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Abstract

This paper provides general theorems about the control that maxi-
mizes the mixed Bentham-Rawls (MBR) criterion for intergenerational
justice, which was introduced in Alvarez-Cuadrado and Long (2009). We
establish su¢ cient concavity conditions for a candidate trajectory to be
optimal and unique. We also show that the state variable is monotonic un-
der rather weak conditions. And �nally we prove that inequality among
generations, captured by the gap between the poorest and the richest
generations, is lower when optimization is performed under the MBR cri-
terion rather than under the discounted utilitarian criterion. The two
last properties are in line with some aspects of the rawlsian just savings
principle.
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1 Introduction

This article gets back to Rawls�just savings principle (Rawls, 1971, 1999) and
to its link with the recent mixed Bentham-Rawls (MBR) intertemporal choice
criterion (Long 2006, Alvarez-Cuadrado & Long, 2009, Tol, 2013). In a stan-
dard dynamic model, we establish general properties of the control path that
is deemed optimal according to the MBR criterion; those properties turns out
to be, to some extent, consistent with some intuitions about intergenerationnal
justice expressed via Rawls�just savings principle.
The general challenge is to think about what we owe to future generations1 .

One possible answer, the just savings principle suggested by Rawls and various
scholars working in this �eld, derives from the social contract approach initiated
by Grotius, Hobbes, Locke, Rousseau and Kant. It can be described as the sav-
ing rule that an impartial "observer" would deem fair. It advocates a two-phase
logic (Gosseries, 2001, Wall, 2003). During a �rst phase, each generation must
save in order to transfer to the next generation more than what it has inherited
from the previous generations; the purpose of the accumulation phase is to build
up economic conditions so that at least basic freedoms are in place and minimal
stability to just institutions can be ensured2 . Then follows a cruise phase where
the principle of equality that prevails recalls the egalitarian-maximin logic, but
it is subordinate to the need for an initial take-o¤ from the condition of under-
development3 . Qualitatively, the picture is clear; but when it comes to more
operational details, the just saving principle has proven somewhat elusive4 . Its
implications are far too vague and require further precisions. Unfortunately,
Rawls did not suggest a precise criterion that would embody his just saving
clause5 .

1Since the famous UN Brundtland Report (1987), "Our Common Future", and its echo in
the political sphere, it is a question that is experiencing a heightened interest; but philosophers
- and also economists - have thought about it for a long time.

2From Rawls� contractuarian perspective, "the just savings principle can be regarded as
an understanding between generations to carry their fair share of the burden of realizing and
preserving a just society." And he goes on to say "The [just] savings principle represents an
interpretation, arrived at in the original position, of the previously accepted natural duty to
uphold and to further just institutions. In this case the ethical problem is that of agreeing
on a path over time which treats all generations justly during the whole course of a society�s
history." (pp. 288-289).

3"Eventually, once just institutions are �rmly established and all the basic liberties e¤ec-
tively realized, the net accumulation asked for falls to zero. At this point a society meets its
duty of justice by maintaining just institutions and preserving their material base." (Rawls,
1999).

4Several intertemporal social choice criteria used by economists have the ability to prescribe
this two-phase logic, though they also imply dramatically di¤erent saving rates. This is the
case for the "distance-to-bliss" criterion (Ramsey, 1928) and the usual discounted utilitarian
criterion (Koopmans, 1960).

5He just hoped that certain extremes will be excluded. One such extreme is typically
given by the optimal saving path derived from the undiscounted utilitarian criterion that, by
construction, generally demands exorbitant sacri�ces to the �rst generations. Indeed, when
investment has a positive return, a sacri�ce by the current generation often appears worthwhile
when it is pitted against the in�nite sum of undiscounted advantages it will produce on
subsequent generations. Under plausible speci�cations of the economy it may yield optimal
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The MBR criterion has been suggested as a possibility, where the impartial
observer would be a �Dynasty with Concern for the Least Advantaged�(Long,
2006). And indeed, its application in particular contexts abide by a two-phase
logic when the initial conditions are too low, that is to say below the modi�ed
golden-rule (Long, 2006, Alvarez-Cuadrado & Long, 2009). But, beyond those
contexts, could this dynamic pattern be a robust property of the optimal path
according the MBR criterion? And, since this property also characterize the
optimal control for the widely used discounted utilitarian criterion, what is the
further argument in favour of the MBR criterion as a superior embodiment of
the just saving principle?
This note is organized as follows. The next section presents a simple, but

general, dynamic economy that encompasses various applications, and it also ex-
plains the MBR criterion. Section 3 establishes and discusses general dynamic
properties of the MBR exploitation path; and it also shows that inequalities,
captured by the di¤erence of utility between the richest and the poorest gener-
ations, is generically lower under the MBR criterion than under the discounted
utilitarian criterion. Section 4 concludes.

