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Abstract

Unlike the measure of the area in 2D or of the volume in 3D, the perimeter and the surface are not easily
measurable in a discretized image. In this article we describe a method based on the Crofton formula
to measure those two parameters in a discritized image. The accuracy of the method is discussed and
tested on several known objects. An algorithm based on the run-length encoding of binary objects
is presented and compared to other approaches. An implementation is provided and integrated in the
LabelObject/LabelMap framework contributed earlier by the authors.
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1 Introduction

Surface area and perimeter are widely used parameters describing the size of objects observed in images,
and are commonly used for computing various shape factors. Unlike the area that can be easily measured
by counting pixels belonging to the object, measuring the perimeter is not as straightforward, and naive
methods can lead to huge systematic errors [3, 5]. Usually, the countour of the object is extracted, then its
length is measured. The same approach is usually applied to 3D images: the boundary of the 3D object is
first reconstructed, e.g. by using marching cubes [6], then its surface area is computed by summing area of
individual triangles.

The Crofton method is an alternative method that allows estimating the perimeter of 2D objects, the surface
area of 3D objects, and more generally the (d−1)-dimensional measure of d-dimensional object boundary.
It is based on counting intercept number of the object boundary with a set of isotropic test lines, and provide
an unbiased estimate of the actual perimeter or surface.

The article first recalls the mathematical principles of d-perimeter measures in digital images using the
Crofton method. An efficient implementation based on run-length encoding is then presented. The method
is evaluated on various 2D and 3D synthetic shapes and compared with other methods. The effect on the
roundness shape factor is also investigated.

2 Principles

2.1 Surface area and perimeter estimation

Perimeter measure of 2D objects, surface area measure of 3D objects and more generally (d− 1)-surface
measure of d-dimensional objects can be expressed in a unified formalism by using the Crofton formula.
This formula consists in integrating the intercept number of the object with lines of various orientation and
positions. Its expression in the general form is:

S(d−1)(X) =
d · vd

vd−1

∫
Ld

χ(X ∩L)dL (1)

where X is the structure of interest, vd is the volume of the d-dimensional ball, Ld is the set of all lines in
the d-dimensional space. The above integral is normalised such that the mass of lines hitting the unit ball
equals vd−1, the measure of the unit ball projection on a (d−1)-dimensional plane.

The Euler-Poincaré characteristic χ is equal to number of connected components of the intersection of X
with a line L, or equivalently half the number of intersections of the boundary of X with the line.
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2.2 Crofton formula in discrete images 3

For planar and 3D cases, Equation 1 can be rewritten:

P(X) = π
∫

L2
χ(X ∩L)dL (2)

S(X) = 4
∫

L3
χ(X ∩L)dL (3)

2.2 Crofton formula in discrete images

The Crofton formula can be easily applied to discrete binary images [4, 5]. The integral over lines can be
decomposed into an integral over a finite set of directions and an integral over all the lines parallel to a given
direction.

For the planar case, the perimeter can be estimated by considering horizontal and vertical lines, i.e. two
directions. An alternative is to use the diagonals, resulting in four directions. Perimeter estimate is then
written as:

P(X) ≃ π∑
k

ck

λk
χ(X ∩Lk) (4)

where ck is the discretization weight associated to direction k, λk is the density of discrete lines in direction
k, and Lk is the set of all discrete lines in direction k.

The line density λk may vary according to the directions, due to image resolution or to the use of diagonals.
It is computed as the ratio of the distance between two neighbor pixels with the area associated to a pixel.
When only horizontal and vertical directions are used, associated weights ck equal 1/2. When diagonals are
used, weights are obtained by projecting direction vectors on the unit circle, and by computing the relative
fraction of circle associated to each direction (Fig. 1).

Figure 1: Computation of direction weights for rectangular grids. Left: planar case. Black dots correspond
to pixel centers. Angular regions are computed between direction bisectors. Right: 3D case. The unit sphere
is partitioned into spherical polygons corresponding to each of the 26 oriented directions.

In a similar way, surface area of 3D objects may be estimated using following approximation:

S(X) ≃ 4∑
k

ck

λk
χ(X ∩Lk) (5)
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2.3 Intercepts count in digital images 4

where Lk is the set of 3D discrete lines parallel to direction k, ck the discretization weight associated to 3D
direction k, and λk the density of discrete lines in direction k.

