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Secular increase in ecosystem primary productivity from satellite 
(NDVI) over the past 25 years 

(Nemani et al., Science 2003) 

(% per year) 

Greening of land 
(1982-1999) 

 



Land and oceans store carbon 

Large interannual 

variability in global 

land C sink 

(Canadell et al.,2007, PNAS) 



Carbon sink in China, Europe and 

United States 

(Piao et al., Nature, 2009) From atmospheric and ecosystem 

measurements 



Detailed carbon sink map in Northern America 

(Peters et al., PNAS, 2007) 

Grasslands  

In N. America 

‘CarbonTracker’: atmospheric modelling 



Land carbon sink in Northern America 

(Peters et al., 2007, PNAS) 

Grassland sink 



C sequestration in a temperate pasture 
(tC ha-1 yr-1) 

Sown grassland with intensive grazing (Soussana et al., Soil Use Manag., 2004) 
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1 mm 
Soil macroaggregates 
short-term C storage 

(years) 

0.1 mm 
Soil microaggregates 

medium-term C storage 
(decades) 

10 μm 
Clay-OM complexes 
long-term C storage 

(millenia) 

Roots 

External particulate OM 

Internal particulate OM 

Fungal hyphae 

Particulate OM 

Bacterial cells 

Clay minerals 

Humified OM 

Air space 

Soil processes leading to carbon storage 

at a range of time-scales 

Changes in total soil organic carbon content 

are hardly detectable within a few years 



How stable is organic carbon? 

Comparing deep and top soil 

 600 

1700 

Reservoir of carbon 

(GtC) 

0-0,2 m 

0,2-3 m 

Residence time 

(years) 

10-300 yrs 

1000-15000 yrs 

Highly stable 

deep carbon 

Is this large pool of carbon going to react to global change and accelerate the 

rise of atmospheric CO2? 

(Fontaine et al., Nature 2007) 



Effect of fresh C supply to deep microbes. 

0-0.2 m 

0.6-0.8 m 

Picture of the studied profile. 

Cellulose  

(labeled with 
13C, 14C) 
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Stimulation of microbial growth 

Reactivation of decomposition of 

2600 yr old soil C (priming effect). 

Without supply of fresh C (energy) for microbes, deep carbon is stable  

(Fontaine et al., Nature 2007) 
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Mt C year
-1
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Estimated carbon sink: 7-11 % of fossil fuel emissions 
Geographic Europe 

Land carbon sinks and sources in Europe 

(Janssens et al. Science, 2003). 

Sink Source 

370 Mt CO2 yr-1 



The eddy covariance method  

for measuring CO2 fluxes 

[CO2] = C’ 

Vertical wind = w’ 
CO2 flux = w’ c’ 

Flux towers : Spatial scale ≈ 1 km2 



C fluxes in a 

grassland 

ecosystem 

NCS = (FCO2 - FCH4-C - FVOC - Ffire) + (Fmanure - Fharvest - Fanimal-products) - (Fleach + Ferosion) 

 

Simplified balance in a temperate managed system: 

 

NCS = (FCO2 - FCH4-C) + (Fmanure - Fharvest – Fanimal-products) – Fleach  

      
(Soussana and Tallec, 2009, Animal, in press) 
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C sequestration (NCS) at grazed only 

European sites (g C m-2 yr-1) 

NCS = 129
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Mean of 2 sites 

(Soussana et al., 2007, AGEE; Soussana & Tallec, 2009, Animal) 

 



C sequestration (NCS) 

at cut European sites 
(g C m-2 yr-1) 

? 



Carbon sequestration in 

grasslands: range of estimates 

Flux sites: 100±28 g C/m2 per year Histogram for Col_1
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(Soussana and Tallec, Animal, in press; Soussana et al., in prep.) 



A first estimate of carbon sequestration  

in European grasslands (data based upscaling) 

C sequestration reaches 6 % of gross photosynthesis, similar to forests 
 

Direct plus indirect emissions of N2O and CH4 lead to a 45 % trade-off 

 

      (Soussana et al., in prep.) 

 



Fate of harvested C at cut sites  

(g C m-2 yr-1) 

Mean of 3 sites 

(Soussana et al., 2007, AGEE; Soussana & Tallec, 2009, Animal) 
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Fate of harvested C at cut and grazed sites 

(g C m-2 yr-1) 
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(Soussana et al., 2007, AGEE; Soussana & Tallec, 2009, Animal) 

 



Herbage utilisation by grazing and cutting  (gC m
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• The less carbon is used, the more is returned to the soil, 

 which increases C sequestration 

 

• Nitrogen supply also favours carbon sequestration 
 

Carbon sequestration (NCS) at 10 
European grassland sites 

(Soussana et al. Agriculture, Ecosys. Environment, 2007) 

Carbon gain 

 

 

 

 

 

 

 

Carbon loss 

  



Land use change effects on 

soil carbon stocks 
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 arable ->  forest 

 arable -> grassland 

   forest -> arable 

 grassland -> arable 

Carbon in soils: slow in and fast out! 
  (INRA, 2002) 