2 A dynamic framework and the MBR criterion

Time is continuous and the horizon is in�nite. The economy has in�nitely many
successive generations. Each generation is made of one representative individual
who lives for just one instant. Let c(t) be the control variable, or consumption
�ow, that a¤ects generation t; and the stock variable is x(t). This stock evolves
according to the di¤erential equation:�

dx(t)
dt � _x (t) = f(x (t) ; c (t)) ;

x (0) = x0 given.
(1)

An admissible path fc (:) ; x (:)g is a solution to (1) such that x (t) � 0 and
c(t) � 0;8t.
When consuming c(t); generation t enjoys a standard of living, U(t) �

U (c (t)) ; where U(:) is an increasing function6 . To any path c (:) let c =
inft fc (:)g stand for the lowest consumption level, and let U = U (c) be the
corresponding standard of living.
This framework can accommodate two standard interpretations: i) the Ramsey-

Solow optimal growth model, that is obtained as a particular case when x is the
capital stock and the dynamics are _x = f(x; c) = F (x) � c � �x; where F (:)
is a production function such that F (x) � 0; F 0 (x) � 0; F 00 (x) < 0; and � > 0
is the rate of depreciation, ii) the basic renewable resource model, when x is a
natural resource that evolves according to the equation _x = f(x; c) = G (x)� c;
where G (:) is a concave function that reaches a maximum at some xM , called
the maximum sustainable yield.

savings amounting to more than 60 percent of gross national product for the �rst generations.
6Well-being experienced by generation t is only but one interpretation that could be given

to function U(:).
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To any admissible path, the MBR criterion associates the following value:

Wmbr (c (:)) � �U + (1� �)
1Z
t=0

e�rt U (c (t)) dt ; 0 < � < 1 : (2)

Wmbr is a weighted average of the maximin criterion and the usual dis-
counted utilitarian criterion. It can be seen as a procedural compromise between
the concern for the worse-o¤ (the larger �; the stronger this concern) and the
concern for all generations with a discount for the position on the temporal axis.
Some properties of the MBR criterion are exposed and discussed at length

in Alvarez-Cuadrado & Long (2009). From a deontologic point of view, let us
recall brie�y that Wmbr meets the following requirements: completeness, strong
Pareto, non-dictatorship of the future and non-dictatorship of the present7 .
These properties are important, but we do not dwell on here; they are widely
discussed elsewhere (Alvarez-Cuadrado & Long, 2009), and in any case it is a
consequentialist point of view that interests us in this article. To be more pre-
cise, the object of interest in the present paper is not the expression (2) itself;
rather we shall focus on the properties of the solution to the MBR problem, i.e.
the trajectory fc (:) ; x (:)g that maximizes (2) subject to (1).

3 Properties of optimal trajectories under the
MBR criterion

The economic framework presented above features a minimal structure. Yet,
even this basic structure already implies the following property on the endoge-
nous path induced by the MBR criterion.

Theorem 1 (Monotonicity) Let the pair
�
cmbr(:); xmbr(:)

	
be a solution to the

MBR problem. Assume that cmbr(:) is not constant and xmbr(:) is unique. Then
xmbr(:) is monotonic for t 2 [0;+1[.

Proof. Appendix A.
Note that Theorem 1 does not rest on demanding assumptions on the fun-

damentals of the economy given by functions f(:; :) and U(:): Regarding f(:; :),
neither di¤erentiability, nor continuity, nor Lipschitzian assumptions are really
necessary. Those kinds of assumptions help to guarantee the existence a solu-
tion to the di¤erential equation (1), but they are su¢ cient and not necessary.
We don�t need either any concavity assumptions on U (:) or any transversality
conditions. Such conditions are helpful to guarantee that candidate paths are
indeed optimal, but they are only su¢ cient, hence too strong. Theorem 1 sheds

7An intertemporal social function is complete if it can rank any admissible paths. It satis�es
Strong Pareto if it is increasing in any Ut � U (c (t)) : It is a dictatorship of the present when
its ranking is not sensitive to the utility of generations located after some date T . It is a
dictatorship of the future when its ranking is a¤ected only by the utility of generations that
are in�nitely distant (see Chichilnisky, 1996).

4



light more directly on the existence of a possible structure on endogenous vari-
ables whereby the optimal stock x cannot be cyclical, or increasing and then
decreasing and vice versa. Actually, this theorem is a generalisation of Hartl�s
result (1987) about the monotonicity of the state trajectories in autonomous
control problems8 .
Nevertheless, su¢ cient conditions can be identi�ed to ensure the MBR prob-

lem is strictly concave and therefore its solution is unique. For the sake of com-
pleteness, they are given in Theorem 2 below.

