

Estimation of tropical forest biomass with image texture of radar images

Isabelle Champion, Jean-Pierre da Costa, Adrien Godineau, Ludovic Villard,

Pascale Dubois-Fernandez, Thuy Le Toan

► To cite this version:

Isabelle Champion, Jean-Pierre da Costa, Adrien Godineau, Ludovic Villard, Pascale Dubois-Fernandez, et al.. Estimation of tropical forest biomass with image texture of radar images. 32. EARSel Symposium, May 2012, Mykonos, Greece. n.p. hal-02810299

HAL Id: hal-02810299 https://hal.inrae.fr/hal-02810299

Submitted on 6 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Estimation of tropical forest biomass using image texture of radar images

Isabelle Champion¹ J P Da Costa², A Godineau², L Villard³, P Dubois-Fernandez⁴ and T Le Toan³

¹ INRA, UR1263 EPHYSE, Villenave D'Ornon, France
²CNRS, UMR 5218 IMS, Talence, Fr.
³CESBIO, CNRS-CNES- Univ P Sabatier, Toulouse, France
⁴ONERA, Salon de Provence - BA 701, France

PARACOU experimental site in French Guiana

SAR acquisitions with the airborne ONERA SETHI system

fully polarimetric images at X, L, P band

From Dubois-Fernandez et al., 2010

Sinnaman

Paracou

Paracou: 15 measured experimental plots

- untouched control areas (6 plots)
- commercially logged plots (3 plots)

commercially logged plots with thinning by poisongirdling (3 plots)

commercially logged plots with selective felling of noncommercial trees for fuel and thinning by poison-girdling (3 plots)

6 control plots

3 sets of 3 plot each with various thinning levels

	Plot	Biomass (t.ha ⁻¹)
Undisturbed forests	P1	389.8
	P6	466.0
	P11	428.5
	P13	436.5
	P14	434.4
	P15	438.3
Logged plots (Treatment 1)	P2	351.3
	P7	409.1
	P9	359.6
Logged plots (Treatment 2)	P3	308.0
	P5	310.7
	P10	318.0
Logged plots (Treatment 3)	P4	297.2
	P8	266.7
	P12	318.2

Biomass ranges from 266.7 to 466 t.ha⁻¹

Estimation of tropical forest biomass using image texture of radar images. Champion I. *et al.* 32nd EARSeL Symposium, Mykonos island, Greece, 21-25 May 2012.

Paracou

100x100 pixels windows are selected in the SAR image

2 sets of texture features are calculated for each window:

 features characterizing the basckscattering distribution (variance, skewness, kurtosis, entropy)

• features based on the grey level co-occurrence matrix or GLCM (variance, energy, contrast, entropy...) (*Haralick, 1973*) (*pairs of horizontal joined pixels, 32 levels*)

P band, HV SAR image

Texture features vs plot biomass regressionsfrom σ° distribution• from GLCM

Texture features vs plot biomass regressionsfrom σ° distribution• from GLCM

Texture features:

1) from σ° distribution kurtosis R²=0.28

2) From GLCM contrast R²=0.20

Correlation is poor: dispersion is large with respect to biomass range

Structural characteristics of plots

Plots are settled in a hilly landscape

Topographical classes for the 6 control plots *P1, P6, P11, P13, P14, P15*

Bottomlands Hillsides Hilltops

From F. Morneau, 2007

Edaphic constraints influence floristic composition and stand structure

Plots were characterized by their trunk dbh class distributions

Block 1 small P1, intermediate P2, big: P3, P8

Block 2 intermediate and big P6, P7, P10, P12

Block 3 small P4, P5, P9, P11

From Gourlet-Fleury et al., 2004

Edaphic constraints influences canopy structure of plots

Plots are characterized by their trunk dbh distribution

Block 1 small P1, intermediate P2, big: P3, P8

Block 3 small P4, P5, P9/P11

Block 2 intermediate and big P6, P7, P10, P12

S small, I intermediate, B big, IB intermediate and big

13, 14, 15

S1, I2, B3, S5, IB6, IB7, B8, S9, IB10, S11, IB12 and unknown

Texture features (GLCM)

- : entropy vs variance
- S small, I intermediate, IG, intermediate and big, B big
- No structural information P13, P14, P15

Texture features (GLCM): entropy vs variance

B big **IB**, intermediate and big,

differ from

S small and **I** intermediate, with P13, P14, P15

Apart P3..

Texture indicator: GLCM-based

H

· · · · ·

Ŧ

Retrieving biomass accounting for structural classes

		Group "big", NdF=4		Group "small", NdF=8	
		R ²	t-student	R ²	t-student
Local statistics	variance	0.10	0.75	0.26	1.55
	skewness	0.54	2.40*	0.06	0.67
	kurtosis	0.37	1.72	0.43	2.31**
	entropy	0.44	1.98	0.51	2.72**
Texture from the GLCM	energy	0.50	2.21*	0.66	3.69***
	contrast	0.43	1.93	0.61	3.31**
	entropy	0.48	2.13*	0.64	3.53***
	homog	0.54	2.42*	0.60	3.23**

discrimination of structural classes ?

variation with topography and soil?