .013 .004 .001 .003 .010 .012 .013 .009 .772 .002 .001

.003 .002 .001 .001 .000 .000 .003 .004 .007 .002 .001 .825 .001

.004 .003 .003 .001 .000 .001 .003 .005 .004 .001 .001 .001 .824


r = [.4297; .4254; .4329; .4980; .5034; .6769; .6460; .4000; .4353; .5070; .4758; .4787; .4000]

K = [100.88; 100.65; 101.08; 109.60; 110.68; 176.67; 160.53; 100.00; 101.25; 111.46; 105.75; 106.19; 100.00]

δ = 0.90, p = 1.0, θ = 15.
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Input parameters for numerical example from Section 3.2
Q = .06, D = .20 though we also examine values of D ∈ [0, .3], r = .485, K = 114.21, δ = 0.90,
p = 1.0, θ = 15.
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