Theorem 2 Let
�
cmbr(:); xmbr(:); cmbr

�
be a candidate optimal solution, with

the associated time path of shadow prices
�
 mbr(:); �mbr(:)

�
. Assume that all

the necessary conditions are satis�ed. Assume that the following transversality
conditions are satis�ed:

lim
t!1

 mbr(t)xmbr(t) = 0 ; (3)

and
lim
t!1

 mbr(t) � 0 : (4)

Consider any alternative feasible plan
�
c#(:); x#(:); c#

�
. For any (c; x; c), we

de�ne the following Lagrangian using the shadow prices of the candidate optimal
path:

L(c; x; c;  mbr; �mbr; t) � e�rt [r�U(c) + (1� �)U(c)]
+ mbrf(x; c) + �mbr (c� c) :

Let V mbr and V # be the payo¤s obtained by carrying the plans
�
cmbr(:); xmbr(:); cmbr

�
and

�
c#(:); x#(:); c#

�
respectively, i.e.

V mbr =

Z 1

0

e�rt
�
r�U(cmbr) + (1� �)U(cmbr(t))

�
dt ;

V # =

Z 1

0

e�rt
�
r�U(c#) + (1� �)U(c#(t))

�
dt :

Assume that L is concave in (c; x; c). Then V mbr � V #. In the case where L
is strictly concave in (c; x; c), then the optimal solution is unique.
Proof. Appendix B.

Added to the general necessary conditions already given in Alvarez-Cuadrado
& Long (2009) (see also Appendix B of the present paper), the above theorem
about su¢ cient conditions completes the "user kit" of the MBR criterion.

8Hartl (1987) deals with the discounted utilitarian criterion that, strictly speaking, is a
particular case of expression (2) only when � = 0; a value that is ruled out in principle.
However this value is forbidden simply to ensure that MBR escapes the dictatorship of the
present. But nothing in the proof of Theorem 1 is compromised when � = 0. The proof just
becomes simpler.
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Next, let us assume in this dynamic framework that x is a productive asset,
in the following sense:

Assumption 1 For any pair of points in time (ta; tb), where ta < tb, and any
non-negative initial stock level a; let c�(:) be an admissible trajectory in the time
interval [ta; tb] ; i.e.�

_x (t) = f(x (t) ; c� (t)) ;8t 2 [ta; tb] ;
x (ta) = a; x(t) � 0;8t 2 [ta; tb] ;

and let b be the resulting stock size at time tb,

b � x(ta) +

Z tb

ta

f(x (t) ; c� (t))dt :

Then, for any " > 0, there exists a feasible path c"(:) in the time interval [ta; tb]
such that

c"(t) � c�(t) for all t 2 [ta; tb] ;
and �

_x (t) = f(x (t) ; c" (t)) ;8t 2 [ta; tb] ;
x (ta) = a+ "; x(tb) = b; x(t) � 0;8t 2 [ta; tb] :

Essentially, this assumption states that if the initial stock gets larger, at
least as much consumption as before becomes feasible over an interval, even if
at the end of this interval the �nal stock is unchanged. Under this assumption,
we can give some information about the occurence of the poorest generations
over the time line.

Theorem 3 Let the pair
�
cmbr(:); xmbr(:)

	
be a solution to the MBR problem.

Assume that cmbr(:) is not constant and xmbr(:) is unique. If the stock x is a
productive asset (Assumption 1) the following properties hold:

1. when xmbr(:) is non-constant and weakly-increasing over time, then the
poorest generations cannot be at the end of the sequence,

2. when xmbr(:) is non-constant, and weakly-decreasing over time, then the
poorest generations cannot be at the beginning of the sequence.

Proof. Appendix C.
In the perspective of appraising the ability of the MBR path to capture the

two-phase logic of the just saving principle, it is the �rst item in the above
theorem, where the stock of the ressource is weakly-increasing, that is relevant.
A pattern where the stock increases over time opens the possibility for future
generations to enjoy higher levels of consumption. But, a priori, a trajectory
where the lowest levels of consumption are in the far future cannot be excluded
either, for it is admissible. However, Theorem 3 establishes that this possiblity
does not characterize a solution to the MBR problem.
The next results are helpful for comparing the MBR path with the discounted

utilitarian (DU) path.
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Corollary 1 Let
�
cmbr(:); xmbr(:)

	
be the unique solution starting from some

x0. Suppose xmbr(:) is non-constant and weakly increasing. Then there exists a
�nite time T such that after time T the solution (xmbr(:); cmbr(:)) is the solution
of the discounted utilitarian program

max
c

Z 1

T

u(c)e�rtdt

s.t. _x = f(x; c); x(T ) = xmbrT , with x � 0 and c � 0. In particular cmbr(t) >
cmbr for all t � T .

Proof. This result follows from Claim 1 of Theorem 3. The complete proof is
in Appendix D.
The above result is a generalization of Proposition 3, item (ii), established in

Alvarez-Cuadrado & Long (2009) for a speci�c renewable resource model. It is
the information provided by Theorem 3 that makes this generalization possible.