Increase C inputs Decrease C losses 

Soil Organic 
Matter 
(C,N)  

1. Avoid ploughing up 
permanent grasslands 

2. Conversion from arable 
to grassland & from 
short duration leys to 
permanent grassland 
 

3. Reduce cutting and 
grazing 
 

4. Reduce fire, leaching, 
erosion & mineralisation 
 

5.  Improve soil structure 

1. Increase biomass 
 Forage productivity 
 Species selection 
 Legumes, fertilizers 
 Irrigation 
 Grass/legume mix 

 
2. Change from short-term to 

permanent grassland 
 

3. Reduced cutting, avoid 
overgrazing 
 

4. Introduce earthworms 
 

 

How to increase soil carbon stock 



Global technical mitigation potential by 2030 

of each agricultural management practice 

Carbon sequestration in agricultural soils : 89 % 

Mitigation of CH4 emissions: 9 % 

Mitigation of N2O emissions: 2 %   (IPCC, 2007) 

 



Mitigation potential of GHG emissions from the 

agriculture sector in 2030  
(Mt CO2 eq./year, B2 scenario, 100 $ US/tCO2-eq) 

 

Drawn from data in Smith et al., 2007a. 

 

IPCC 2007 

Total : 5 850 Mt CO2-eq yr-1 

70% of the mitigation potential is in developing countries 
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Greenhouse gas balance of 10  

European grassland sites 
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4  CH4 : in-situ dual tracer mehod - N2O: automated chambers 

On site emissions of N2O and CH4 , converted in CO2 equivalents using 

the GWP of each gas, offset 43 % of the ecosystem C sink 

 

The net greenhouse gas balance, also including off-site emissions of N2O 

and CH4 through digestion of cut herbage, is a small net sink by 85 ± 77 g 

C m-2 yr-1 

(Flechard et al., 2007, Pinares-Pineiro et al., 2007, Soussana et al., 2007) 



In CO2 equivalents, using the global warming potential 

(GWP) of each gas at the 100 years time horizon (IPCC, 

2007): 

 

NGHG : on site greenhouse gas balance 

 

Attributed NGHG: on and off site greenhouse gas balance 

Off site: emissions in the barn from cut herbage (digestion 

and wastes) 

Budgeting GHG:  
net GHG balance in CO2 equivalents 

(Soussana and Tallec, 2009) 



GHG balance in CO2 equivalents 

at European sites 

 (g CO2-C equivalents m-2 yr-1)  

 

(Soussana et al., 2007, Soussana and Tallec, 2009) 
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471 471 145 145 22 22 320 320 

Grazing & 
cutting 

183 268 159 476 64 81 -22 -272 

Cutting 
 

259 359 0 447 30 53 230 -141  

NGHG: grassland greenhouse gas balance 

Att-NGH: attributed greenhouse gas balance (including off site emissions) 
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Impacts of climate variability and 
extremes on the C cycle in grasslands 

Interannual variability 

Agricultural  

management 
Greenhouse gas 

emissions 



Climate change impact on grassland 

soil carbon sequestration 

(Smith et al., 2005, Global Change Biol.) 



Biodiversity loss may impact C sequestration 

 
Soil organic matter 

CO2 Energy 

Chemical 
characteristics 
of litter 

Plant 
Production/ 
Allocation 

Micro- 
environmental 

Plant species diversity 
Plant functional traits 

Defoliation by cutting  
and grazing 



Biodiversity effect at patch scale 

in managed grasslands 

(Gross et al., in revision, BAE) 
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Root traits effects on productivity 

and C sequestration 

(Klumpp and Soussana, 2009 Global Change Biol., in press) 
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C sequestration declines when there are less coarse roots 
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A model of GHG and C sequestration  

in livestock farms (FARMSIM) 
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A dynamic model coupling lifecycle analysis and carbon sequestration 
(Salettes et al., 2004; Schils et al., 2007; Duretz et al., 2009) 



Net greenhouse gas balance of cattle 

farms per unit energy in animal products 

(FarmSim model) 
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(Schils et al., 2007, Fiorelli et al., 2008) 

There are large between farm variations in greenhouse gas balance 

 

GHG emissions are positively correlated with a farm gate surplus of N 

 



Summary: greenhouse gas balance per unit area  

of grasslands and of livestock farms 
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The GHG balance of the  

agriculture sector in Europe 

Grassland C sequestration would play a  

significant role for the European agriculture sector 

GHG balance of agriculture in EU25 including C sequestration

Tg C yr
-1
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(Schulze et al., submitted to Nature Geosciences) 



Concluding remarks 

• There is a clear potential for C sequestration in European 
grasslands 

 

• An internationally agreed methodology is still missing to 
develop mitigation options in the livestock sector based on C 
sequestration 

 

• Reducing CH4 and N2O emissions from the livestock sector is 
strongly needed, given that soil carbon sequestration is 
reversible and vulnerable to climate change and biodiversity 
loss 

 

• Mitigation strategies could be based on the net GHG balance 
of livestock farms 

 

 

 



Thank you 