Line densities are computed as for the planar case, by dividing distance of neighbor voxels in direction k
by the volume associated to a single voxel. When surface area is estimated by taking into account the three
main direction in images, associated weights ck equal 1/3. If more directions are considered, the strategy
of Ohser and Mücklich [7] was applied: each direction was projected on the unit sphere, and was used as a
germ for computing Voronoï diagram on the unit sphere. The relative surface area of each spherical domain
was used as weight for the corresponding direction (Fig. 1).

2.3 Intercepts count in digital images

The number of connected components in the intersections of the structure with a discrete line is obtained by
counting the number of intercepts with its boundary. This intercepts count can be efficiently computed by
using the run-length encoding of the binary objects.

The run-length encoding groups all the pixels on the same line in a single element. If the binary object is
compact enough, as it is often the case for connected components, the run-length encoding heavily reduces
the number of elements required to represent the object, compared to the simple pixel representation. Thanks
to the run-length encoding, it is possible to compute the intercepts the binary object line by line, instead of
computing it pixel by pixel.

The data structure used as the input of the algorigthm is a set of all the indexes of the object with their first
element remove – in 3D, this is all the possible (y, z) pairs – to which are associated a list of lines. The lines
are coded as a x position and a length.

The algorithm used to count the intercepts is described in Figure 2.

2.4 Roundness

Roundness is a commom parameter used for comparing shapes independently of their size. It equals the
square root of the "shape factor", or "isoperimetric deficit". It should be noted that although widely used,
these parameters present many drawbacks: high sensitivity to perimeter measure, value possibly out of the
expected bounds, similar values for different shapes[8]...

We defined here the roundness as the ratio of equivalent d-perimeter over the measured d-perimeter. The
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2.4 Roundness 5

Algorithm 2.1: COUNTINTERCEPT(O)

comment: intercept count

ic← /0
comment: the offset of the neighbors on the first axis

xno← o f f set(0)
xno[0]← 1
for each ls ∈ O

do



comment: 2 intercepts per line on the first axis

ic[xno]← ic[xno]+2 · length(ls)
for each nls ∈ neighbors(ls)

do



comment: straight and diagonal offsets of the neighbors

no← o f f set(nls)
dno← o f f set(nls)
dno[0]← 1
if isEmpty(nls)

then


comment: all the lines are on a contour

for each l ∈ ls

do
{

ic[no]← ic[no]+ length(l)
ic[dno]← ic[dno]+2 · length(l)

else



comment: iterate over the lines in ls and the empty lines in nls

il← iterator(ls)
inl← iterator(nls)
nMin←−∞
nMax← pos(inl)−1
while isNotAtEnd(il)

do



lMin← pos(il)
lMax← pos(il)+ length(il)−1
comment: measure the intersection of these two lines

ic[no]← ic[no]+max(0,min(lMax,nMax)−max(lMin,nMin)+1)
ic[dno]← ic[dno]+max(0,min(lMax,nMax+1)−max(lMin,nMin+1)+1)
ic[dno]← ic[dno]+max(0,min(lMax,nMax−1)−max(lMin,nMin−1)+1)
comment: and move to the next line, either in ls or in nls

if nMax≤ lMax

then


nMin← pos(inl)+ length(inl)
next(inl)
if isNotAtEnd(inl)

do nMax← pos(inl)−1
else nMax← ∞

else next(il)

Figure 2: The algorithm used to count the intercepts
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equivalent d-perimeter is defined as the perimeter of the d-ball with same volume V .

roundness =
Peq

P
(6)

Peq =
d ·V
Req

(7)

Req =
d
√

V ·Γ(d+1
2 )

π d
2

(8)

Γ(
d +1

2
) =


d
2

! if d is even
√

π ·d!!

2
d+1

2
if d is odd

(9)

d!! =

{
1 if d ≤ 1
d · (d−2)!! otherwise

(10)

Roundness takes values between 0 and 1. It is equal to 1 for circular or spherical shapes, and decreases for
more complicated shapes. For 3D shapes, equivalent decriptive parameters can be defined using ratio of
surface area and volume [1].