Theorem 4 Under the assumptions of Corollary 1, if f(x:c) is concave in (x; c)
and u(c) is concave then after time T the time path cmbr(:) is weakly increasing
provided that fc < 0 and fxc � 0.

Proof. Appendix E.
The above theorem is not only indicative of the behavior of the optimal

consumption after some date T . It will also prove useful to establish that the
upper level of consumption under the MBR criterion is achieved at in�nity,
i.e. supt

�
cmbr (:)

	
= limt!1 cmbr (t) ; and to compare the MBR path with the

discounted utilitarian path.
In view of this, consider now the following de�nition.

De�nition 1 Let

I (c (:)) = sup
t
fc (:)g � inf

t
fc (:)g = c� c

be the size of consumptions distribution in trajectory c (:).

One may expect that inequality, as measured by I (c (:)), is lower under the
MBR criterion than under the discounted utilitarian criterion. This conjecture
has to be ascertained. Clearly cmbr � cdu; by construction. But what about
cmbr and cdu?

Theorem 5 Let the assumptions underlying Corollary 1 and Theorem 4 jointly
hold. Let cdu(:) be the solution to the discounted utilitarian program. Suppose
xmbr (:) is weakly increasing. Then

I
�
cmbr (:)

�
� I

�
cdu (:)

�
;

i.e. inequality among generations, as captured by I (c (:)), is lower under the
MBR criterion than under the discounted utilitarian criterion.
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Proof. Appendix F.
Admittedly, I (c (:)) is coarse indicator of inequality. But it is relevant here,

when comparing cmbr (:) and cdu (:), because, when xmbr (:) is weakly increasing,
both trajectories share the same upper-level of consumption c; as can be deduced
from Corollary 1: Therefore, inequalities between generations that take place in
the intervals c � cmbr and c � cdu could be very di¤erent, but at least the
poorest are less far from the richest under the MBR scenario. The MBR path
outperforms the DU path in the perspective to capture the rawlsian idea that
inequalities can be justi�ed when they bene�t the most disadvantaged people.

4 Conclusion

This paper provides general theorems in respect of the control that maximizes
the MBR intertemporal choice function. The main results are as follows: i) the
state variable is shown to be monotonic under rather weak conditions, ii) we
establish su¢ cient concavity conditions for a candidate trajectory to be optimal
and unique, iii) and we prove that inequality among generations, captured by
the gap between the poorest and the richest generations, is lower when optimiza-
tion is performed under the MBR criterion rather than under the discounted
utilitarian criterion.
Those results are helpful to give a content to Rawls�(1971) just saving prin-

ciple. The vagueness of this principle, in its implications, allows multiple inter-
pretations. Several intertemporal social choice criteria, familiar to economists,
could be contenders as incarnations of this principle. How are we to choose
among them? According to Rawls, our �nal conception of justice should estab-
lish what he calls a �re�ective equilibrium�� an acceptable balance between,
on the one hand, deontological principles of justice and, on the other hand the
consequences of applying those general principles to speci�c cases.
Following this methodology, we could then scrutinize various social welfare

criteria and check, from a consequentialist point of view, their compliance to at
least two aspects of the just saving principle: i) the necessity of a take-o¤ phase
if the initial conditions are two low, ii) that inequalities, if any, should bene�t
the less advantaged generations.
It is well know that the maximin criterion, sometimes erroneously attributed

to Rawls, violates condition i). And Rawls also rejected the undiscounted utili-
tarian criterion. This criterion can be consistent with point i) but, by construc-
tion, it generally demands exorbitant sacri�ces to the �rst generations, therefore
it does not comply with point ii). From this perspective, it may be argued that
the practice of discounting future advantages, prescribed under Koopmans�logic
(1960), is not so unfair after all. This is so because productive investment fea-
tures an in-built bia s in favour of the future that can be redressed by granting
more importance to earlier generations. This is a standard argument, sometimes
supported, sometimes challenged by economists who are working on climate
change (see for instance the synthesis given by Dasgupta, 2008, or the critical
assessment of Roemer, 2011, in particular Section 3 of his paper, or Section 5.1
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in Asheim, 2010). Although it appears unfair from a deontological perspective
(a dictatorship of the present in the words of Chichilnisky, 1996), the discounted
utilitarian criterion might be a not so bad candidate to embody the just savings
principle. But, clearly, our comparison of the optimal trajectories under the DU
and the MBR criterion (Theorem 5) does not support this conclusion.
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A Proof of Theorem 1

