Breeding sweet cherries at INRA Bordeaux: from conventional techniques to marker-assisted selection
José Quero-Garcia, José Antonio Campoy, Sophie Castede, Teresa Barreneche, Loick Le Dantec, Bénédicte Wenden, Jacques Joly, Lydie Fouilhaux, Elisabeth Dirlewanger

To cite this version:
José Quero-Garcia, José Antonio Campoy, Sophie Castede, Teresa Barreneche, Loick Le Dantec, et al.. Breeding sweet cherries at INRA Bordeaux: from conventional techniques to marker-assisted selection. 7. International Cherry Symposium, International Society for Horticultural Science (ISHS). INT., Jun 2013, Plasencia, Spain. hal-02810346

HAL Id: hal-02810346
https://hal.inrae.fr/hal-02810346
Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Breeding sweet cherries at INRA-Bordeaux: from conventional techniques to marker-assisted selection

José Quero García (INRA – Bordeaux)
Plan

- First breeding programmes (1968 – 2005) (Raymond Saunier-Jacques Claverie)

- Transition (2000-2005) (Jacques Claverie-Elisabeth Dirlewanger)

- Present (2007- today) (UREF-A3C)
Second breeding programme (1980-2005)

New orientations:
- Introduction of numerous (400) foreign cultivars
- Establishment of experimental networks (A-B) via a collaboration between INRA and CTIFL

New breeding objectives:
- Big fruits (= or > 10 g) and firm fruits (Durofel > 60-65)
- Enlargement of the maturity range
- Yield precocity (3rd year)
- High production potential
Second breeding programme (1980-2005)

STRUCTURE OF THE PROGRAMME

- Year 0: Hybrid production
- Year 1: Nursery
- Year 2: Field planting on own roots
- Years 5-7: Hybrid evaluation
- Years 8-11: Level 1 evaluation: 3 sites/ 2 cl
- Years 12-15: Level 2 evaluation: 10 sites/ 10 cl
Second breeding programme (1980-2005)

HYBRID PRODUCTION TECHNIQUES

- Hand-pollination for controlled crosses, open pollinations
- In-vitro culture for early-maturing hybrids
- Classical stratification
Second breeding programme (1980-2005)

INRA FERCER

INRA FERPRIME

INRA FOLFER

INRA FERTARD
Second breeding programme (1980-2005)

Poster ‘The partnership between INRA and CEP INNOVATION’- Quero-Garcia et al.
<table>
<thead>
<tr>
<th>Variety</th>
<th>Maturity period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primulat®Ferprime</td>
<td>Burlat</td>
</tr>
<tr>
<td>Folfer(COV)</td>
<td>Between Burlat and Summit</td>
</tr>
<tr>
<td>Ferdouce(COV)</td>
<td>Summit</td>
</tr>
<tr>
<td>Fertille(COV)</td>
<td></td>
</tr>
<tr>
<td>Fermina(COV)</td>
<td>Belge</td>
</tr>
<tr>
<td>V3467</td>
<td></td>
</tr>
<tr>
<td>Ferdiva(COV)</td>
<td>Late</td>
</tr>
<tr>
<td>Fertard(COV)</td>
<td></td>
</tr>
</tbody>
</table>
New research programme on rain-induced fruit cracking:

- **Crosses between tolerant** (Regina, Fermina, Ferobri) and **susceptible** varieties (Lapins, Garnet, Brooks...)

- Establishment of a **first genetic map** : Regina x Lapins (125 hybrids) with Prunus SSR markers (Dirlewanger et al., 2004, PNAS 101: 9891-9896)

- Establishment of an original system to study cracking under tunnels
Diversity studies conducted on sweet cherry (Tavaud et al, Heredity 2004) with AFLP and 6 SSR markers:

- Large sample of mazzards and sweet cherry varieties
- Important genetic differentiation between wild materials from West Europe, Romania and Georgia
- Insufficient sample to determine the centers of domestication of sweet cherry. Proximity between wild and cultivated materials due to either gene flow or to domestication and breeding
Present (2007-today)

- 2007-2008: new breeding programme and new scientific project: ‘Adaptation of sweet cherry to climate change’. Two main targets: **phenology-related traits** and **tolerance** to rain-induced fruit **cracking**

- Close relationship with **UEA (Unité Expérimentale Arboricole)**: two sites: Toulenne and Bourran

- **A3C**: 5 researchers, 5 technicians, 1 PhD student, 1 post-doc
Scientific project

GENOMICS
- Development of genomic resources: Unigene - RNAseq
 - Identification of CG: Fonctionnal - Expressionnal
 - Mapping of CG