3 Implementation

The implementation of this algorithm has been done in the itk::ShapeLabelMapFilter class, which is
already in charge of the computation of several shape descriptors. The run-length encoding used in the
itk::LabelObject representation is reused. The implementation is N-dimensional and thus is usable for
any image dimension. The most useful cases, 2D and 3D have been specialized to provide a more accurate
estimation by also using the diagonals – 4 directions in 2D and 13 directions in 3D. In the 4D case and
greater, the diagonals are not used.

The perimeter estimation is now turned on by default, but can still be disabled with
SetComputePerimeter(false) in itk::ShapeLabelMapFilter if not needed. This should en-
hance the user experience, especially for the attributes non obviously derived from the perimeter like the
roundness.

3.1 N-Dimensional name

The attribute is called Perimeter independently of the dimension of the image and is available in the
itk::ShapeLabelObject .

3.2 Border management

The borders of the image is considered to be in the background, so the contour of an object touching the
border of the image is measured. This was not the case in the previous (undocumented) implementation and
has been proven to be misleading for many users. It is possible to subtract the perimeter on the border to the
full perimeter if the measure without the part touching the border is needed.
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3.3 Multithreading 7

3.3 Multithreading

The architecture implemented in itk::ShapeLabelMapFilter use one thread per LabelObject. The
perimeter estimation has been integrated in this architecture, providing a multithreaded implementation
as long as there are several LabelObjects in the input LabelMap.

4 Evaluation method

Perimeter and surface area are measured on discretization of various 2D and 3D shapes whose true perimeter
or surface area is known. Planar test shapes include disks, rings obtained by the difference of several disks,
trefoil shape, ellipses and rectangles with various sizes aspect ratios. Test shapes for 3D measurements
include balls with various radii, hollow balls, prolate and oblate ellipsoids, and cuboids. Only significant
results are presented here.

Shapes were discretized following the Gauss discretization scheme [3, 5]. Binary images can be considered
as a subset of a rectangular grid Ld where d = 2,3. Such a grid can be written as

Ld = ∆1Z× . . .×∆1Z, (11)

where the d-uple (∆1, . . . ,∆d) defines the pixel or voxel size. A grid point x belongs to the reconstructed
structure if the grid cell centered on x hits X (See Fig. 3).

Figure 3: Discretization of two disks with same radius and different positions. A grid cell belong tho the
reconstructed shape if its center is inside the original shape. The reconstructed shapes have different size
and shape.

For each test shape, measurements were made on several discretisation of the shape, with various orienta-
tions and various origins. The center of each shape was chosen at random within the center pixel or voxel
of the grid.

Perimeter of 2D discretized shapes was measured using Crofton method using 2 and 4 directions, and by
computing the length of the reconstructed contour (Matlab Software was used). Surface area of 3D dis-
cretized shapes was measured using Crofton method using 3 and 13 directions, and by computing the
surface area of the reconstruced shape obtained by the marching cubes algorithm. The average and the
standard deviation of measurements were computed for all shapes discretized with the same resolution. Ef-
fect of orientation was investigated by computing average and standard deviation of shapes having the same
orientation.
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5 Accuracy

5.1 Perimeter of disks at various resolutions

Figure 4 shows average and standard deviation of perimeter measured on disks with various resolutions.
Perimeter measured using Crofton method converges towards the real value when the resolution increase.
The convergence speed is faster when four directions are used instead of two, and the variability is lower.
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Figure 4: Perimeter measure of disks with various resolutions and at random positions

Perimeters measured with Matlab show similar variability, but the measured values do not converge toward
the true value. This shows the inaccuracy of the method consisting in counting boundary pixels.

The oscillations of the variability is due to the fact that for disks with diameters equal to an integer, the num-
ber of intersections with horizontal or vertical lines is always the same, thus greatly reducing the variability
of measures.

5.2 Perimeter of ellipses with various orientations

Figure 5 shows measures obtained on discretized ellipses (semi axis lengths equal to 30 and 10) with various
orientations. Using Crofton method with only 2 directions produces greater errors on the measure than with
4 directions. However, in both cases, the average over the orientations of the mean values is very close to
the actual perimeter.

The perimeter by counting boundary pixels, for example by using Matlab’s "regionprops" methods, leads
to a systematic bias: whatever the orientation, measure is different from the actual perimeter. Note that the
difference does not decrease with the resolution.