The proof is by contradiction. Assume that xmbr(:) is not monotonic. Then,
there exists a date � 2 [0;+1[ and a strictly positive number � such that:

xmbr(�) = xmbr(� + �);

with xmbr(:) not constant on the interval [� ; � + �] :
Now de�ne a new admissible path fec (:) ; ex (:)g with control and stable vari-

ables constructed as follows:� ec (t) = cmbr(t); ex (t) = xmbr(t); 8t 2 [0; � ] ;ec (t) = cmbr(t+ �); ex (t) = xmbr(t+ �); 8t 2 ]� ;+1[ : (5)

By construction the pair fec (:) ; ex (:)g is admissible. And ec (:) can also be made
di¤erent from cmbr(:) over the interval ]� ;+1[ : Indeed, if on the contrary ec (t) =
cmbr(t + �) = cmbr(t); 8t 2 ]� ;+1[, then by de�nition cmbr(t) is periodic -
and not constant by assumption - on ]� ;+1[. In such a case one can simply
choose two alternative numbers � 0; �0 such that

�
� 0; � 0 + �0

�
@ [� ; � + �] and

construct the above alternative path fec (:) ; ex (:)g using date � 0 and �0 instead of
� and �: Clearly fec (:) ; ex (:)g is di¤erent from �

cmbr(:); xmbr(:)
	
on the interval

]� 0;+1[ : To simplify, let us just consider that fec (:) ; ex (:)g is di¤erent from�
cmbr(:); xmbr(:)

	
on the interval ]� ;+1[ :

Also, by construction,

cmbr = inf
t

�
cmbr (:)

	
� ec = inf

t
fec (:)g ;

10



or equivalently, using obvious notations

Umbr � eU :

By de�nition cmbr(:) is the unique optimal solution, and necessarily:

Wmbr
�
cmbr(:)

�
> Wmbr (ec (:)) ;

or,

�Umbr + (1� �)
1Z
t=0

e�rtU
�
cmbr(t)

�
dt > � eU + (1� �) 1Z

t=0

e�rtU (ec (t)) dt:
Hence,

1Z
t=0

e�rtU
�
cmbr(t)

�
dt >

1Z
t=0

e�rtU (ec (t)) dt ;
1Z
t=�

e�rtU
�
cmbr(t)

�
dt >

1Z
t=�

e�rtU (ec (t)) dt ;
1Z
t=�

e�rtU
�
cmbr(t)

�
dt >

1Z
t=�

e�rtU
�
cmbr(t+ �)

�
dt; (6)

where the second line obtains because the two controls coincide until date � ,
and the last line makes use of (5). Notice that:

1Z
t=�

e�rtU
�
cmbr(t+ �)

�
dt = er�

1Z
t=�+�

e�rtU
�
cmbr(t)

�
dt:

With this expression, inequality (6) can be written:

1Z
t=�

e�rtU
�
cmbr(t)

�
dt > er�

1Z
t=�+�

e�rtU
�
cmbr(t)

�
dt;

consequently:

�+�Z
t=�

e�rtU
�
cmbr(t)

�
dt >

�
er� � 1

� 1Z
t=�+�

e�rtU
�
cmbr(t)

�
dt: (7)

Next de�ne a new admissible path fc (:) ; x (:)g with control and stable vari-
able now constructed as follows:�

c (t) = cmbr(t); x (t) = xmbr(t); 8t 2 [0; � + �] ;
c (t) = cmbr(t� �); x (t) = xmbr(t� �); 8t 2 ]� + �;+1[ : (8)
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Again, by construction the pair fc (:) ; x (:)g is admissible and di¤erent from�
cmbr(:); xmbr(:)

	
: Also by construction,

cmbr = inf
t

�
cmbr (:)

	
= c = inf

t
fc (:)g ;

or
Umbr = U : (9)

We now compare the value of Wmbr(:) for fc (:) ; x (:)g and
�
cmbr(:); xmbr(:)

	
:

Using de�nition (8), equality (9) and inequality (7):

Wmbr(c (:))�Wmbr(cmbr(:)) =

1Z
t=0

e�rtU (c (t)) dt�
1Z
t=0

e�rtU
�
cmbr(t)

�
dt

=

1Z
t=�+�

e�rtU
�
cmbr(t� �)

�
dt�

1Z
t=�+�

e�rtU
�
cmbr(t)

�
dt

= e�r�
1Z
t=�

e�rtU
�
cmbr(t)

�
dt�

1Z
t=�+�

e�rtU
�
cmbr(t)

�
dt

= e�r�

24�+�Z
t=�

e�rtU
�
cmbr(t)

�
dt�

�
er� � 1

� 1Z
t=�+�

e�rtU
�
cmbr(t)

�
dt

35 > 0;
a contradiction.