PHENOMICS
- Search for accurate phenotypic criteria
 - Phenotyping
 - QTL detection: Multi-site trials, Interaction G x E
 - Structure, LD: Association, Genetics
 - Phenotyping/Collections

MODELLING
- Genotyping
 - Climatic data
 - Co-localisation CG-QTL
 - GC Studies
 - Functional analyses
 - qRT PCR-epigenetic variation -transformation

MAS
- Genotype
- Phenotype
 - Ideotypes
Breeding programme

- **Selection criteria:**
 - Fruit weight and fruit firmness
 - Phenology-related traits: chilling requirements, flowering and maturity dates
 - Cracking tolerance
 - Self-fertility
 - Organoleptic and nutritional quality
 - Tolerance to diseases (monilia, aphids)

- **Marker-assisted selection (MAS) strategy**
- **Diversification of genetic resources used**
Marker-assisted selection

- **Plant materials for QTL detection studies:**
 - Regina x Lapins (RxL): 125 inds. (enlarged to 200). Planted in the field on own roots and grafted on Tabel in pots (tunnel system)
 - Regina x Garnet (RxG): 120 inds. on own roots (enlarged to 1300)
 - Fercer x Burlat (FxB): 115 inds. On own roots

- **Genetic maps:**
 - RxL and RxG with the **6000 SNP chip** (RosBREED project). FxB in progress

- **Phenotypic data:**
 - Phenology traits: **6-7 years** for flowering and maturity dates (all progenies); **3 years** for CR on RxG
 - Fruit quality traits (weight, firmness, cracking): **5-7 years** for field data (all progenies) and **3 years** for tunnel data (RxL)
Gb of markers = 728
Coverage = 624cM
1 marker every 0.86 cM

Campoy et al. (2013): PlosONE
QTL detection analyses - Phenology traits

Dirlewanger et al. (2012), Heredity 109: 280-292

R×L
1 2 3 4 5 6 7 8
R1 R2 R3 R4 R5 R6 R7 R8
L1 L2 L3 L4 L5 L6 L7 L8

R×G
R1 G1 R2 G2 R3 G3 R4 G4 R5 G5 R6 G6 R7 G7 R8 G8

Chill requirement Flowering date
Heat requirement Maturity

Poster P23 – Castède et al.
Cracking tolerance evaluation

- **Field**: 100 fruits at maturity → percentage

- **Tunnel**: 100 fruits, counting during 5 days → percentage

4 types analyzed
QTL detection analyses - Fruit quality traits

Dirlewanger et al. (2012), RGC6
Candidate Genes (CGs)

- **Flowering**

 - Poster P18 – Dirlewanger *et al.*

- **Fruit weight:** Collaboration with Amy Iezzoni’s group concerning the **CNR genes** (see next presentation; De Franceschi *et al.*, Molecular Breeding, 2013)

- **Cracking tolerance:** Collaboration to initiate with Herman Silva’s group to map CGs of the biosynthesis pathway of the **cuticle**
Multi-parental analyses (new QTLs; QTL stability; no need to produce large progenies)

- Collaboration with Amy Iezzoni’s group for fruit weight, use of pedigree-based mapping with FlexQTL software (Rosyara et al., 2013, Mol Breed, accepted with revisions): identification of 6 QTLs (3 on LG2, one on LGs 1, 3 and 6)
- Integration of different crosses, including FxB

Fine mapping: development of a large RxG population with 1300 hybrids. Planted in the field in 2013. Used for the validation of a MAS strategy

Environmental stability (QTLxE) studies: multi-site trials implemented within the COST Action: RxL population planted in France, Slovenia, Spain and England. Other populations.
Development of a fine mapping progeny
Establishment of multi-site trials

Bordeaux, France (2001-2002)

Murcia, Spain (2012-2013)

Bordeaux, France (2010-2011)

Maribor, Slovenia (2009-2010 and 2011-2012)
Phenotypic decomposition of complex traits – fruit cracking:

- New studies under tunnel with RxL progeny grafted on MM14
- Analyses of **cell wall composition** of the RxL progeny on-going (collaboration with Dr. Marc Lahaye, INRA Nantes)
- Analyses of the main **metabolites (sugars, acids)** initiated in 2013 in collaboration with Dr. Yves Gibon. Fruits collected from the progenies RxL and FxB. Three replicates per genotype, with three fruits per replicate and three technical replicates.
- Tri-lateral KBBE project (Spain, Germany and France) submitted in 2012 (waiting for answer). Objective: develop new protocols for assessing cracking tolerance taking into account the composite nature of cracking (water transport characteristics and mechanical constitution of exocarp) (Prof. Moritz Knoche)
QTL/CG analyses - Perspectives

- **QTL/CG validation by GWA/association genetics analyses:**
 - First ‘Structure’ studies conducted with 26 SSR markers on 207 varieties (141 landraces and 66 modern varieties) (Mariette et al., 2010, BMC Genetics)
 - Study of DL: rapid decay, in particular in wild accessions (Arumyawat et al. 2012, TGG), promising for future association genetics studies

- Second ‘Structure’ analyses on-going with the 6K SNP chip on 140 varieties (92 landraces, 55 modern varieties). DL analyses not still initiated (Sandra Robert, MSc).