5.3 Roundness of random ellipses

Figure 6 shows the roundness measured on a population of 100 discretized ellipses with semi axis lengths
equal to 4 and 2 pixels. The center of the ellipses is chosen at random within the center pixel, and orientation
is chosen at random between 0 and 180 degrees.
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Figure 5: Variations of perimeter measure of a digitized ellipse depending on the orientation. Left: perimeter
measures. Right: relative errors (in percent).

The variations in the perimeter measure cause variation in the roundness measure. The variability of round-
ness is less when measured with the Crofton method using 4 directions. Not that in some cases, the computed
roundness may be greater than 1, due to the error in perimeter measure.
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Figure 6: Measure of roundness on random ellipses. Left: some examples of test ellipses and their discrete
reconstructions. Right: box plots of roundness computed from perimeter measured from different methods.

5.4 Surface area of 3D shapes

Comparison of surface area measured on several discrete reconstructed shapes is given in Table 1. Test
shapes comprise a ball with radius 30 voxels, prolate ellipsoids (semi axis lengths equal to 30, 10 and 10
voxels), oblate ellipsoids (semi axis lengths equal to 10, 10 and 30 voxels), and torus (outer and inner radius
equal to 50 and 10 voxels).

As for the planar case, the measure is closer to the actual value when using more directions. The error is
around 2 percent in average for 3 directions, and less than 1 percent for 13 directions.
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Shape (φ,θ) S Scro f ton3 Scro f ton13 SV T Kmarch SIT Kiso

ball n.a. 11309.8 11312.0 (+0.0%) 11306.6 (−0.0%) 12298.2 (+8.7%) 12299.5 (+8.8%)
prolate (0,0) 3082.9 2938.7 (−4.7%) 3084.6 (+0.1%) 3354.1 (+8.8%) 3354.9 (+8.8%)

- (45,0) − 3137.3 (+1.8%) 3086.3 (+0.1%) 3353.9 (+8.8%) 3354.7 (+8.8%)
- (45,45) − 3150.6 (+2.2%) 3083.3 (+0.0%) 3351.5 (+8.7%) 3352.2 (+8.7%)

oblate (0,0) 6856.8 6290.7 (−8.3%) 6807.6 (−0.7%) 7410.2 (+8.1%) 7411.3 (+8.1%)
- (45,0) − 6872.0 (+0.2%) 6789.0 (−1.0%) 7369.7 (+7.5%) 7370.7 (+7.5%)
- (45,45) − 7154.7 (+4.3%) 6808.5 (−0.7%) 7385.9 (+7.7%) 7386.7 (+7.7%)

torus (0,0) 11843.5 11417.3 (−3.6%) 11792.9 (−0.4%) 12826.6 (+8.3%) 12828.7 (+8.3%)
- (45,0) − 11809.3 (−0.3%) 11766.8 (−0.6%) 12787.4 (+8.0%) 12789.3 (+8.0%)
- (45,45) − 12086.0 (+1.9%) 11822.4 (−0.2%) 12849.1 (+8.5%) 12851.1 (+8.5%)

Table 1: Differences between actual surface area and its measures with different methods, on shapes with
various orientations. The orientation is given by the direction of the shape rotation axis, defined by the
azimut φ (between 0 and 360 degrees) and the colatitude θ (between 0 and 180 degrees).

When using Crofton method, the measured perimeter is oscillating around the actual value. If 3 directions
are used, relative error is usually less than 5 percents. Errors are smaller when 13 directions are used
(maximum relative error equal to 1 percent).

When using isosurface reconstruction, the surface area is systematically over estimated. The difference is
around 8 percent in average.

6 Timing

The performance of the Crofton based method as well as several other methods available in ITK or VTK are
shown in Table 2. The timings were obtained using the ./perf3D ../images/ball450.nrrd command
on an Intel(R) Xeon(R) CPU X5570 processor at 2.93GHz with 8192Kb cache, 24Gb of RAM running
Ubuntu linux 11.04 64 bits with gcc 4.5.2. The input image have a size of 1000×1000×1000 and contains
a single binary object: a ball of radius 450.

Method Timing
Proposed method 1.80882 s

VTK marching cubes 15.3972
VTK marching cubes + gaussian filtering 26.6482

ITK BinaryMask3DMeshSource 29.1124

Table 2: Excecution times in seconds for measuring the surface area of a ball with radius 450 voxels in a
1000×1000×1000 voxels image.
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