B Necessary conditions, su¢ cient conditions and
uniqueness

B.1 Necessary conditions

First, recall the following identity

1 =

Z 1

0

re�rtdt :

Thus, a solution to the MBR problem is a triple
�
cmbr(:); xmbr(:); cmbr

�
that

maximizes Z 1

0

e�rt [r�U(c) + (1� �)U(c(t))] dt ;

subject to
_x = f(x (t) ; c (t)) ;

c(t)� c � 0 :

12



Following the approach of Hestenes9 , we treat c as a �control parameter�, i.e.
a variable that,once chosen, remains constant over the time horizon [0;1[. We
de�ne the Lagragian:

L = e�rt [r�U(c) + (1� �)U(c(t))] +  (t)f(x (t) ; c (t)) + �(t) (c(t)� c)

The necessary conditions are:
@L

@c
= 0 ;

_ = �@L
@x

;

_x =
@L

@ 
;

�(t) � 0; c(t)� c � 0; �(t) (c(t)� c) = 0 ;
@

@c

Z 1

0

e�rt [r�U(c) + (1� �)U(c(t))] dt+ @

@c

Z 1

0

�(t) (c(t)� c) dt = 0 : (10)

The latter condition reduces to

�U 0(c)�
Z 1

0

�(t)dt = 0

Adn the transversality conditions are:

lim
t!1

 (t) � 0; (11)

lim
t!1

 (t)x (t) = 0 : (12)

B.2 Su¢ cient conditions and uniqueness

Our proof is similar to that of Takayama (1986).
For simplicity, we use the following notations

Lmbr = L(cmbr; xmbr; cmbr;  mbr; �mbr; t) ;

and

L# = L(c#; x#; c#;  mbr; �mbr; t) ; (note:  mbr; �mbr are not typos here),

where the "mbr" over the multipliers indicates that we use the same path�
 mbr(:); �mbr(:)

�
for both Lmbr and L#.

Since �mbr
�
cmbr � cmbr

�
= 0,

V mbr =

Z 1

0

h
Lmbr �  mbr _xmbr

i
dt

9See, for example, Takayama, A. (1986), Mathematical Economics, second edition, Cam-
bridge University Press, Cambridge and New York
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Now, since �mbr � 0 and since, by feasibility, c#�c# � 0, we have �mbr
�
c# � c#

�
�

0, hence

V # =

Z 1

0

h
L# �  mbr _x# � �mbr

�
c# � c#

�i
dt �

Z 1

0

h
L# �  mbr _x#

i
dt

Then

V mbr � V # � �
Z 1

0

h
 mbr _xmbr �  mbr _x#

i
dt

+

Z 1

0

�
Lmbr � L#

�
dt

Now, under the assumption that L is concave

Lmbr � L# �
�
xmbr � x#

� @Lmbr
@x

+ (cmbr � c#)@L
mbr

@c
+
�
cmbr � c#

� @Lmbr
@c

with strict inequality if L is strictly concave.
Now from the necessary conditions @Lmbr

@c = 0 , @L
mbr

@x = � _ mbr:Then

Lmbr � L# � � _ mbr(xmbr � x#) +
�
cmbr � c#

� @Lmbr
@c

Therefore

V mbr � V # � �
Z 1

0

h
_ 
mbr

(xmbr � x#) +  mbr _xmbr �  mbr _x#
i
dt+

+
�
cmbr � c#

� Z 1

0

�
@Lmbr

@c

�
dt

Since
R1
0

h
@Lmbr

@c

i
dt = 0 by condition (10), we obtain

V mbr�V # � � lim
t!1

h
 mbr(t)xmbr(t)�  mbr(0)xmbr(0)

i
+ lim
t!1

h
 mbr(t)x#(t)�  mbr(0)x#(0)

i
Using the �xed initial condition, xmbr0 = x#0 = x0, the above inequality becomes

V mbr � V # � lim
t!1

 mbr(t)
�
x#(t)� xmbr(t)

�
which is positive as can be deduced from the transversality conditions (11) and
(12) and because x#(t) � 0. With a strictly concave L, we obtain uniqueness.

C Proof of Theorem 3

Claim 1. Recall that, if cmbr(:) and xmbr(:) are a solution to the MBR problem
where cmbr(:) is not constant and xmbr(:) is unique, then xmbr(:) is monotonic
(by Theorem 1).

14



In order to prove Claim 1, assume on the contrary that xmbr(:) is non-
constant and weakly increasing over time but the poorest generation(s) is/are
at the end of the sequence. Let t > 0 be the earliest date at which the lowest
level of consumption is achieved. That is,

t � inf
t

�
t : cmbr(t0) = cmbr;8t0 � t

	
Thus, after t, the consumption path is constant.
Then, there exists a number d > 0 such that cmbr

�
t� d

�
> cmbr

�
t
�
= cmbr

and cmbr
�
t� d0

�
> cmbr for all d0 2 (0; d).