- Genetic resources collection genotyped with a subset of 41 CGs SNPs
QTL/CG analyses - Perspectives

Phenotypic variability of collections:

- Based on 20 phenotypic traits (3 years data): flowering date, maturity date, fruit weight, sugar content, etc.
- 380 accessions, among which 160 belong to the French National Collection.

Flowering and maturity range of the collection:
2 years 380 accessions

Large variability for flowering and maturity dates
Discovery and validation of CGs:

- Transcriptomics: expressional CGs (DGE-RNAseq): ongoing for flowering-related genes
 - 18 cDNA banks: 2 genotypes (Regina and Garnet), 3 stages (endo-dormancy, dormancy-release, eco-dormancy)
 - 12-50 millions read/ 100 bases

- Expressional validation: qRT-PCR (PhD S. Castède, 12 flowering CGs)
Modelling: from phenology data to MAS

Data
- Phenology data
 - Flowering
 - Maturity
- Climatic data
 - Temperature
- QTLs
 - Flowering date
 - Chill requirement
 - Heat requirement
- Molecular data
 - Candidate genes
 - Signaling pathways

Models
1. Flowering and maturity date response to temperature
 - 1 cultivar – 1 site
 - + various sites
2. Flowering and maturity date
 - Wide range of climatic conditions
 - + cultivars and segregating populations
3. Flowering and maturity date
 - Model based on mechanisms
 - Genetic parameters

Outputs
- Analyses of past trends
 - Temperature / Flowering
- Predictions
 - Flowering and Maturity dates
- Predictions
 - Effect of genotype on flowering and maturity dates
 - G*E interaction
Modelling: from phenology data to MAS

Data
- Phenology data
 - Flowering
 - Maturity
- Climatic data
 - Temperature
- QTLs
 - Flowering date
 - Chill requirement
 - Heat requirement
- Molecular data
 - Candidate genes
 - Signaling pathways

Models
1. Flowering and maturity date response to temperature
 - 1 cultivar – 1 site
 + various sites
2. Flowering and maturity date
 - Wide range of climatic conditions
 + cultivars and segregating populations
3. Flowering and maturity date
 - Model based on mechanisms
 - Genetic parameters

Outputs
- Analyses of past trends
 - Temperature / Flowering
- Predictions
 - Flowering and Maturity dates
- Predictions
 - Effect of genotype on flowering and maturity dates
 - G*E interaction
Modelling: from phenology data to MAS

Models

(1)
Flowering and maturity date response to temperature
1 cultivar – 1 site

+ various sites

(2)
Flowering and maturity date
Wide range of climatic conditions

+ cultivars and segregating populations

(3)
Flowering and maturity date
Model based on mechanisms
Genetic parameters

Outputs

• Analyses of past trends
 Temperature / Flowering

• Predictions
 Flowering and Maturity dates

• Predictions
 Effect of genotype on flowering and maturity dates
 G*E interaction

Ideotypes construction

Prediction tests

Allele combinations
Climatic scenarios

Predicted phenotype

Ideotypes
Ideal alleles combination for future climatic conditions

MAS
MAS strategy - Conclusions

- Promising for traits with stable and high-effect QTL: flowering and maturity dates, fruit weight and firmness (problem of negative correlations). Still early for very complex traits such as cracking tolerance.

- Trial to validate a multi-trait strategy: select two sets of 150 inds with best and worst allelic combinations and phenotype them (RxG pop).

- Hybrid production challenge: medium to large sized families, incorporation of genetic diversity.

- Logistic challenge: implement a pipeline. Learn from other experiences (WSU in cherry; other crops, apple, peach...). Which genotyping strategies?
Main objective:

Develop innovative strategies to safeguard European cherry production through active networking by:

- The adaptation of cherry cultivation to climate change
- The implementation of new cultivation practices aimed at promoting sustainable agriculture
- The promotion of high-quality fruits
Acknowledgements

A3C TEAM
VERY LONG LIST OF NATIONAL AND INTERNATIONAL COLLABORATORS!!!!!
THANKS FOR YOUR ATTENTION !!!!!

TIME FOR QUESTIONS!!