At time t�d, the stock is xmbr(t�d) � xmbr(t). Since the stock xmbr(t�d)
can sustain a stream of consumption with an initial phase of length d with
c > cmbr

�
t
�
followed by a phase of constant consumption cmbr, it follows from

Assumption 1 that starting from time t with stock level xmbr(t) � xmbr(t�d); it
is possible to sustain a stream of consumption c�� with an initial phase

�
t; t+ d

�
such that c��(t) > cmbr(t) and for all t 2

�
t; t+ d

�
, and c��(t) = cmbr for all

t > t+ d.
To summarize, the following alternative sequence c�� (:) is admissible:�

c�� (t) = cmbr(t); x�� (t) = xmbr(t); 8t 2
�
0; t
�
;

c�� (t) � cmbr(t� d); 8t 2
�
t;+1

�
;with equality for all t 2

�
t+ d;+1

�
(13)

and, by construction, consumptions under the two possibilities are identical
except over the interval

�
t; t+ d

�
where one has c�� (t) > cmbr(t):

Comparing the value of the MBR criterion under the optimal path and the
alternative path, one has:

Wmbr(cmbr(:))�Wmbr(c��(:)) =

1Z
t=0

e�rtU
�
cmbr(t)

�
dt�

1Z
t=0

e�rtU (c��(t)) dt ;

�
t+dZ
t=t

e�rt
�
U
�
cmbr(t)

�
� U (c�(t� d))

�| {z } dt
<0

< 0 ;

a contradiction.
Claim 2. The proof follows a logic similar to that of Claim 1. Assume on

the contrary that xmbr(:) is non-constant and weakly decreasing over time, but
the poorest generation(s) is/are at the beginning of the sequence. Suppose there
exists an initial interval

�
0; t
�
, with cmbr(t) = cmbr, and there exists � > 0 such

that cmbr (t) > cmbr
�
t
�
;8t 2

�
t; t+ �

�
, and cmbr(t) � cmbr(t) for all t � t+ �:

Since xmbr(0) � xmbr(t), it follows from Assumption 1 that we can construct
a time path c��(t) such that c��(t) = cmbr(t + t), for all t � 0: Comparing the
value of the MBR criterion under the optimal path and the alternative path,
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one has:

Wmbr(cmbr(:))�Wmbr(c��(:)) =

1Z
t=0

e�rtfU
�
cmbr(t)

�
� Ugdt�

1Z
t=0

e�rtfU (c��(t))� Ugdt < 0

=

1Z
t=t

e�rtfU
�
cmbr(t)

�
� Ugdt�

1Z
�=0

e�r�fU
�
cmbr(� + t)

�
� Ugd�

=

1Z
t=t

e�rtfU
�
cmbr(t)

�
� Ugdt�

1Z
t=t

e�r(t�t)fU
�
cmbr(t)

�
� Ugdt < 0

a contradiction.

D Proof of Corollary 1

Recall the necessary conditions of optimality for the MBR problem given in
appendix B. They are:

i)
@L

@c
= 0 ;

, e�rt(1� �)U 0(c(t)) +  (t)f2(x (t) ; c (t)) + �(t) = 0

ii) _ = �@L
@x

;

, _ = � (t)f1(x (t) ; c (t))

iii) _x =
@L

@ 
;

, _x = f(x (t) ; c (t))

iv) �(t) � 0; c(t)� c � 0; �(t) (c(t)� c) = 0

v)
@

@c

Z 1

0

e�rt [r�U(c) + (1� �)U(c(t))] dt+ @

@c

Z 1

0

�(t) (c(t)� c) dt = 0
(14)

The latter condition reduces to

�U 0(c)�
Z 1

0

�(t)dt = 0

Now, consider that c(t) > c; 8t � T; (and the stock achieved at date T is
x (T ) = xmbrT ): From condition iv) one can deduce �(t) = 0;8t � T; and the
necessary conditions boils down to:

e�rt(1� �)U 0(c(t)) +  (t)f2(x (t) ; c (t)) = 0
_ = � (t)f1(x (t) ; c (t))
_x = f(x (t) ; c (t))

�U 0(c) =

Z T

0

�(t)dt
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De�ne the new variable � (t) =  (t)=(1 � �): Then the three �rst conditions
above can be rewritten as:

e�rtU 0(c(t)) + � (t) f2(x (t) ; c (t)) = 0 ;

_� = �� (t) f1(x (t) ; c (t)) ;
_x = f(x (t) ; c (t)) ;

8t � T: The proof is completed once one observes that these expressions are
the necessary conditions associated to the discounted utilitarian program that
starts at date T with initial condition x (T ) = xmbrT , and where the Hamiltonian
is:

H = e�rtU(c(t)) + � (t) f(x (t) ; c (t)):

E Proof of Theorem 4

From date T the program is utilitarian, and the value function V (x) is concave
because f(x:c) is concave in (x; c) and U(c) is concave.10 Also, because V (x) is
concave, then it is continuous and di¤erentiable almost everywhere (see Nico-
lescu & Person, 2006), that is the set of points x where the left hand and the
right hand derivatives of V (x), which we can denote by V 0L(x) and V

0
R(x); are

di¤erent is at most countable.
Take any two points of time, t1 and t2, such that t2 > t1. Then x(t2) � x(t1)

(by assumption). First we analyze the case where V (:) is di¤erentiable. And
after we consider the case where the right hand and left hand derivative of V (:)
do not coïncide.
Because x(t2) � x(t1), then V 0(x2) � V 0(x1) (by concavity of V (:)). We

now show that c(t2) � c(t1). For simplicity of notation, we write xi and ci for
x(ti) and c(ti), for i = 1; 2:
The HJB equation is

rV (x) = max
c
[U(c) + V 0(x)f(x; c)] :

Then, the �rst order condition for the right-hand-side is:

U 0(c) + V 0(x)fc(x; c) = 0 : (15)

Therefore:
U 0(c2) = �fc(x2; c2)V 0(x2) ;

and

U 0(c1) = �fc(x1; c1)V 0(x1)
= �fc(x2; c2)V 0(x1) + V 0(x1) [fc(x2; c2)� fc(x1; c1)]
= �fc(x2; c2)V 0(x1) + V 0(x1) f[fc(x2; c2)� fc(x1; c2)] + [fc(x1; c2)� fc(x1; c1)]g

10See Long (1979) for a proof of the concavity of V (x).
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Then
[U 0(c1)� U 0(c2)] + V 0(x1) [fc(x1; c1)� fc(x1; c2)] =

�fc(x2; c2) [V 0(x1)� V 0(x2)] + V 0(x1) [fc(x2; c2)� fc(x1; c2)] (16)

The right-hand side is positive or zero, because fc(x2; c2)� fc(x1; c2) � 0 (this
follows from fxc � 0). Therefore the left hand side must be positive or zero.
This implies that c2 � c1. (Suppose c2 < c1; then the left hand side would be
negative, since the functions U 0 and fc are decreasing in c; therefore we would
have a contradiction).
In order to complete the proof, let us see what happens if V is not di¤eren-

tiable at x1 or at x2? Then in equation (15), V 0(x) may correspond to the left
hand or the right hand derivative, V 0L(x) and V

0
R(x). The proof is still valid,

because if x2 � x1 then the concavity of V implies

min fV 0L(x1); V 0R(x1)g � max fV 0L(x2); V 0R(x2)g

Then the RHS of (16) is still positive or zero, regardlless of which derivatives
we used. Any two paths of c (:) that di¤er from each other at isolated points in
time are essentially identical, and the resulting path of the state variable is not
a¤ected.

F Proof of Theorem 5

First observe that
lim
t!1

cdu (t) = cdu ;

because, under the assumptions of Theorem 4, consumption is weakly increasing
over time. And, as usual, the value of the steady state does not depend on the
initial condition.
Observe also that, by virtue of Corollary 1:

lim
t!1

cmbr (t) = cdu:

We can also establish that

lim
t!1

cmbr (t) = cmbr :

Indeed assume on the contrary that the more advantaged generations occur in
�nite time at some date T 0: Necessarily this date occurs before the date T at
which the MBR trajectory has increasing consumptions (Theorem 4). Then
cmbr (T 0) > limt!1 cmbr (t) and there exists a number d such that:

cmbr (t) � lim
t!1

cmbr (t) 8t 2 [T 0; T 0 + d[ :

18



Then consider the alternative consumption trajectory:8<: bc (t) = cmbr(t); 8t 2 [0; T [ ;bc (t) = cmbr(T 0 + t); 8t 2 [T; T + d[ ;bc (t) = cmbr(t); 8t 2 [T + d;+1[ :

This trajectory is admissible and has the same consumptions as the one that
maximizes the MBR criterion, except over a �nite interval where generations
enjoy a higher consumption than under the MBR solution, a contradiction.
Therefore we have established limt!1 cmbr (t) = cmbr : To summarize:

cmbr = cdu :

Since by de�nition it is also true that cmbr � cdu; necessarily:

I
�
cmbr (:)

�
= cmbr � cmbr � I

�
cdu (:)

�
= cdu � cdu :

QED.

19



Documents de Recherche parus en 2013 

 
 

DR n°2013 - 01 :  Estelle MIDLER, Charles FIGUIÈRES, Marc WILLINGER 

«Choice overload, coordination and inequality: threehurdles to the 

effectiveness of the compensationmechanism?» 

 

DR n°2013 - 02 :  Charles FIGUIÈRES, Ngo Van LONGY, Mabel TIDBALL  

«The MBR Intertemporal Choice Criterion and Rawls’ Just Savings 

Principle» 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contact : 

 

Stéphane MUSSARD  :     mussard@lameta.univ-montp1.fr 

 



 

 

 


